Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

594 lines
16KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. static uint8_t rx_pin_num = 0;
  86. static uint8_t tx_pin_num = 1;
  87. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  88. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  89. #ifdef HAS_KINETISK_UART0_FIFO
  90. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  91. #else
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  93. #endif
  94. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  95. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  96. #define C2_TX_INACTIVE C2_ENABLE
  97. void serial_begin(uint32_t divisor)
  98. {
  99. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  100. rx_buffer_head = 0;
  101. rx_buffer_tail = 0;
  102. tx_buffer_head = 0;
  103. tx_buffer_tail = 0;
  104. transmitting = 0;
  105. switch (rx_pin_num) {
  106. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  107. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  108. #if defined(KINETISL)
  109. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  110. #endif
  111. }
  112. switch (tx_pin_num) {
  113. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. #if defined(KINETISL)
  116. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  117. #endif
  118. }
  119. #if defined(HAS_KINETISK_UART0)
  120. UART0_BDH = (divisor >> 13) & 0x1F;
  121. UART0_BDL = (divisor >> 5) & 0xFF;
  122. UART0_C4 = divisor & 0x1F;
  123. #ifdef HAS_KINETISK_UART0_FIFO
  124. UART0_C1 = UART_C1_ILT;
  125. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  126. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  127. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  128. #else
  129. UART0_C1 = 0;
  130. UART0_PFIFO = 0;
  131. #endif
  132. #elif defined(HAS_KINETISL_UART0)
  133. UART0_BDH = (divisor >> 8) & 0x1F;
  134. UART0_BDL = divisor & 0xFF;
  135. UART0_C1 = 0;
  136. #endif
  137. UART0_C2 = C2_TX_INACTIVE;
  138. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  139. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  140. }
  141. void serial_format(uint32_t format)
  142. {
  143. uint8_t c;
  144. c = UART0_C1;
  145. c = (c & ~0x13) | (format & 0x03); // configure parity
  146. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  147. UART0_C1 = c;
  148. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  149. c = UART0_S2 & ~0x10;
  150. if (format & 0x10) c |= 0x10; // rx invert
  151. UART0_S2 = c;
  152. c = UART0_C3 & ~0x10;
  153. if (format & 0x20) c |= 0x10; // tx invert
  154. UART0_C3 = c;
  155. #ifdef SERIAL_9BIT_SUPPORT
  156. c = UART0_C4 & 0x1F;
  157. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  158. UART0_C4 = c;
  159. use9Bits = format & 0x80;
  160. #endif
  161. }
  162. void serial_end(void)
  163. {
  164. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  165. while (transmitting) yield(); // wait for buffered data to send
  166. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  167. UART0_C2 = 0;
  168. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  169. CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  170. rx_buffer_head = 0;
  171. rx_buffer_tail = 0;
  172. if (rts_pin) rts_deassert();
  173. }
  174. void serial_set_transmit_pin(uint8_t pin)
  175. {
  176. while (transmitting) ;
  177. pinMode(pin, OUTPUT);
  178. digitalWrite(pin, LOW);
  179. transmit_pin = portOutputRegister(pin);
  180. #if defined(KINETISL)
  181. transmit_mask = digitalPinToBitMask(pin);
  182. #endif
  183. }
  184. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  185. {
  186. uint32_t cfg;
  187. if (opendrain) pin |= 128;
  188. if (pin == tx_pin_num) return;
  189. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  190. switch (tx_pin_num & 127) {
  191. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  192. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  193. #if defined(KINETISL)
  194. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  195. #endif
  196. }
  197. if (opendrain) {
  198. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  199. } else {
  200. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  201. }
  202. switch (pin & 127) {
  203. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  204. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  205. #if defined(KINETISL)
  206. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  207. #endif
  208. }
  209. }
  210. tx_pin_num = pin;
  211. }
  212. void serial_set_rx(uint8_t pin)
  213. {
  214. if (pin == rx_pin_num) return;
  215. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  216. switch (rx_pin_num) {
  217. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  218. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  219. #if defined(KINETISL)
  220. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  221. #endif
  222. }
  223. switch (pin) {
  224. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  225. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  226. #if defined(KINETISL)
  227. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  228. #endif
  229. }
  230. }
  231. rx_pin_num = pin;
  232. }
  233. int serial_set_rts(uint8_t pin)
  234. {
  235. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  236. if (pin < CORE_NUM_DIGITAL) {
  237. rts_pin = portOutputRegister(pin);
  238. #if defined(KINETISL)
  239. rts_mask = digitalPinToBitMask(pin);
  240. #endif
  241. pinMode(pin, OUTPUT);
  242. rts_assert();
  243. } else {
  244. rts_pin = NULL;
  245. return 0;
  246. }
  247. /*
  248. if (pin == 6) {
  249. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  250. } else if (pin == 19) {
