/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef DMAChannel_h_ #define DMAChannel_h_ #include "kinetis.h" // Discussion about DMAChannel is here: // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 #define DMACHANNEL_HAS_BEGIN #define DMACHANNEL_HAS_BOOLEAN_CTOR // The channel allocation bitmask is accessible from "C" namespace, // so C-only code can reserve DMA channels #ifdef __cplusplus extern "C" { #endif extern uint16_t dma_channel_allocated_mask; #ifdef __cplusplus } #endif #ifdef __cplusplus // known libraries with DMA usage (in need of porting to this new scheme): // // https://github.com/PaulStoffregen/Audio // https://github.com/PaulStoffregen/OctoWS2811 // https://github.com/pedvide/ADC // https://github.com/duff2013/SerialEvent // https://github.com/pixelmatix/SmartMatrix // https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme /****************************************************************/ /** Teensy 3.0 & 3.1 **/ /****************************************************************/ #if defined(KINETISK) class DMABaseClass { public: typedef struct __attribute__((packed, aligned(4))) { volatile const void * volatile SADDR; int16_t SOFF; union { uint16_t ATTR; struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; }; union { uint32_t NBYTES; uint32_t NBYTES_MLNO; uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; }; int32_t SLAST; volatile void * volatile DADDR; int16_t DOFF; union { volatile uint16_t CITER; volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; }; int32_t DLASTSGA; volatile uint16_t CSR; union { volatile uint16_t BITER; volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; }; } TCD_t; TCD_t *TCD; /***************************************/ /** Data Transfer **/ /***************************************/ // Use a single variable as the data source. Typically a register // for receiving data from one of the hardware peripherals is used. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); } void source(volatile const unsigned char &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 0; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; TCD->SLAST = 0; } void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); } void source(volatile const unsigned short &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 1; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; TCD->SLAST = 0; } void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned long &p) { TCD->SADDR = &p; TCD->SOFF = 0; TCD->ATTR_SRC = 2; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; TCD->SLAST = 0; } // Use a buffer (array of data) as the data source. Typically a // buffer for transmitting data is used. void sourceBuffer(volatile const signed char p[], unsigned int len) { sourceBuffer((volatile const uint8_t *)p, len); } void sourceBuffer(volatile const unsigned char p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 1; TCD->ATTR_SRC = 0; TCD->NBYTES = 1; TCD->SLAST = -len; TCD->BITER = len; TCD->CITER = len; } void sourceBuffer(volatile const signed short p[], unsigned int len) { sourceBuffer((volatile const uint16_t *)p, len); } void sourceBuffer(volatile const unsigned short p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 2; TCD->ATTR_SRC = 1; TCD->NBYTES = 2; TCD->SLAST = -len; TCD->BITER = len / 2; TCD->CITER = len / 2; } void sourceBuffer(volatile const signed int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const signed long p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned long p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 4; TCD->ATTR_SRC = 2; TCD->NBYTES = 4; TCD->SLAST = -len; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a circular buffer as the data source void sourceCircular(volatile const signed char p[], unsigned int len) { sourceCircular((volatile const uint8_t *)p, len); } void sourceCircular(volatile const unsigned char p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 1; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3); TCD->NBYTES = 1; TCD->SLAST = 0; TCD->BITER = len; TCD->CITER = len; } void sourceCircular(volatile const signed short p[], unsigned int len) { sourceCircular((volatile const uint16_t *)p, len); } void sourceCircular(volatile const unsigned short p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 2; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1; TCD->NBYTES = 2; TCD->SLAST = 0; TCD->BITER = len / 2; TCD->CITER = len / 2; } void sourceCircular(volatile const signed int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const signed long p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned long p[], unsigned int len) { TCD->SADDR = p; TCD->SOFF = 4; TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2; TCD->NBYTES = 4; TCD->SLAST = 0; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a single variable as the data destination. Typically a register // for transmitting data to one of the hardware peripherals is used. