/* USB API for Teensy USB Development Board * http://www.pjrc.com/teensy/teensyduino.html * Copyright (c) 2008 PJRC.COM, LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "usb_common.h" #include "usb_private.h" #include "usb_api.h" #include "wiring.h" void usb_midi_class::sendSysEx_BufferHasTerm(uint16_t length, const uint8_t *data) { while (length > 3) { send_raw(0x04, data[0], data[1], data[2]); data += 3; length -= 3; } if (length == 3) { send_raw(0x07, data[0], data[1], data[2]); } else if (length == 2) { send_raw(0x06, data[0], data[1], 0); } else if (length == 1) { send_raw(0x05, data[0], 0, 0); } } void usb_midi_class::sendSysEx_AddTermBytes(uint16_t length, const uint8_t *data) { if (length == 0) { send_raw(0x06, 0xF0, 0xF7, 0); return; } else if (length == 1) { send_raw(0x07, 0xF0, data[0], 0xF7); return; } else { send_raw(0x04, 0xF0, data[0], data[1]); data += 2; length -= 2; } while (length >= 3) { send_raw(0x04, data[0], data[1], data[2]); data += 3; length -= 3; } if (length == 2) { send_raw(0x07, data[0], data[1], 0xF7); } else if (length == 1) { send_raw(0x06, data[0], 0xF7, 0); } else { send_raw(0x05, 0xF7, 0, 0); } } // This 4 byte input format is documented in the "Universal Serial Bus Device Class // Definition for MIDI Devices" specification, version 1.0, Nov 1, 1999. It can be // downloaded from www.usb.org. https://www.usb.org/sites/default/files/midi10.pdf // If the USB-IF reorganizes their website and this link no longer works, Google // search the name to find it. This data format is shown on page 16 in Figure #8. // Byte 0 (shown on the left hand side of Figure #8) is b0, Byte 1 is b1, etc. void usb_midi_class::send_raw(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { uint8_t intr_state, timeout; if (!usb_configuration) return; intr_state = SREG; cli(); UENUM = MIDI_TX_ENDPOINT; timeout = UDFNUML + 2; while (1) { // are we ready to transmit? if (UEINTX & (1<= 1023) return 127; for (e=0; (val & 512) == 0; e++) val <<= 1; for (i=0; i<9; i++) { // cordic algorithm uint16_t x = val + (val >> (i + 1)); if (x < 1024) { val = x; s += pgm_read_byte(table + i); } } s += e * 385; s <<= 4; s += (range >> 1); s /= range; if (s >= 1024) return 0; s = 1024 - s; if (s > 511) { s -= 512; b = 64; } else if (s > 255) { s -= 256; b = 32; } else { b = 0; } return b + ((s * 127) >> 10); #endif } uint32_t usb_midi_class::midiusb_available() { uint8_t c, intr_state; intr_state = SREG; cli(); if (!usb_configuration) { SREG = intr_state; return 0; } UENUM = MIDI_RX_ENDPOINT; retry: c = UEINTX; if (!(c & (1<= 0x08 && type1 <= 0x0E) { if (channel && channel != c) { // ignore other channels when user wants single channel read return false; } if (type1 == 0x08 && type2 == 0x80) { msg_type = 0x80; // 0x80 = usbMIDI.NoteOff if (handleNoteOff) (*handleNoteOff)(c, b2, b3); } else if (type1 == 0x09 && type2 == 0x90) { if (b3) { msg_type = 0x90; // 0x90 = usbMIDI.NoteOn if (handleNoteOn) (*handleNoteOn)(c, b2, b3); } else { msg_type = 0x80; // 0x80 = usbMIDI.NoteOff if (handleNoteOff) (*handleNoteOff)(c, b2, b3); } } else if (type1 == 0x0A && type2 == 0xA0) { msg_type = 0xA0; // 0xA0 = usbMIDI.AfterTouchPoly if (handleVelocityChange) (*handleVelocityChange)(c, b2, b3); } else if (type1 == 0x0B && type2 == 0xB0) { msg_type = 0xB0; // 0xB0 = usbMIDI.ControlChange if (handleControlChange) (*handleControlChange)(c, b2, b3); } else if (type1 == 0x0C && type2 == 0xC0) { msg_type = 0xC0; // 0xC0 = usbMIDI.ProgramChange if (handleProgramChange) (*handleProgramChange)(c, b2); } else if (type1 == 0x0D && type2 == 0xD0) { msg_type = 0xD0; // 0xD0 = usbMIDI.AfterTouchChannel if (handleAfterTouch) (*handleAfterTouch)(c, b2); } else if (type1 == 0x0E && type2 == 0xE0) { msg_type = 0xE0; // 0xE0 = usbMIDI.PitchBend if (handlePitchChange) { int value = (b2 & 0x7F) | ((int)(b3 & 0x7F) << 7); value -= 8192; // 0 to 16383 --> -8192 to +8191 (*handlePitchChange)(c, value); } } else { return false; } return_message: // only update these when returning true for a parsed message // all other return cases will preserve these user-visible values msg_channel = c; msg_data1 = b2; msg_data2 = b3; return true; } if (type1 == 0x02 || type1 == 0x03 || (type1 == 0x05 && type2 == 0x0F)) { // system common or system realtime message system_common_or_realtime: switch (b1) { case 0xF1: // usbMIDI.TimeCodeQuarterFrame if (handleTimeCodeQuarterFrame) { (*handleTimeCodeQuarterFrame)(b2); } break; case 0xF2: // usbMIDI.SongPosition if (handleSongPosition) { (*handleSongPosition)( (uint16_t)(b2 & 0x7F) | (uint16_t)(b3 & 0x7F) << 7); } break; case 0xF3: // usbMIDI.SongSelect if (handleSongSelect) { (*handleSongSelect)(b2); } break; case 0xF6: // usbMIDI.TuneRequest if (handleTuneRequest) { (*handleTuneRequest)(); } break; case 0xF8: // usbMIDI.Clock if (handleClock) { (*handleClock)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xF8); } break; case 0xFA: // usbMIDI.Start if (handleStart) { (*handleStart)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFA); } break; case 0xFB: // usbMIDI.Continue if (handleContinue) { (*handleContinue)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFB); } break; case 0xFC: // usbMIDI.Stop if (handleStop) { (*handleStop)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFC); } break; case 0xFE: // usbMIDI.ActiveSensing if (handleActiveSensing) { (*handleActiveSensing)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFE); } break; case 0xFF: // usbMIDI.SystemReset if (handleSystemReset) { (*handleSystemReset)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFF); } break; default: return false; // unknown message, ignore it } msg_type = b1; goto return_message; } if (type1 == 0x04) { read_sysex_byte(b1); read_sysex_byte(b2); read_sysex_byte(b3); return false; } if (type1 >= 0x05 && type1 <= 0x07) { read_sysex_byte(b1); if (type1 >= 0x06) read_sysex_byte(b2); if (type1 == 0x07) read_sysex_byte(b3); uint16_t len = msg_sysex_len; msg_data1 = len; msg_data2 = len >> 8; msg_sysex_len = 0; msg_type = 0xF0; // 0xF0 = usbMIDI.SystemExclusive if (handleSysExPartial) { (*handleSysExPartial)(msg_sysex, len, 1); } else if (handleSysExComplete) { (*handleSysExComplete)(msg_sysex, len); } return true; } if (type1 == 0x0F) { if (b1 >= 0xF8) { // From Sebastian Tomczak, seb.tomczak at gmail.com // http://little-scale.blogspot.com/2011/08/usb-midi-game-boy-sync-for-16.html goto system_common_or_realtime; } if (msg_sysex_len > 0) { // From David Sorlien, dsorlien at gmail.com, http://axe4live.wordpress.com // OSX sometimes uses Single Byte Unparsed to // send bytes in the middle of a SYSEX message. read_sysex_byte(b1); } } return false; } void usb_midi_class::read_sysex_byte(uint8_t b) { if (handleSysExPartial && msg_sysex_len >= USB_MIDI_SYSEX_MAX) { // when buffer is full, send another chunk to partial handler. (*handleSysExPartial)(msg_sysex, msg_sysex_len, 0); msg_sysex_len = 0; } if (msg_sysex_len < USB_MIDI_SYSEX_MAX) { msg_sysex[msg_sysex_len++] = b; } } static volatile uint8_t prev_byte=0; void usb_serial_class::begin(long speed) { // make sure USB is initialized usb_init(); uint16_t begin_wait = (uint16_t)millis(); while (1) { if (usb_configuration) { delay(200); // a little time for host to load a driver return; } if (usb_suspended) { uint16_t begin_suspend = (uint16_t)millis(); while (usb_suspended) { // must remain suspended for a while, because // normal USB enumeration causes brief suspend // states, typically under 0.1 second if ((uint16_t)millis() - begin_suspend > 250) { return; } } } // ... or a timout (powered by a USB power adaptor that // wiggles the data lines to keep a USB device charging) if ((uint16_t)millis() - begin_wait > 2500) return; } prev_byte = 0; } void usb_serial_class::end() { usb_shutdown(); delay(25); } // number of bytes available in the receive buffer int usb_serial_class::available() { uint8_t c; c = prev_byte; // assume 1 byte static volatile access is atomic if (c) return 1; c = readnext(); if (c) { prev_byte = c; return 1; } return 0; } // get the next character, or -1 if nothing received int usb_serial_class::read() { uint8_t c; c = prev_byte; if (c) { prev_byte = 0; return c; } c = readnext(); if (c) return c; return -1; } int usb_serial_class::peek() { uint8_t c; c = prev_byte; if (c) return c; c = readnext(); if (c) { prev_byte = c; return c; } return -1; } // get the next character, or 0 if nothing uint8_t usb_serial_class::readnext(void) { uint8_t c, intr_state; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); if (!usb_configuration) { SREG = intr_state; return 0; } UENUM = DEBUG_RX_ENDPOINT; try_again: if (!(UEINTX & (1<= 100 size_t usb_serial_class::write(uint8_t c) #else #define setWriteError() void usb_serial_class::write(uint8_t c) #endif { //static uint8_t previous_timeout=0; uint8_t timeout, intr_state; // if we're not online (enumerated and configured), error if (!usb_configuration) goto error; // interrupts are disabled so these functions can be // used from the main program or interrupt context, // even both in the same program! intr_state = SREG; cli(); UENUM = DEBUG_TX_ENDPOINT; // if we gave up due to timeout before, don't wait again #if 0 // this seems to be causig a lockup... why???? if (previous_timeout) { if (!(UEINTX & (1<= 100 return 1; #endif error: #if ARDUINO >= 100 setWriteError(); return 0; #else return; #endif } // These are Teensy-specific extensions to the Serial object // immediately transmit any buffered output. // This doesn't actually transmit the data - that is impossible! // USB devices only transmit when the host allows, so the best // we can do is release the FIFO buffer for when the host wants it void usb_serial_class::send_now(void) { uint8_t intr_state; intr_state = SREG; cli(); if (debug_flush_timer) { UENUM = DEBUG_TX_ENDPOINT; while ((UEINTX & (1<