/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "core_pins.h" //#include "HardwareSerial.h" #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // ugly hack for now... #define __MK20DX256__ #endif static uint8_t calibrating; static uint8_t analog_right_shift = 0; static uint8_t analog_config_bits = 10; static uint8_t analog_num_average = 4; static uint8_t analog_reference_internal = 0; // the alternate clock is connected to OSCERCLK (16 MHz). // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode #if F_BUS == 60000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz #elif F_BUS == 56000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz #elif F_BUS == 48000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz #elif F_BUS == 40000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz #elif F_BUS == 36000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz #elif F_BUS == 24000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz #elif F_BUS == 16000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 16 MHz #elif F_BUS == 8000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz #elif F_BUS == 4000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz #elif F_BUS == 2000000 #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz #else #error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz" #endif void analog_init(void) { uint32_t num; #if defined(__MK20DX128__) || defined(__MK20DX256__) VREF_TRM = 0x60; VREF_SC = 0xE1; // enable 1.2 volt ref #endif if (analog_config_bits == 8) { ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0); ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); #if defined(__MK20DX256__) ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0); ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); #endif } else if (analog_config_bits == 10) { ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP; ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); #if defined(__MK20DX256__) ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP; ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); #endif } else if (analog_config_bits == 12) { ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP; ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); #if defined(__MK20DX256__) ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP; ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); #endif } else { ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP; ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); #if defined(__MK20DX256__) ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP; ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); #endif } #if defined(__MK20DX128__) if (analog_reference_internal) { ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref } else { ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref } #elif defined(__MK20DX256__) if (analog_reference_internal) { ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref } else { ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref } #elif defined(__MKL26Z64__) if (analog_reference_internal) { ADC0_SC2 = ADC_SC2_REFSEL(0); // external AREF } else { ADC0_SC2 = ADC_SC2_REFSEL(1); // vcc } #endif num = analog_num_average; if (num <= 1) { ADC0_SC3 = ADC_SC3_CAL; // begin cal #if defined(__MK20DX256__) ADC1_SC3 = ADC_SC3_CAL; // begin cal #endif } else if (num <= 4) { ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0); #if defined(__MK20DX256__) ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0); #endif } else if (num <= 8) { ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1); #if defined(__MK20DX256__) ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1); #endif } else if (num <= 16) { ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2); #if defined(__MK20DX256__) ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2); #endif } else { ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3); #if defined(__MK20DX256__) ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3); #endif } calibrating = 1; } static void wait_for_cal(void) { uint16_t sum; //serial_print("wait_for_cal\n"); #if defined(__MK20DX128__) while (ADC0_SC3 & ADC_SC3_CAL) { // wait } #elif defined(__MK20DX256__) while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) { // wait } #endif __disable_irq(); if (calibrating) { //serial_print("\n"); sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0; sum = (sum / 2) | 0x8000; ADC0_PG = sum; //serial_print("ADC0_PG = "); //serial_phex16(sum); //serial_print("\n"); sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0; sum = (sum / 2) | 0x8000; ADC0_MG = sum; //serial_print("ADC0_MG = "); //serial_phex16(sum); //serial_print("\n"); #if defined(__MK20DX256__) sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0; sum = (sum / 2) | 0x8000; ADC1_PG = sum; sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0; sum = (sum / 2) | 0x8000; ADC1_MG = sum; #endif calibrating = 0; } __enable_irq(); } // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC. // VREFH/VREFL - connected as the primary reference option // 1.2 V VREF_OUT - connected as the VALT reference option #if defined(__MK20DX128__) || defined(__MK20DX256__) #define DEFAULT 0 #define INTERNAL 2 #define INTERNAL1V2 2 #define INTERNAL1V1 2 #define EXTERNAL 0 #elif defined(__MKL26Z64__) #define DEFAULT 0 #define INTERNAL 0 #define EXTERNAL 1 #endif void analogReference(uint8_t type) { if (type) { // internal reference requested if (!analog_reference_internal) { analog_reference_internal = 1; if (calibrating) { ADC0_SC3 = 0; // cancel cal #if defined(__MK20DX256__) ADC1_SC3 = 0; // cancel cal #endif } analog_init(); } } else { // vcc or external reference requested if (analog_reference_internal) { analog_reference_internal = 0; if (calibrating) { ADC0_SC3 = 