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); } void destination(volatile unsigned char &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 0; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1; TCD->DLASTSGA = 0; } void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); } void destination(volatile unsigned short &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 1; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2; TCD->DLASTSGA = 0; } void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned long &p) { TCD->DADDR = &p; TCD->DOFF = 0; TCD->ATTR_DST = 2; if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4; TCD->DLASTSGA = 0; } // Use a buffer (array of data) as the data destination. Typically a // buffer for receiving data is used. void destinationBuffer(volatile signed char p[], unsigned int len) { destinationBuffer((volatile uint8_t *)p, len); } void destinationBuffer(volatile unsigned char p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 1; TCD->ATTR_DST = 0; TCD->NBYTES = 1; TCD->DLASTSGA = -len; TCD->BITER = len; TCD->CITER = len; } void destinationBuffer(volatile signed short p[], unsigned int len) { destinationBuffer((volatile uint16_t *)p, len); } void destinationBuffer(volatile unsigned short p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 2; TCD->ATTR_DST = 1; TCD->NBYTES = 2; TCD->DLASTSGA = -len; TCD->BITER = len / 2; TCD->CITER = len / 2; } void destinationBuffer(volatile signed int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile signed long p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned long p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 4; TCD->ATTR_DST = 2; TCD->NBYTES = 4; TCD->DLASTSGA = -len; TCD->BITER = len / 4; TCD->CITER = len / 4; } // Use a circular buffer as the data destination void destinationCircular(volatile signed char p[], unsigned int len) { destinationCircular((volatile uint8_t *)p, len); } void destinationCircular(volatile unsigned char p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 1; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3); TCD->NBYTES = 1; TCD->DLASTSGA = 0; TCD->BITER = len; TCD->CITER = len; } void destinationCircular(volatile signed short p[], unsigned int len) { destinationCircular((volatile uint16_t *)p, len); } void destinationCircular(volatile unsigned short p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 2; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1; TCD->NBYTES = 2; TCD->DLASTSGA = 0; TCD->BITER = len / 2; TCD->CITER = len / 2; } void destinationCircular(volatile signed int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile signed long p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned long p[], unsigned int len) { TCD->DADDR = p; TCD->DOFF = 4; TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2; TCD->NBYTES = 4; TCD->DLASTSGA = 0; TCD->BITER = len / 4; TCD->CITER = len / 4; } /*************************************************/ /** Quantity of Data to Transfer **/ /*************************************************/ // Set the data size used for each triggered transfer void transferSize(unsigned int len) { if (len == 16) { TCD->NBYTES = 16; if (TCD->SOFF != 0) TCD->SOFF = 16; if (TCD->DOFF != 0) TCD->DOFF = 16; TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0404; } else if (len == 4) { TCD->NBYTES = 4; if (TCD->SOFF != 0) TCD->SOFF = 4; if (TCD->DOFF != 0) TCD->DOFF = 4; TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202; } else if (len == 2) { TCD->NBYTES = 2; if (TCD->SOFF != 0) TCD->SOFF = 2; if (TCD->DOFF != 0) TCD->DOFF = 2; TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101; } else { TCD->NBYTES = 1; if (TCD->SOFF != 0) TCD->SOFF = 1; if (TCD->DOFF != 0) TCD->DOFF = 1; TCD->ATTR = TCD->ATTR & 0xF8F8; } } // Set the number of transfers (number of triggers until complete) void transferCount(unsigned int len) { if (!(TCD->BITER & DMA_TCD_BITER_ELINK)) { if (len > 32767) return; TCD->BITER = len; TCD->CITER = len; } else { if (len > 511) return; TCD->BITER = (TCD->BITER & 0xFE00) | len; TCD->CITER = (TCD->CITER & 0xFE00) | len; } } /*************************************************/ /** Special Options / Features **/ /*************************************************/ void interruptAtCompletion(void) { TCD->CSR |= DMA_TCD_CSR_INTMAJOR; } void interruptAtHalf(void) { TCD->CSR |= DMA_TCD_CSR_INTHALF; } void disableOnCompletion(void) { TCD->CSR |= DMA_TCD_CSR_DREQ; } void replaceSettingsOnCompletion(const DMABaseClass &settings) { TCD->DLASTSGA = (int32_t)(settings.TCD); TCD->CSR &= ~DMA_TCD_CSR_DONE; TCD->CSR |= DMA_TCD_CSR_ESG; } protected: // users should not be able to create instances of DMABaseClass, which // require the inheriting