  251. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  252. } else {
  253. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  254. return 0;
  255. }
  256. UART0_MODEM |= UART_MODEM_RXRTSE;
  257. */
  258. return 1;
  259. }
  260. int serial_set_cts(uint8_t pin)
  261. {
  262. #if defined(KINETISK)
  263. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  264. if (pin == 18) {
  265. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  266. } else if (pin == 20) {
  267. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  268. } else {
  269. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  270. return 0;
  271. }
  272. UART0_MODEM |= UART_MODEM_TXCTSE;
  273. return 1;
  274. #else
  275. return 0;
  276. #endif
  277. }
  278. void serial_putchar(uint32_t c)
  279. {
  280. uint32_t head, n;
  281. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  282. if (transmit_pin) transmit_assert();
  283. head = tx_buffer_head;
  284. if (++head >= TX_BUFFER_SIZE) head = 0;
  285. while (tx_buffer_tail == head) {
  286. int priority = nvic_execution_priority();
  287. if (priority <= IRQ_PRIORITY) {
  288. if ((UART0_S1 & UART_S1_TDRE)) {
  289. uint32_t tail = tx_buffer_tail;
  290. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  291. n = tx_buffer[tail];
  292. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  293. UART0_D = n;
  294. tx_buffer_tail = tail;
  295. }
  296. } else if (priority >= 256) {
  297. yield();
  298. }
  299. }
  300. tx_buffer[head] = c;
  301. transmitting = 1;
  302. tx_buffer_head = head;
  303. UART0_C2 = C2_TX_ACTIVE;
  304. }
  305. #ifdef HAS_KINETISK_UART0_FIFO
  306. void serial_write(const void *buf, unsigned int count)
  307. {
  308. const uint8_t *p = (const uint8_t *)buf;
  309. const uint8_t *end = p + count;
  310. uint32_t head, n;
  311. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  312. if (transmit_pin) transmit_assert();
  313. while (p < end) {
  314. head = tx_buffer_head;
  315. if (++head >= TX_BUFFER_SIZE) head = 0;
  316. if (tx_buffer_tail == head) {
  317. UART0_C2 = C2_TX_ACTIVE;
  318. do {
  319. int priority = nvic_execution_priority();
  320. if (priority <= IRQ_PRIORITY) {
  321. if ((UART0_S1 & UART_S1_TDRE)) {
  322. uint32_t tail = tx_buffer_tail;
  323. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  324. n = tx_buffer[tail];
  325. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  326. UART0_D = n;
  327. tx_buffer_tail = tail;
  328. }
  329. } else if (priority >= 256) {
  330. yield();
  331. }
  332. } while (tx_buffer_tail == head);
  333. }
  334. tx_buffer[head] = *p++;
  335. transmitting = 1;
  336. tx_buffer_head = head;
  337. }
  338. UART0_C2 = C2_TX_ACTIVE;
  339. }
  340. #else
  341. void serial_write(const void *buf, unsigned int count)
  342. {
  343. const uint8_t *p = (const uint8_t *)buf;
  344. while (count-- > 0) serial_putchar(*p++);
  345. }
  346. #endif
  347. void serial_flush(void)
  348. {
  349. while (transmitting) yield(); // wait
  350. }
  351. int serial_write_buffer_free(void)
  352. {
  353. uint32_t head, tail;
  354. head = tx_buffer_head;
  355. tail = tx_buffer_tail;
  356. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  357. return tail - head - 1;
  358. }
  359. int serial_available(void)
  360. {
  361. uint32_t head, tail;
  362. head = rx_buffer_head;
  363. tail = rx_buffer_tail;
  364. if (head >= tail) return head - tail;
  365. return RX_BUFFER_SIZE + head - tail;
  366. }
  367. int serial_getchar(void)
  368. {
  369. uint32_t head, tail;
  370. int c;
  371. head = rx_buffer_head;
  372. tail = rx_buffer_tail;
  373. if (head == tail) return -1;
  374. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  375. c = rx_buffer[tail];
  376. rx_buffer_tail = tail;
  377. if (rts_pin) {
  378. int avail;
  379. if (head >= tail) avail = head - tail;
  380. else avail = RX_BUFFER_SIZE + head - tail;
  381. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  382. }
  383. return c;
  384. }
  385. int serial_peek(void)
  386. {
  387. uint32_t head, tail;
  388. head = rx_buffer_head;
  389. tail = rx_buffer_tail;
  390. if (head == tail) return -1;
  391. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  392. return rx_buffer[tail];
  393. }
  394. void serial_clear(void)
  395. {
  396. #ifdef HAS_KINETISK_UART0_FIFO
  397. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  398. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  399. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  400. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  401. #endif
  402. rx_buffer_head = rx_buffer_tail;
  403. if (rts_pin) rts_assert();
  404. }
  405. // status interrupt combines
  406. // Transmit data below watermark UART_S1_TDRE
  407. // Transmit complete UART_S1_TC
  408. // Idle line UART_S1_IDLE
  409. // Receive data above watermark UART_S1_RDRF
  410. // LIN break detect UART_S2_LBKDIF
  411. // RxD pin active edge UART_S2_RXEDGIF
  412. void uart0_status_isr(void)
  413. {
  414. uint32_t head, tail, n;
  415. uint8_t c;
  416. #ifdef HAS_KINETISK_UART0_FIFO
  417. uint32_t newhead;
  418. uint8_t avail;
  419. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  420. __disable_irq();
  421. avail = UART0_RCFIFO;
  422. if (avail == 0) {
  423. // The only way to clear the IDLE interrupt flag is
  424. // to read the data register. But reading with no
  425. // data causes a FIFO underrun, which causes the
  426. // FIFO to return corrupted data. If anyone from
  427. // Freescale reads this, what a poor design! There
  428. // write should be a write-1-to-clear for IDLE.
