選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

547 行
15KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. #if defined(KINETISK)
  86. static uint8_t rx_pin_num = 9;
  87. static uint8_t tx_pin_num = 10;
  88. #endif
  89. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  90. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  91. #ifdef HAS_KINETISK_UART1_FIFO
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  93. #else
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  95. #endif
  96. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  97. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  98. #define C2_TX_INACTIVE C2_ENABLE
  99. void serial2_begin(uint32_t divisor)
  100. {
  101. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  102. rx_buffer_head = 0;
  103. rx_buffer_tail = 0;
  104. tx_buffer_head = 0;
  105. tx_buffer_tail = 0;
  106. transmitting = 0;
  107. #if defined(KINETISK)
  108. switch (rx_pin_num) {
  109. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  110. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. }
  112. switch (tx_pin_num) {
  113. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. }
  116. #elif defined(KINETISL)
  117. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  118. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  119. #endif
  120. #if defined(HAS_KINETISK_UART1)
  121. UART1_BDH = (divisor >> 13) & 0x1F;
  122. UART1_BDL = (divisor >> 5) & 0xFF;
  123. UART1_C4 = divisor & 0x1F;
  124. #ifdef HAS_KINETISK_UART1_FIFO
  125. UART1_C1 = UART_C1_ILT;
  126. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  127. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  128. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  129. #else
  130. UART1_C1 = 0;
  131. UART1_PFIFO = 0;
  132. #endif
  133. #elif defined(HAS_KINETISL_UART1)
  134. UART1_BDH = (divisor >> 8) & 0x1F;
  135. UART1_BDL = divisor & 0xFF;
  136. UART1_C1 = 0;
  137. #endif
  138. UART1_C2 = C2_TX_INACTIVE;
  139. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  140. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  141. }
  142. void serial2_format(uint32_t format)
  143. {
  144. uint8_t c;
  145. c = UART1_C1;
  146. c = (c & ~0x13) | (format & 0x03); // configure parity
  147. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  148. UART1_C1 = c;
  149. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  150. c = UART1_S2 & ~0x10;
  151. if (format & 0x10) c |= 0x10; // rx invert
  152. UART1_S2 = c;
  153. c = UART1_C3 & ~0x10;
  154. if (format & 0x20) c |= 0x10; // tx invert
  155. UART1_C3 = c;
  156. #ifdef SERIAL_9BIT_SUPPORT
  157. c = UART1_C4 & 0x1F;
  158. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  159. UART1_C4 = c;
  160. use9Bits = format & 0x80;
  161. #endif
  162. // UART1_C1.0 = parity, 0=even, 1=odd
  163. // UART1_C1.1 = parity, 0=disable, 1=enable
  164. // UART1_C1.4 = mode, 1=9bit, 0=8bit
  165. // UART1_C4.5 = mode, 1=10bit, 0=8bit
  166. // UART1_C3.4 = txinv, 0=normal, 1=inverted
  167. // UART1_S2.4 = rxinv, 0=normal, 1=inverted
  168. }
  169. void serial2_end(void)
  170. {
  171. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  172. while (transmitting) yield(); // wait for buffered data to send
  173. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  174. UART1_C2 = 0;
  175. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  176. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  177. rx_buffer_head = 0;
  178. rx_buffer_tail = 0;
  179. if (rts_pin) rts_deassert();
  180. }
  181. void serial2_set_transmit_pin(uint8_t pin)
  182. {
  183. while (transmitting) ;
  184. pinMode(pin, OUTPUT);
  185. digitalWrite(pin, LOW);
  186. transmit_pin = portOutputRegister(pin);
  187. #if defined(KINETISL)
  188. transmit_mask = digitalPinToBitMask(pin);
  189. #endif
  190. }
  191. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  192. {
  193. #if defined(KINETISK)
  194. uint32_t cfg;
  195. if (opendrain) pin |= 128;
  196. if (pin == tx_pin_num) return;
  197. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  198. switch (tx_pin_num & 127) {
  199. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  200. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  201. }
  202. if (opendrain) {
  203. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  204. } else {
  205. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  206. }
  207. switch (pin & 127) {
  208. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  209. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  210. }
  211. }
  212. tx_pin_num = pin;
  213. #endif
  214. }