class to initialize the TCD pointer. DMABaseClass() {} static inline void copy_tcd(TCD_t *dst, const TCD_t *src) { dst->CSR = 0; const uint32_t *p = (const uint32_t *)src; uint32_t *q = (uint32_t *)dst; uint32_t t1, t2, t3, t4; t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4; } }; // DMASetting represents settings stored only in memory, which can be // applied to any DMA channel. class DMASetting : public DMABaseClass { public: DMASetting() { TCD = &tcddata; } DMASetting(const DMASetting &c) { TCD = &tcddata; *this = c; } DMASetting(const DMABaseClass &c) { TCD = &tcddata; *this = c; } DMASetting & operator = (const DMABaseClass &rhs) { copy_tcd(TCD, rhs.TCD); return *this; } private: TCD_t tcddata __attribute__((aligned(32))); }; // DMAChannel reprents an actual DMA channel and its current settings class DMAChannel : public DMABaseClass { public: /*************************************************/ /** Channel Allocation **/ /*************************************************/ DMAChannel() { begin(); } DMAChannel(const DMAChannel &c) { TCD = c.TCD; channel = c.channel; } DMAChannel(const DMASetting &c) { begin(); copy_tcd(TCD, c.TCD); } DMAChannel(bool allocate) { if (allocate) begin(); } DMAChannel & operator = (const DMAChannel &rhs) { if (channel != rhs.channel) { release(); TCD = rhs.TCD; channel = rhs.channel; } return *this; } DMAChannel & operator = (const DMASetting &rhs) { copy_tcd(TCD, rhs.TCD); return *this; } ~DMAChannel() { release(); } void begin(bool force_initialization = false); private: void release(void); public: /***************************************/ /** Triggering **/ /***************************************/ // Triggers cause the DMA channel to actually move data. Each // trigger moves a single data unit, which is typically 8, 16 or // 32 bits. If a channel is configured for 200 transfers // Use a hardware trigger to make the DMA channel run void triggerAtHardwareEvent(uint8_t source) { volatile uint8_t *mux; mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel; *mux = 0; *mux = (source & 63) | DMAMUX_ENABLE; } // Use another DMA channel as the trigger, causing this // channel to trigger after each transfer is makes, except // the its last transfer. This effectively makes the 2 // channels run in parallel until the last transfer void triggerAtTransfersOf(DMABaseClass &ch) { ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK) | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK; ch.TCD->CITER = ch.TCD->BITER ; } // Use another DMA channel as the trigger, causing this // channel to trigger when the other channel completes. void triggerAtCompletionOf(DMABaseClass &ch) { ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE)) | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK; } // Cause this DMA channel to be continuously triggered, so // it will move data as rapidly as possible, without waiting. // Normally this would be used with disableOnCompletion(). void triggerContinuously(void) { volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0; mux[channel] = 0; #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel; #else // search for an unused "always on" source unsigned int i = DMAMUX_SOURCE_ALWAYS0; for (i = DMAMUX_SOURCE_ALWAYS0; i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) { unsigned int ch; for (ch=0; ch < DMA_NUM_CHANNELS; ch++) { if (mux[ch] == i) break; } if (ch >= DMA_NUM_CHANNELS) { mux[channel] = (i | DMAMUX_ENABLE); return; } } #endif } // Manually trigger the DMA channel. void triggerManual(void) { DMA_SSRT = channel; } /***************************************/ /** Interrupts **/ /***************************************/ // An interrupt routine can be run when the DMA channel completes // the entire transfer, and also optionally when half of the // transfer is completed. void attachInterrupt(void (*isr)(void)) { _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); } void attachInterrupt(void (*isr)(void), uint8_t prio) { _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); NVIC_SET_PRIORITY(IRQ_DMA_CH0 + channel, prio); } void detachInterrupt(void) { NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel); } void clearInterrupt(void) { DMA_CINT = channel; } /***************************************/ /** Enable / Disable **/ /***************************************/ void enable(void) { DMA_SERQ = channel; } void disable(void) { DMA_CERQ = channel; } /***************************************/ /** Status **/ /***************************************/ bool complete(void) { if (TCD->CSR & DMA_TCD_CSR_DONE) return true; return false; } void clearComplete(void) { DMA_CDNE = channel; } bool error(void) { if (DMA_ERR & (1<SADDR); } void * destinationAddress(void) { return (void *)(TCD->DADDR); } /***************************************/ /** Direct Hardware Access **/ /***************************************/ // For complex and unusual configurations not possible with the above // functions, the Transfer Control Descriptor (TCD) and channel number // can be used directly. This leads to less portable and less readable // code, but direct control of all parameters is possible. uint8_t channel; // TCD is accessible due to inheritance from DMABaseClass }; // arrange the relative priority of 2 or more DMA channels void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4); /****************************************************************/ /** Teensy-LC **/ /****************************************************************/ #elif defined(KINETISL) class DMABaseClass { public: typedef struct __attribute__((packed, aligned(4))) { volatile const void * volatile SAR; volatile void * volatile DAR; volatile uint32_t DSR_BCR; volatile uint32_t DCR; } CFG_t; CFG_t *CFG; /***************************************/ /** Data Transfer **/ /***************************************/ // Use a single variable as the data source. Typically a register // for receiving data from one of the hardware peripherals is used. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); } void source(volatile const unsigned char &p) { CFG->SAR = &p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1); } void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); } void source(volatile const unsigned short &p) { CFG->SAR = &p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2); } void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); } void source(volatile const unsigned long &p) { CFG->SAR = &p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0); } // Use a buffer (array of data) as the data source. Typically a // buffer for transmitting data is used. void sourceBuffer(volatile const signed char p[], unsigned int len) { sourceBuffer((volatile const uint8_t *)p, len); } void sourceBuffer(volatile const unsigned char p[], unsigned int len) { if (len > 0xFFFFF) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC; CFG->DSR_BCR = len; } void sourceBuffer(volatile const signed short p[], unsigned int len) { sourceBuffer((volatile const uint16_t *)p, len); } void sourceBuffer(volatile const unsigned short p[], unsigned int len) { if (len > 0xFFFFF) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC; CFG->DSR_BCR = len; } void sourceBuffer(volatile const signed int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned int p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const signed long p[], unsigned int len) { sourceBuffer((volatile const uint32_t *)p, len); } void sourceBuffer(volatile const unsigned long p[], unsigned int len) { if (len > 0xFFFFF) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC; CFG->DSR_BCR = len; } // Use a circular buffer as the data source void sourceCircular(volatile const signed char p[], unsigned int len) { sourceCircular((volatile const uint8_t *)p, len); } void sourceCircular(volatile const unsigned char p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(1) | DMA_DCR_SINC | DMA_DCR_SMOD(mod); CFG->DSR_BCR = len; } void sourceCircular(volatile const signed short p[], unsigned int len) { sourceCircular((volatile const uint16_t *)p, len); } void sourceCircular(volatile const unsigned short p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(2) | DMA_DCR_SINC | DMA_DCR_SMOD(mod); CFG->DSR_BCR = len; } void sourceCircular(volatile const signed int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned int p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const signed long p[], unsigned int len) { sourceCircular((volatile const uint32_t *)p, len); } void sourceCircular(volatile const unsigned long p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->SAR = p; CFG->DCR = (CFG->DCR & 0xF08E0FFF) | DMA_DCR_SSIZE(0) | DMA_DCR_SINC | DMA_DCR_SMOD(mod); CFG->DSR_BCR = len; } // Use a single variable as the data destination. Typically a register // for transmitting data to one of the hardware peripherals is used. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); } void destination(volatile unsigned char &p) { CFG->DAR = &p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1); } void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); } void destination(volatile unsigned short &p) { CFG->DAR = &p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2); } void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); } void destination(volatile unsigned long &p) { CFG->DAR = &p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0); } // Use a buffer (array of data) as the data destination. Typically a // buffer for receiving data is used. void destinationBuffer(volatile signed char p[], unsigned int len) { destinationBuffer((volatile uint8_t *)p, len); } void destinationBuffer(volatile unsigned char