#include "imxrt.h" #include "wiring.h" #include "usb_dev.h" #include "debug/printf.h" // from the linker extern unsigned long _stextload; extern unsigned long _stext; extern unsigned long _etext; extern unsigned long _sdataload; extern unsigned long _sdata; extern unsigned long _edata; extern unsigned long _sbss; extern unsigned long _ebss; __attribute__ ((used, aligned(1024))) void (* _VectorsRam[160+16])(void); static void memory_copy(uint32_t *dest, const uint32_t *src, uint32_t *dest_end); static void memory_clear(uint32_t *dest, uint32_t *dest_end); static void configure_systick(void); extern void systick_isr(void); void configure_cache(void); void unused_interrupt_vector(void); void usb_pll_start(); extern void analog_init(void); extern void pwm_init(void); uint32_t set_arm_clock(uint32_t frequency); __attribute__((section(".startup"))) void ResetHandler(void) { unsigned int i; //force the stack to begin at some arbitrary location //__asm__ volatile("mov sp, %0" : : "r" (0x20010000) : ); // pin 13 - if startup crashes, use this to turn on the LED early for troubleshooting IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_03 = 5; IOMUXC_SW_PAD_CTL_PAD_GPIO_B0_03 = IOMUXC_PAD_DSE(7); GPIO2_GDIR |= (1<<3); GPIO2_DR_SET = (1<<3); // Initialize memory memory_copy(&_stext, &_stextload, &_etext); memory_copy(&_sdata, &_sdataload, &_edata); memory_clear(&_sbss, &_ebss); // enable FPU SCB_CPACR = 0x00F00000; // set up blank interrupt & exception vector table for (i=0; i < 176; i++) _VectorsRam[i] = &unused_interrupt_vector; SCB_VTOR = (uint32_t)_VectorsRam; // Configure clocks // TODO: make sure all affected peripherals are turned off! // PIT & GPT timers to run from 24 MHz clock (independent of CPU speed) CCM_CSCMR1 = (CCM_CSCMR1 & ~CCM_CSCMR1_PERCLK_PODF(0x3F)) | CCM_CSCMR1_PERCLK_CLK_SEL; // UARTs run from 24 MHz clock (works if PLL3 off or bypassed) CCM_CSCDR1 = (CCM_CSCDR1 & ~CCM_CSCDR1_UART_CLK_PODF(0x3F)) | CCM_CSCDR1_UART_CLK_SEL; // must enable PRINT_DEBUG_STUFF in debug/print.h printf_debug_init(); printf("\n***********IMXRT Startup**********\n"); printf("test %d %d %d\n", 1, -1234567, 3); configure_cache(); configure_systick(); usb_pll_start(); set_arm_clock(600000000); //set_arm_clock(984000000); Ludicrous Speed uint32_t armpll = CCM_ANALOG_PLL_ARM; uint32_t armdiv = CCM_CACRR; uint32_t cbcdr = CCM_CBCDR; uint32_t cbcmr = CCM_CBCMR; printf("ARM PLL = %u MHz\n", (armpll & 0x7F) * 12); printf("ARM divisor = %u\n", armdiv + 1); printf("AHB divisor = %u\n", ((cbcdr >> 10) & 7) + 1); printf("IPG divisor = %u\n", ((cbcdr >> 8) & 3) + 1); // TODO: wait at least 20ms before starting USB usb_init(); analog_init(); pwm_init(); // TODO: wait tat least 300ms before calling setup printf("before setup\n"); setup(); printf("after setup\n"); while (1) { //printf("loop\n"); loop(); } } // ARM SysTick is used for most Ardiuno timing functions, delay(), millis(), // micros(). SysTick can run from either the ARM core clock, or from an // "external" clock. NXP documents it as "24 MHz XTALOSC can be the external // clock source of SYSTICK" (RT1052 ref manual, rev 1, page 411). However, // NXP actually