選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

548 行
16KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. //#include "HardwareSerial.h"
  32. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // ugly hack for now...
  33. #define __MK20DX256__
  34. #endif
  35. static uint8_t calibrating;
  36. static uint8_t analog_right_shift = 0;
  37. static uint8_t analog_config_bits = 10;
  38. static uint8_t analog_num_average = 4;
  39. static uint8_t analog_reference_internal = 0;
  40. // the alternate clock is connected to OSCERCLK (16 MHz).
  41. // datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
  42. // datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
  43. #if F_BUS == 60000000
  44. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz
  45. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  46. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  47. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
  48. #elif F_BUS == 56000000
  49. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz
  50. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  51. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  52. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
  53. #elif F_BUS == 48000000
  54. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  55. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  56. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
  57. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz
  58. #elif F_BUS == 40000000
  59. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  60. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  61. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
  62. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz
  63. #elif F_BUS == 36000000
  64. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz
  65. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  66. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  67. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
  68. #elif F_BUS == 24000000
  69. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  70. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  71. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
  72. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz
  73. #elif F_BUS == 16000000
  74. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  75. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  76. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  77. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 16 MHz
  78. #elif F_BUS == 8000000
  79. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  80. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  81. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  82. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
  83. #elif F_BUS == 4000000
  84. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  85. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  86. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  87. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
  88. #elif F_BUS == 2000000
  89. #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  90. #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  91. #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  92. #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
  93. #else
  94. #error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz"
  95. #endif
  96. void analog_init(void)
  97. {
  98. uint32_t num;
  99. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  100. VREF_TRM = 0x60;
  101. VREF_SC = 0xE1; // enable 1.2 volt ref
  102. #endif
  103. if (analog_config_bits == 8) {
  104. ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  105. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  106. #if defined(__MK20DX256__)
  107. ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
  108. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  109. #endif
  110. } else if (analog_config_bits == 10) {
  111. ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  112. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  113. #if defined(__MK20DX256__)
  114. ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
  115. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
  116. #endif
  117. } else if (analog_config_bits == 12) {
  118. ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  119. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  120. #if defined(__MK20DX256__)
  121. ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
  122. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  123. #endif
  124. } else {
  125. ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  126. ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  127. #if defined(__MK20DX256__)
  128. ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
  129. ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
  130. #endif
  131. }
  132. #if defined(__MK20DX128__)
  133. if (analog_reference_internal) {
  134. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  135. } else {
  136. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  137. }
  138. #elif defined(__MK20DX256__)
  139. if (analog_reference_internal) {
  140. ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  141. ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
  142. } else {
  143. ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  144. ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
  145. }
  146. #elif defined(__MKL26Z64__)
  147. if (analog_reference_internal) {
  148. ADC0_SC2 = ADC_SC2_REFSEL(0); // external AREF
  149. } else {
  150. ADC0_SC2 = ADC_SC2_REFSEL(1); // vcc
  151. }
  152. #endif
  153. num = analog_num_average;
  154. if (num <= 1) {
  155. ADC0_SC3 = ADC_SC3_CAL; // begin cal
  156. #if defined(__MK20DX256__)
  157. ADC1_SC3 = ADC_SC3_CAL; // begin cal
  158. #endif
  159. } else if (num <= 4) {
  160. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  161. #if defined(__MK20DX256__)
  162. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  163. #endif
  164. } else if (num <= 8) {
  165. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  166. #if defined(__MK20DX256__)