0; // cancel cal #if defined(__MK20DX256__) ADC1_SC3 = 0; // cancel cal #endif } analog_init(); } } } void analogReadRes(unsigned int bits) { unsigned int config; if (bits >= 13) { if (bits > 16) bits = 16; config = 16; } else if (bits >= 11) { config = 12; } else if (bits >= 9) { config = 10; } else { config = 8; } analog_right_shift = config - bits; if (config != analog_config_bits) { analog_config_bits = config; if (calibrating) ADC0_SC3 = 0; // cancel cal analog_init(); } } void analogReadAveraging(unsigned int num) { if (calibrating) wait_for_cal(); if (num <= 1) { num = 0; ADC0_SC3 = 0; } else if (num <= 4) { num = 4; ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0); } else if (num <= 8) { num = 8; ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1); } else if (num <= 16) { num = 16; ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2); } else { num = 32; ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3); } analog_num_average = num; } // The SC1A register is used for both software and hardware trigger modes of operation. #if defined(__MK20DX128__) static const uint8_t channel2sc1a[] = { 5, 14, 8, 9, 13, 12, 6, 7, 15, 4, 0, 19, 3, 21, 26, 22, 23 }; #elif defined(__MK20DX256__) static const uint8_t channel2sc1a[] = { 5, 14, 8, 9, 13, 12, 6, 7, 15, 4, 0, 19, 3, 19+128, 26, 18+128, 23, 5+192, 5+128, 4+128, 6+128, 7+128, 4+192 // A15 26 E1 ADC1_SE5a 5+64 // A16 27 C9 ADC1_SE5b 5 // A17 28 C8 ADC1_SE4b 4 // A18 29 C10 ADC1_SE6b 6 // A19 30 C11 ADC1_SE7b 7 // A20 31 E0 ADC1_SE4a 4+64 }; #elif defined(__MKL26Z64__) static const uint8_t channel2sc1a[] = { 5, 14, 8, 9, 13, 12, 6, 7, 15, 11, 0, 4+64, 23, 26, 27 }; #endif // TODO: perhaps this should store the NVIC priority, so it works recursively? static volatile uint8_t analogReadBusyADC0 = 0; #if defined(__MK20DX256__) static volatile uint8_t analogReadBusyADC1 = 0; #endif int analogRead(uint8_t pin) { int result; uint8_t index, channel; //serial_phex(pin); //serial_print(" "); #if defined(__MK20DX128__) if (pin <= 13) { index = pin; // 0-13 refer to A0-A13 } else if (pin <= 23) { index = pin - 14; // 14-23 are A0-A9 } else if (pin >= 34 && pin <= 40) { index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor, // 39 is vref, 40 is unused analog pin } else { return 0; } #elif defined(__MK20DX256__) if (pin <= 13) { index = pin; // 0-13 refer to A0-A13 } else if (pin <= 23) { index = pin - 14; // 14-23 are A0-A9 } else if (pin >= 26 && pin <= 31) { index = pin - 9; // 26-31 are A15-A20 } else if (pin >= 34 && pin <= 40) { index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor, // 39 is vref, 40 is A14 } else { return 0; } #elif defined(__MKL26Z64__) if (pin <= 12) { index = pin; // 0-12 refer to A0-A12 } else if (pin >= 14 && pin <= 26) { index = pin - 14; // 14-26 are A0-A12 } else if (pin >= 38 && pin <= 39) { index = pin - 25; // 38=temperature // 39=bandgap ref (PMC_REGSC |= PMC_REGSC_BGBE) } else { return 0; } #endif //serial_phex(index); //serial_print(" "); channel = channel2sc1a[index]; //serial_phex(channel); //serial_print(" "); //serial_print("analogRead"); //return 0; if (calibrating) wait_for_cal(); //pin = 5; // PTD1/SE5b, pin 14, analog 0 #if defined(__MK20DX256__) if (channel & 0x80) goto beginADC1; #endif __disable_irq(); startADC0: //serial_print("startADC0\n"); #if defined(__MKL26Z64__) if (channel & 0x40) { ADC0_CFG2 &= ~ADC_CFG2_MUXSEL; channel &= 0x3F; } else { ADC0_CFG2 |= ADC_CFG2_MUXSEL; } #endif ADC0_SC1A = channel; analogReadBusyADC0 = 1; __enable_irq(); while (1) { __disable_irq(); if ((ADC0_SC1A & ADC_SC1_COCO)) { result = ADC0_RA; analogReadBusyADC0 = 0; __enable_irq(); result >>= analog_right_shift; return result; } // detect if analogRead was used from an interrupt // if so, our analogRead got canceled, so it must // be restarted. if (!analogReadBusyADC0) goto startADC0; __enable_irq(); yield(); } #if defined(__MK20DX256__) beginADC1: __disable_irq(); startADC1: //serial_print("startADC0\n"); // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. if (channel & 0x40) { ADC1_CFG2 &= ~ADC_CFG2_MUXSEL; } else { ADC1_CFG2 |= ADC_CFG2_MUXSEL; } ADC1_SC1A = channel & 0x3F; analogReadBusyADC1 = 1; __enable_irq(); while (1) { __disable_irq(); if ((ADC1_SC1A & ADC_SC1_COCO)) { result = ADC1_RA; analogReadBusyADC1 = 0; __enable_irq(); result >>= analog_right_shift; return result; } // detect if analogRead was used from an interrupt // if so, our analogRead got canceled, so it must // be restarted. if (!analogReadBusyADC1) goto startADC1; __enable_irq(); yield(); } #endif } void analogWriteDAC0(int val) { #if defined(__MK20DX256__) SIM_SCGC2 |= SIM_SCGC2_DAC0; if (analog_reference_internal) { DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1 } else { DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2 } if (val < 0) val = 0; // TODO: saturate instruction? else if (val > 4095) val = 4095; *(int16_t *)&(DAC0_DAT0L) = val; #elif defined(__MKL26Z64__) SIM_SCGC6 |= SIM_SCGC6_DAC0; if (analog_reference_internal == 0) { // use 3.3V VDDA power as the reference (this is the default) DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS | DAC_C0_DACSWTRG; // 3.3V VDDA } else { // use whatever voltage is on the AREF pin DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACSWTRG; // 3.3V VDDA } if (val < 0) val = 0; else if (val > 4095) val = 4095; *(int16_t *)&(DAC0_DAT0L) = val; #endif } #if defined(__MK64FX512__) || defined(__MK66FX1M0__) void analogWriteDAC1(int val) { SIM_SCGC2 |= SIM_SCGC2_DAC1; if (analog_reference_internal) { DAC1_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1 } else { DAC1_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2 } if (val < 0) val = 0; // TODO: saturate instruction? else if (val > 4095) val = 4095; *(int16_t *)&(DAC1_DAT0L) = val; } #endif