hid an undocumented divide-by-240 circuit in the hardware, so // the external clock is really 100 kHz. We use this clock rather than the // ARM clock, to allow SysTick to maintain correct timing even when we change // the ARM clock to run at different speeds. #define SYSTICK_EXT_FREQ 100000 static void configure_systick(void) { _VectorsRam[15] = systick_isr; SYST_RVR = (SYSTICK_EXT_FREQ / 1000) - 1; SYST_CVR = 0; SYST_CSR = SYST_CSR_TICKINT | SYST_CSR_ENABLE; ARM_DEMCR |= ARM_DEMCR_TRCENA; ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA; // turn on cycle counter } // concise defines for SCB_MPU_RASR and SCB_MPU_RBAR, ARM DDI0403E, pg 696 #define NOEXEC SCB_MPU_RASR_XN #define READONLY SCB_MPU_RASR_AP(7) #define READWRITE SCB_MPU_RASR_AP(3) #define NOACCESS SCB_MPU_RASR_AP(0) #define MEM_CACHE_WT SCB_MPU_RASR_TEX(0) | SCB_MPU_RASR_C #define MEM_CACHE_WB SCB_MPU_RASR_TEX(0) | SCB_MPU_RASR_C | SCB_MPU_RASR_B #define MEM_CACHE_WBWA SCB_MPU_RASR_TEX(1) | SCB_MPU_RASR_C | SCB_MPU_RASR_B #define MEM_NOCACHE SCB_MPU_RASR_TEX(1) #define DEV_NOCACHE SCB_MPU_RASR_TEX(2) #define SIZE_128K (SCB_MPU_RASR_SIZE(16) | SCB_MPU_RASR_ENABLE) #define SIZE_256K (SCB_MPU_RASR_SIZE(17) | SCB_MPU_RASR_ENABLE) #define SIZE_512K (SCB_MPU_RASR_SIZE(18) | SCB_MPU_RASR_ENABLE) #define SIZE_1M (SCB_MPU_RASR_SIZE(19) | SCB_MPU_RASR_ENABLE) #define SIZE_2M (SCB_MPU_RASR_SIZE(20) | SCB_MPU_RASR_ENABLE) #define SIZE_4M (SCB_MPU_RASR_SIZE(21) | SCB_MPU_RASR_ENABLE) #define SIZE_8M (SCB_MPU_RASR_SIZE(22) | SCB_MPU_RASR_ENABLE) #define SIZE_16M (SCB_MPU_RASR_SIZE(23) | SCB_MPU_RASR_ENABLE) #define SIZE_32M (SCB_MPU_RASR_SIZE(24) | SCB_MPU_RASR_ENABLE) #define SIZE_64M (SCB_MPU_RASR_SIZE(25) | SCB_MPU_RASR_ENABLE) #define REGION(n) (SCB_MPU_RBAR_REGION(n) | SCB_MPU_RBAR_VALID) __attribute__((section(".progmem"))) void configure_cache(void) { //printf("MPU_TYPE = %08lX\n", SCB_MPU_TYPE); //printf("CCR = %08lX\n", SCB_CCR); // TODO: check if caches already active - skip? SCB_MPU_CTRL = 0; // turn off MPU SCB_MPU_RBAR = 0x00000000 | REGION(0); // ITCM SCB_MPU_RASR = MEM_NOCACHE | READWRITE | SIZE_512K; SCB_MPU_RBAR = 0x00200000 | REGION(1); // Boot ROM SCB_MPU_RASR = MEM_CACHE_WT | READONLY | SIZE_128K; SCB_MPU_RBAR = 0x20000000 | REGION(2); // DTCM SCB_MPU_RASR = MEM_NOCACHE | READWRITE | NOEXEC | SIZE_512K; SCB_MPU_RBAR = 0x20200000 | REGION(3); // RAM (AXI bus) SCB_MPU_RASR = MEM_CACHE_WBWA | READWRITE | NOEXEC | SIZE_1M; SCB_MPU_RBAR = 0x40000000 | REGION(4); // Peripherals SCB_MPU_RASR = DEV_NOCACHE | READWRITE | NOEXEC | SIZE_64M; SCB_MPU_RBAR = 0x60000000 | REGION(5); // QSPI Flash SCB_MPU_RASR = MEM_CACHE_WBWA | READONLY | SIZE_16M; // TODO: 32 byte sub-region at 0x00000000 with NOACCESS, to trap NULL pointer deref // TODO: protect access to power supply config // TODO: 32 byte sub-region at end of .bss section with NOACCESS, to trap stack overflow SCB_MPU_CTRL = SCB_MPU_CTRL_ENABLE; // cache enable, ARM DDI0403E, pg 628 asm("dsb"); asm("isb"); SCB_CACHE_ICIALLU = 0; asm("dsb"); asm("isb"); SCB_CCR |= (SCB_CCR_IC | SCB_CCR_DC); } __attribute__((section(".progmem"))) void usb_pll_start() { while (1) { uint32_t n = CCM_ANALOG_PLL_USB1; // pg 759 printf("CCM_ANALOG_PLL_USB1=%08lX\n", n); if (n & CCM_ANALOG_PLL_USB1_DIV_SELECT) { printf(" ERROR, 528 MHz mode!