p[], unsigned int len) { CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC; CFG->DSR_BCR = len; } void destinationBuffer(volatile signed short p[], unsigned int len) { destinationBuffer((volatile uint16_t *)p, len); } void destinationBuffer(volatile unsigned short p[], unsigned int len) { CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2) | DMA_DCR_DINC; CFG->DSR_BCR = len; } void destinationBuffer(volatile signed int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned int p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile signed long p[], unsigned int len) { destinationBuffer((volatile uint32_t *)p, len); } void destinationBuffer(volatile unsigned long p[], unsigned int len) { CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0) | DMA_DCR_DINC; CFG->DSR_BCR = len; } // Use a circular buffer as the data destination void destinationCircular(volatile signed char p[], unsigned int len) { destinationCircular((volatile uint8_t *)p, len); } void destinationCircular(volatile unsigned char p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(1) | DMA_DCR_DINC | DMA_DCR_DMOD(mod); CFG->DSR_BCR = len; } void destinationCircular(volatile signed short p[], unsigned int len) { destinationCircular((volatile uint16_t *)p, len); } void destinationCircular(volatile unsigned short p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(2) | DMA_DCR_DINC | DMA_DCR_DMOD(mod); CFG->DSR_BCR = len; } void destinationCircular(volatile signed int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned int p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile signed long p[], unsigned int len) { destinationCircular((volatile uint32_t *)p, len); } void destinationCircular(volatile unsigned long p[], unsigned int len) { uint32_t mod = len2mod(len); if (mod == 0) return; CFG->DAR = p; CFG->DCR = (CFG->DCR & 0xF0F0F0FF) | DMA_DCR_DSIZE(0) | DMA_DCR_DINC | DMA_DCR_DMOD(mod); CFG->DSR_BCR = len; } /*************************************************/ /** Quantity of Data to Transfer **/ /*************************************************/ // Set the data size used for each triggered transfer void transferSize(unsigned int len) { uint32_t dcr = CFG->DCR & 0xF0C8FFFF; if (len == 4) { CFG->DCR = dcr | DMA_DCR_SSIZE(0) | DMA_DCR_DSIZE(0); } else if (len == 2) { CFG->DCR = dcr | DMA_DCR_SSIZE(2) | DMA_DCR_DSIZE(2); } else { CFG->DCR = dcr | DMA_DCR_SSIZE(1) | DMA_DCR_DSIZE(1); } } // Set the number of transfers (number of triggers until complete) void transferCount(unsigned int len) { uint32_t s, d, n = 0; // 0 = 8 bit, 1 = 16 bit, 2 = 32 bit uint32_t dcr = CFG->DCR; s = (dcr >> 20) & 3; d = (dcr >> 17) & 3; if (s == 0 || d == 0) n = 2; else if (s == 2 || d == 2) n = 1; CFG->DSR_BCR = len << n; } /*************************************************/ /** Special Options / Features **/ /*************************************************/ void interruptAtCompletion(void) { CFG->DCR |= DMA_DCR_EINT; } void disableOnCompletion(void) { CFG->DCR |= DMA_DCR_D_REQ; } // Kinetis-L DMA does not have these features :-( // // void interruptAtHalf(void) {} // void replaceSettingsOnCompletion(const DMABaseClass &settings) {}; // TODO: can a 2nd linked channel be used to emulate this? protected: // users should not be able to create instances of DMABaseClass, which // require the inheriting class to initialize the TCD pointer. DMABaseClass() {} static inline void copy_cfg(CFG_t *dst, const CFG_t *src) { dst->SAR = src->SAR; dst->DAR = src->DAR; dst->DSR_BCR = src->DSR_BCR; dst->DCR = src->DCR; } private: static inline uint32_t len2mod(uint32_t len) { if (len < 16) return 0; if (len < 32) return 1; if (len < 64) return 2; if (len < 128) return 3; if (len < 256) return 4; if (len < 512) return 5; if (len < 1024) return 6; if (len < 2048) return 7; if (len < 4096) return 8; if (len < 8192) return 9; if (len < 16384) return 10; if (len < 32768) return 11; if (len < 65536) return 12; if (len < 131072) return 13; if (len < 262144) return 14; return 15; } }; // DMASetting represents settings stored only in memory, which can be // applied to any DMA channel. class DMASetting : public DMABaseClass { public: DMASetting() { cfgdata.SAR = NULL; cfgdata.DAR = NULL; cfgdata.DSR_BCR = 0; cfgdata.DCR = DMA_DCR_CS; CFG = &cfgdata; } DMASetting(const DMASetting &c) { CFG = &cfgdata; *this = c; } DMASetting(const DMABaseClass &c) { CFG = &cfgdata; *this = c; } DMASetting & operator = (const DMABaseClass &rhs) { copy_cfg(CFG, rhs.CFG); return *this; } private: CFG_t cfgdata __attribute__((aligned(4))); }; // DMAChannel reprents an actual DMA channel and its current settings class DMAChannel : public DMABaseClass { public: /*************************************************/ /** Channel Allocation **/ /*************************************************/ DMAChannel() { begin(); } DMAChannel(const