  215. void serial2_set_rx(uint8_t pin)
  216. {
  217. #if defined(KINETISK)
  218. if (pin == rx_pin_num) return;
  219. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  220. switch (rx_pin_num) {
  221. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  222. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  223. }
  224. switch (pin) {
  225. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  226. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  227. }
  228. }
  229. rx_pin_num = pin;
  230. #endif
  231. }
  232. int serial2_set_rts(uint8_t pin)
  233. {
  234. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  235. if (pin < CORE_NUM_DIGITAL) {
  236. rts_pin = portOutputRegister(pin);
  237. #if defined(KINETISL)
  238. rts_mask = digitalPinToBitMask(pin);
  239. #endif
  240. pinMode(pin, OUTPUT);
  241. rts_assert();
  242. } else {
  243. rts_pin = NULL;
  244. return 0;
  245. }
  246. /*
  247. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  248. if (pin == 22) {
  249. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  250. } else {
  251. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  252. return 0;
  253. }
  254. UART1_MODEM |= UART_MODEM_RXRTSE;
  255. */
  256. return 1;
  257. }
  258. int serial2_set_cts(uint8_t pin)
  259. {
  260. #if defined(KINETISK)
  261. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  262. if (pin == 23) {
  263. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  264. } else {
  265. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  266. return 0;
  267. }
  268. UART1_MODEM |= UART_MODEM_TXCTSE;
  269. return 1;
  270. #else
  271. return 0;
  272. #endif
  273. }
  274. void serial2_putchar(uint32_t c)
  275. {
  276. uint32_t head, n;
  277. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  278. if (transmit_pin) transmit_assert();
  279. head = tx_buffer_head;
  280. if (++head >= TX_BUFFER_SIZE) head = 0;
  281. while (tx_buffer_tail == head) {
  282. int priority = nvic_execution_priority();
  283. if (priority <= IRQ_PRIORITY) {
  284. if ((UART1_S1 & UART_S1_TDRE)) {
  285. uint32_t tail = tx_buffer_tail;
  286. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  287. n = tx_buffer[tail];
  288. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  289. UART1_D = n;
  290. tx_buffer_tail = tail;
  291. }
  292. } else if (priority >= 256) {
  293. yield(); // wait
  294. }
  295. }
  296. tx_buffer[head] = c;
  297. transmitting = 1;
  298. tx_buffer_head = head;
  299. UART1_C2 = C2_TX_ACTIVE;
  300. }
  301. #ifdef HAS_KINETISK_UART1_FIFO
  302. void serial2_write(const void *buf, unsigned int count)
  303. {
  304. const uint8_t *p = (const uint8_t *)buf;
  305. const uint8_t *end = p + count;
  306. uint32_t head, n;
  307. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  308. if (transmit_pin) transmit_assert();
  309. while (p < end) {
  310. head = tx_buffer_head;
  311. if (++head >= TX_BUFFER_SIZE) head = 0;
  312. if (tx_buffer_tail == head) {
  313. UART1_C2 = C2_TX_ACTIVE;
  314. do {
  315. int priority = nvic_execution_priority();
  316. if (priority <= IRQ_PRIORITY) {
  317. if ((UART1_S1 & UART_S1_TDRE)) {
  318. uint32_t tail = tx_buffer_tail;
  319. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  320. n = tx_buffer[tail];
  321. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  322. UART1_D = n;
  323. tx_buffer_tail = tail;
  324. }
  325. } else if (priority >= 256) {
  326. yield();
  327. }
  328. } while (tx_buffer_tail == head);
  329. }
  330. tx_buffer[head] = *p++;
  331. transmitting = 1;
  332. tx_buffer_head = head;
  333. }
  334. UART1_C2 = C2_TX_ACTIVE;
  335. }
  336. #else
  337. void serial2_write(const void *buf, unsigned int count)
  338. {
  339. const uint8_t *p = (const uint8_t *)buf;
  340. while (count-- > 0) serial2_putchar(*p++);
  341. }
  342. #endif
  343. void serial2_flush(void)
  344. {
  345. while (transmitting) yield(); // wait
  346. }
  347. int serial2_write_buffer_free(void)
  348. {
  349. uint32_t head, tail;
  350. head = tx_buffer_head;
  351. tail = tx_buffer_tail;
  352. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  353. return tail - head - 1;
  354. }
  355. int serial2_available(void)
  356. {
  357. uint32_t head, tail;
  358. head = rx_buffer_head;
  359. tail = rx_buffer_tail;
  360. if (head >= tail) return head - tail;
  361. return RX_BUFFER_SIZE + head - tail;
  362. }
  363. int serial2_getchar(void)
  364. {
  365. uint32_t head, tail;
  366. int c;
  367. head = rx_buffer_head;
  368. tail = rx_buffer_tail;
  369. if (head == tail) return -1;
  370. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  371. c = rx_buffer[tail];