\n"); // never supposed to use this mode! CCM_ANALOG_PLL_USB1_CLR = 0xC000; // bypass 24 MHz CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_BYPASS; // bypass CCM_ANALOG_PLL_USB1_CLR = CCM_ANALOG_PLL_USB1_POWER | // power down CCM_ANALOG_PLL_USB1_DIV_SELECT | // use 480 MHz CCM_ANALOG_PLL_USB1_ENABLE | // disable CCM_ANALOG_PLL_USB1_EN_USB_CLKS; // disable usb continue; } if (!(n & CCM_ANALOG_PLL_USB1_ENABLE)) { printf(" enable PLL\n"); // TODO: should this be done so early, or later?? CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_ENABLE; continue; } if (!(n & CCM_ANALOG_PLL_USB1_POWER)) { printf(" power up PLL\n"); CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_POWER; continue; } if (!(n & CCM_ANALOG_PLL_USB1_LOCK)) { printf(" wait for lock\n"); continue; } if (n & CCM_ANALOG_PLL_USB1_BYPASS) { printf(" turn off bypass\n"); CCM_ANALOG_PLL_USB1_CLR = CCM_ANALOG_PLL_USB1_BYPASS; continue; } if (!(n & CCM_ANALOG_PLL_USB1_EN_USB_CLKS)) { printf(" enable USB clocks\n"); CCM_ANALOG_PLL_USB1_SET = CCM_ANALOG_PLL_USB1_EN_USB_CLKS; continue; } return; // everything is as it should be :-) } } // Stack frame // xPSR // ReturnAddress // LR (R14) - typically FFFFFFF9 for IRQ or Exception // R12 // R3 // R2 // R1 // R0 void unused_interrupt_vector(void) { // TODO: polling Serial to complete buffered transmits #ifdef PRINT_DEBUG_STUFF uint32_t addr; asm volatile("mrs %0, ipsr\n" : "=r" (addr)::); printf("\nirq %d\n", addr & 0x1FF); asm("ldr %0, [sp, #52]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #48]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #44]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #40]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #36]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #33]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #34]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #28]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #24]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #20]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #16]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #12]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #8]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #4]" : "=r" (addr) ::); printf(" %x\n", addr); asm("ldr %0, [sp, #0]" : "=r" (addr) ::); printf(" %x\n", addr); #endif #if 1 IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_03 = 5; // pin 13 IOMUXC_SW_PAD_CTL_PAD_GPIO_B0_03 = IOMUXC_PAD_DSE(7); GPIO2_GDIR |= (1<<3); GPIO2_DR_SET = (1<<3); while (1) { volatile uint32_t n; GPIO2_DR_SET = (1<<3); //digitalWrite(13, HIGH); for (n=0; n < 2000000; n++) ; GPIO2_DR_CLEAR = (1<<3); //digitalWrite(13, LOW); for (n=0; n < 1500000; n++) ; } #else while (1) { } #endif } static void memory_copy(uint32_t *dest, const uint32_t *src, uint32_t *dest_end) { if (dest == src) return; while (dest < dest_end) { *dest++ = *src++; } } static void memory_clear(uint32_t *dest, uint32_t *dest_end) { while (dest < dest_end) { *dest++ = 0; } }