DMAChannel &c) { CFG = c.CFG; channel = c.channel; } DMAChannel(const DMASetting &c) { begin(); copy_cfg(CFG, c.CFG); } DMAChannel(bool allocate) { if (allocate) begin(); } DMAChannel & operator = (const DMAChannel &rhs) { if (channel != rhs.channel) { release(); CFG = rhs.CFG; channel = rhs.channel; } return *this; } DMAChannel & operator = (const DMASetting &rhs) { copy_cfg(CFG, rhs.CFG); return *this; } ~DMAChannel() { release(); } void begin(bool force_initialization = false); private: void release(void); public: /***************************************/ /** Triggering **/ /***************************************/ // Triggers cause the DMA channel to actually move data. Each // trigger moves a single data unit, which is typically 8, 16 or // 32 bits. If a channel is configured for 200 transfers // Use a hardware trigger to make the DMA channel run void triggerAtHardwareEvent(uint8_t source) { volatile uint8_t *mux; CFG->DCR |= DMA_DCR_CS; mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel; *mux = 0; *mux = (source & 63) | DMAMUX_ENABLE; } // Use another DMA channel as the trigger, causing this // channel to trigger after each transfer is makes, including // the its last transfer. This effectively makes the 2 // channels run in parallel. Note, on Teensy 3.0 & 3.1, // this feature triggers on every transfer except the last. // On Teensy-LC, it triggers on every one, including the last. void triggerAtTransfersOf(DMABaseClass &ch) { uint32_t dcr = ch.CFG->DCR; uint32_t linkcc = (dcr >> 4) & 3; if (linkcc == 0 || linkcc == 2) { ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | DMA_DCR_LINKCC(2) | DMA_DCR_LCH1(channel); } else if (linkcc == 1) { ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | DMA_DCR_LCH1(channel); } else { uint32_t lch1 = (dcr >> 2) & 3; ch.CFG->DCR = (dcr & ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3) | DMA_DCR_LCH1(3))) | DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(lch1) | DMA_DCR_LCH1(channel); } } // Use another DMA channel as the trigger, causing this // channel to trigger when the other channel completes. void triggerAtCompletionOf(DMABaseClass &ch) { uint32_t dcr = ch.CFG->DCR; uint32_t linkcc = (dcr >> 4) & 3; if (linkcc == 0 || linkcc == 3) { ch.CFG->DCR = (dcr & ~DMA_DCR_LCH1(3)) | DMA_DCR_LINKCC(3) | DMA_DCR_LCH1(channel); } else { ch.CFG->DCR = (dcr & ~(DMA_DCR_LINKCC(3) | DMA_DCR_LCH2(3))) | DMA_DCR_LINKCC(1) | DMA_DCR_LCH2(channel); } } // Cause this DMA channel to be continuously triggered, so // it will move data as rapidly as possible, without waiting. // Normally this would be used with disableOnCompletion(). void triggerContinuously(void) { uint32_t dcr = CFG->DCR; dcr &= ~(DMA_DCR_ERQ | DMA_DCR_CS); CFG->DCR = dcr; CFG->DCR = dcr | DMA_DCR_START; } // Manually trigger the DMA channel. void triggerManual(void) { CFG->DCR = (CFG->DCR & ~DMA_DCR_ERQ) | (DMA_DCR_CS | DMA_DCR_START); } /***************************************/ /** Interrupts **/ /***************************************/ // An interrupt routine can be run when the DMA channel completes // the entire transfer, and also optionally when half of the // transfer is completed. void attachInterrupt(void (*isr)(void)) { _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); } void attachInterrupt(void (*isr)(void), uint8_t prio) { _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr; NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); NVIC_SET_PRIORITY(IRQ_DMA_CH0 + channel, prio); } void detachInterrupt(void) { NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel); } void clearInterrupt(void) { CFG->DSR_BCR = DMA_DSR_BCR_DONE; } /***************************************/ /** Enable / Disable **/ /***************************************/ void enable(void) { CFG->DCR |= DMA_DCR_ERQ; } void disable(void) { CFG->DCR &= ~DMA_DCR_ERQ; } /***************************************/ /** Status **/ /***************************************/ bool complete(void) { if (CFG->DSR_BCR & DMA_DSR_BCR_DONE) return true; return false; } void clearComplete(void) { CFG->DSR_BCR |= DMA_DSR_BCR_DONE; } bool error(void) { if (CFG->DSR_BCR & (DMA_DSR_BCR_CE | DMA_DSR_BCR_BES | DMA_DSR_BCR_BED)) return true; return false; } void clearError(void) { CFG->DSR_BCR |= DMA_DSR_BCR_DONE; } void * sourceAddress(void) { return (void *)(CFG->SAR); } void * destinationAddress(void) { return (void *)(CFG->DAR); } /***************************************/ /** Direct Hardware Access **/ /***************************************/ uint8_t channel; // CFG is accessible due to inheritance from DMABaseClass }; // arrange the relative priority of 2 or more DMA channels void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3); void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4); #endif // KINETISL #endif // __cplusplus #endif // DMAChannel_h_