  372. rx_buffer_tail = tail;
  373. if (rts_pin) {
  374. int avail;
  375. if (head >= tail) avail = head - tail;
  376. else avail = RX_BUFFER_SIZE + head - tail;
  377. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  378. }
  379. return c;
  380. }
  381. int serial2_peek(void)
  382. {
  383. uint32_t head, tail;
  384. head = rx_buffer_head;
  385. tail = rx_buffer_tail;
  386. if (head == tail) return -1;
  387. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  388. return rx_buffer[tail];
  389. }
  390. void serial2_clear(void)
  391. {
  392. #ifdef HAS_KINETISK_UART1_FIFO
  393. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  394. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  395. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  396. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  397. #endif
  398. rx_buffer_head = rx_buffer_tail;
  399. if (rts_pin) rts_assert();
  400. }
  401. // status interrupt combines
  402. // Transmit data below watermark UART_S1_TDRE
  403. // Transmit complete UART_S1_TC
  404. // Idle line UART_S1_IDLE
  405. // Receive data above watermark UART_S1_RDRF
  406. // LIN break detect UART_S2_LBKDIF
  407. // RxD pin active edge UART_S2_RXEDGIF
  408. void uart1_status_isr(void)
  409. {
  410. uint32_t head, tail, n;
  411. uint8_t c;
  412. #ifdef HAS_KINETISK_UART1_FIFO
  413. uint32_t newhead;
  414. uint8_t avail;
  415. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  416. __disable_irq();
  417. avail = UART1_RCFIFO;
  418. if (avail == 0) {
  419. // The only way to clear the IDLE interrupt flag is
  420. // to read the data register. But reading with no
  421. // data causes a FIFO underrun, which causes the
  422. // FIFO to return corrupted data. If anyone from
  423. // Freescale reads this, what a poor design! There
  424. // write should be a write-1-to-clear for IDLE.
  425. c = UART1_D;
  426. // flushing the fifo recovers from the underrun,
  427. // but there's a possible race condition where a
  428. // new character could be received between reading
  429. // RCFIFO == 0 and flushing the FIFO. To minimize
  430. // the chance, interrupts are disabled so a higher
  431. // priority interrupt (hopefully) doesn't delay.
  432. // TODO: change this to disabling the IDLE interrupt
  433. // which won't be simple, since we already manage
  434. // which transmit interrupts are enabled.
  435. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  436. __enable_irq();
  437. } else {
  438. __enable_irq();
  439. head = rx_buffer_head;
  440. tail = rx_buffer_tail;
  441. do {
  442. if (use9Bits && (UART1_C3 & 0x80)) {
  443. n = UART1_D | 0x100;
  444. } else {
  445. n = UART1_D;
  446. }
  447. newhead = head + 1;
  448. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  449. if (newhead != tail) {
  450. head = newhead;
  451. rx_buffer[head] = n;
  452. }
  453. } while (--avail > 0);
  454. rx_buffer_head = head;
  455. if (rts_pin) {
  456. int avail;
  457. if (head >= tail) avail = head - tail;
  458. else avail = RX_BUFFER_SIZE + head - tail;
  459. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  460. }
  461. }
  462. }
  463. c = UART1_C2;
  464. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  465. head = tx_buffer_head;
  466. tail = tx_buffer_tail;
  467. do {
  468. if (tail == head) break;
  469. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  470. avail = UART1_S1;
  471. n = tx_buffer[tail];
  472. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  473. UART1_D = n;
  474. } while (UART1_TCFIFO < 8);
  475. tx_buffer_tail = tail;
  476. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  477. }
  478. #else
  479. if (UART1_S1 & UART_S1_RDRF) {
  480. n = UART1_D;
  481. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  482. head = rx_buffer_head + 1;
  483. if (head >= RX_BUFFER_SIZE) head = 0;
  484. if (head != rx_buffer_tail) {
  485. rx_buffer[head] = n;
  486. rx_buffer_head = head;
  487. }
  488. }
  489. c = UART1_C2;
  490. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  491. head = tx_buffer_head;
  492. tail = tx_buffer_tail;
  493. if (head == tail) {
  494. UART1_C2 = C2_TX_COMPLETING;
  495. } else {
  496. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  497. n = tx_buffer[tail];
  498. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  499. UART1_D = n;
  500. tx_buffer_tail = tail;
  501. }
  502. }
  503. #endif
  504. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  505. transmitting = 0;
  506. if (transmit_pin) transmit_deassert();
  507. UART1_C2 = C2_TX_INACTIVE;
  508. }
  509. }