  429. c = UART0_D;
  430. // flushing the fifo recovers from the underrun,
  431. // but there's a possible race condition where a
  432. // new character could be received between reading
  433. // RCFIFO == 0 and flushing the FIFO. To minimize
  434. // the chance, interrupts are disabled so a higher
  435. // priority interrupt (hopefully) doesn't delay.
  436. // TODO: change this to disabling the IDLE interrupt
  437. // which won't be simple, since we already manage
  438. // which transmit interrupts are enabled.
  439. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  440. __enable_irq();
  441. } else {
  442. __enable_irq();
  443. head = rx_buffer_head;
  444. tail = rx_buffer_tail;
  445. do {
  446. if (use9Bits && (UART0_C3 & 0x80)) {
  447. n = UART0_D | 0x100;
  448. } else {
  449. n = UART0_D;
  450. }
  451. newhead = head + 1;
  452. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  453. if (newhead != tail) {
  454. head = newhead;
  455. rx_buffer[head] = n;
  456. }
  457. } while (--avail > 0);
  458. rx_buffer_head = head;
  459. if (rts_pin) {
  460. int avail;
  461. if (head >= tail) avail = head - tail;
  462. else avail = RX_BUFFER_SIZE + head - tail;
  463. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  464. }
  465. }
  466. }
  467. c = UART0_C2;
  468. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  469. head = tx_buffer_head;
  470. tail = tx_buffer_tail;
  471. do {
  472. if (tail == head) break;
  473. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  474. avail = UART0_S1;
  475. n = tx_buffer[tail];
  476. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  477. UART0_D = n;
  478. } while (UART0_TCFIFO < 8);
  479. tx_buffer_tail = tail;
  480. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  481. }
  482. #else
  483. if (UART0_S1 & UART_S1_RDRF) {
  484. n = UART0_D;
  485. if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
  486. head = rx_buffer_head + 1;
  487. if (head >= RX_BUFFER_SIZE) head = 0;
  488. if (head != rx_buffer_tail) {
  489. rx_buffer[head] = n;
  490. rx_buffer_head = head;
  491. }
  492. }
  493. c = UART0_C2;
  494. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  495. head = tx_buffer_head;
  496. tail = tx_buffer_tail;
  497. if (head == tail) {
  498. UART0_C2 = C2_TX_COMPLETING;
  499. } else {
  500. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  501. n = tx_buffer[tail];
  502. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  503. UART0_D = n;
  504. tx_buffer_tail = tail;
  505. }
  506. }
  507. #endif
  508. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  509. transmitting = 0;
  510. if (transmit_pin) transmit_deassert();
  511. UART0_C2 = C2_TX_INACTIVE;
  512. }
  513. }
  514. void serial_print(const char *p)
  515. {
  516. while (*p) {
  517. char c = *p++;
  518. if (c == '\n') serial_putchar('\r');
  519. serial_putchar(c);
  520. }
  521. }
  522. static void serial_phex1(uint32_t n)
  523. {
  524. n &= 15;
  525. if (n < 10) {
  526. serial_putchar('0' + n);
  527. } else {
  528. serial_putchar('A' - 10 + n);
  529. }
  530. }
  531. void serial_phex(uint32_t n)
  532. {
  533. serial_phex1(n >> 4);
  534. serial_phex1(n);
  535. }
  536. void serial_phex16(uint32_t n)
  537. {
  538. serial_phex(n >> 8);
  539. serial_phex(n);
  540. }
  541. void serial_phex32(uint32_t n)
  542. {
  543. serial_phex(n >> 24);
  544. serial_phex(n >> 16);
  545. serial_phex(n >> 8);
  546. serial_phex(n);
  547. }