  167. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  168. #endif
  169. } else if (num <= 16) {
  170. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  171. #if defined(__MK20DX256__)
  172. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  173. #endif
  174. } else {
  175. ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  176. #if defined(__MK20DX256__)
  177. ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  178. #endif
  179. }
  180. calibrating = 1;
  181. }
  182. static void wait_for_cal(void)
  183. {
  184. uint16_t sum;
  185. //serial_print("wait_for_cal\n");
  186. #if defined(__MK20DX128__)
  187. while (ADC0_SC3 & ADC_SC3_CAL) {
  188. // wait
  189. }
  190. #elif defined(__MK20DX256__)
  191. while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
  192. // wait
  193. }
  194. #endif
  195. __disable_irq();
  196. if (calibrating) {
  197. //serial_print("\n");
  198. sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
  199. sum = (sum / 2) | 0x8000;
  200. ADC0_PG = sum;
  201. //serial_print("ADC0_PG = ");
  202. //serial_phex16(sum);
  203. //serial_print("\n");
  204. sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
  205. sum = (sum / 2) | 0x8000;
  206. ADC0_MG = sum;
  207. //serial_print("ADC0_MG = ");
  208. //serial_phex16(sum);
  209. //serial_print("\n");
  210. #if defined(__MK20DX256__)
  211. sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
  212. sum = (sum / 2) | 0x8000;
  213. ADC1_PG = sum;
  214. sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
  215. sum = (sum / 2) | 0x8000;
  216. ADC1_MG = sum;
  217. #endif
  218. calibrating = 0;
  219. }
  220. __enable_irq();
  221. }
  222. // ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
  223. // VREFH/VREFL - connected as the primary reference option
  224. // 1.2 V VREF_OUT - connected as the VALT reference option
  225. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  226. #define DEFAULT 0
  227. #define INTERNAL 2
  228. #define INTERNAL1V2 2
  229. #define INTERNAL1V1 2
  230. #define EXTERNAL 0
  231. #elif defined(__MKL26Z64__)
  232. #define DEFAULT 0
  233. #define INTERNAL 0
  234. #define EXTERNAL 1
  235. #endif
  236. void analogReference(uint8_t type)
  237. {
  238. if (type) {
  239. // internal reference requested
  240. if (!analog_reference_internal) {
  241. analog_reference_internal = 1;
  242. if (calibrating) {
  243. ADC0_SC3 = 0; // cancel cal
  244. #if defined(__MK20DX256__)
  245. ADC1_SC3 = 0; // cancel cal
  246. #endif
  247. }
  248. analog_init();
  249. }
  250. } else {
  251. // vcc or external reference requested
  252. if (analog_reference_internal) {
  253. analog_reference_internal = 0;
  254. if (calibrating) {
  255. ADC0_SC3 = 0; // cancel cal
  256. #if defined(__MK20DX256__)
  257. ADC1_SC3 = 0; // cancel cal
  258. #endif
  259. }
  260. analog_init();
  261. }
  262. }
  263. }
  264. void analogReadRes(unsigned int bits)
  265. {
  266. unsigned int config;
  267. if (bits >= 13) {
  268. if (bits > 16) bits = 16;
  269. config = 16;
  270. } else if (bits >= 11) {
  271. config = 12;
  272. } else if (bits >= 9) {
  273. config = 10;
  274. } else {
  275. config = 8;
  276. }
  277. analog_right_shift = config - bits;
  278. if (config != analog_config_bits) {
  279. analog_config_bits = config;
  280. if (calibrating) ADC0_SC3 = 0; // cancel cal
  281. analog_init();
  282. }
  283. }
  284. void analogReadAveraging(unsigned int num)
  285. {
  286. if (calibrating) wait_for_cal();
  287. if (num <= 1) {
  288. num = 0;
  289. ADC0_SC3 = 0;
  290. } else if (num <= 4) {
  291. num = 4;
  292. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
  293. } else if (num <= 8) {
  294. num = 8;
  295. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
  296. } else if (num <= 16) {
  297. num = 16;
  298. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
  299. } else {
  300. num = 32;
  301. ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
  302. }
  303. analog_num_average = num;
  304. }
  305. // The SC1A register is used for both software and hardware trigger modes of operation.
  306. #if defined(__MK20DX128__)
  307. static const uint8_t channel2sc1a[] = {
  308. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  309. 0, 19, 3, 21, 26, 22, 23
  310. };
  311. #elif defined(__MK20DX256__)
  312. static const uint8_t channel2sc1a[] = {
  313. 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
  314. 0, 19, 3, 19+128, 26, 18+128, 23,
  315. 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
  316. // A15 26 E1 ADC1_SE5a 5+64
  317. // A16 27 C9 ADC1_SE5b 5
  318. // A17 28 C8 ADC1_SE4b 4
  319. // A18 29 C10 ADC1_SE6b 6
  320. // A19 30 C11 ADC1_SE7b 7
  321. // A20 31 E0 ADC1_SE4a 4+64
  322. };
  323. #elif defined(__MKL26Z64__)
  324. static const uint8_t channel2sc1a[] = {
  325. 5, 14, 8, 9, 13, 12, 6, 7, 15, 11,
  326. 0, 4+64, 23, 26, 27
  327. };
  328. #endif
  329. // TODO: perhaps this should store the NVIC priority, so it works recursively?
  330. static volatile uint8_t analogReadBusyADC0 = 0;
  331. #if defined(__MK20DX256__)
  332. static volatile uint8_t analogReadBusyADC1 = 0;
  333. #endif
  334. int analogRead(uint8_t pin)
  335. {
  336. int result;
  337. uint8_t index, channel;
  338. //serial_phex(pin);
  339. //serial_print(" ");
  340. #if defined(__MK20DX128__)
  341. if (pin <= 13) {
  342. index = pin; // 0-13 refer to A0-A13
  343. } else if (pin <= 23) {
  344. index = pin - 14; // 14-23 are A0-A9
  345. } else if (pin >= 34 && pin <= 40) {
  346. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  347. // 39 is vref, 40 is unused analog pin
  348. } else {
  349. return 0;
  350. }
  351. #elif defined(__MK20DX256__)
  352. if (pin <= 13) {
  353. index = pin; // 0-13 refer to A0-A13
  354. } else if (pin <= 23) {
  355. index = pin - 14; // 14-23 are A0-A9
  356. } else if (pin >= 26 && pin <= 31) {
  357. index = pin - 9; // 26-31 are A15-A20
  358. } else if (pin >= 34 && pin <= 40) {
  359. index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
  360. // 39 is vref, 40 is A14
  361. } else {
  362. return 0;
  363. }
  364. #elif defined(__MKL26Z64__)
  365. if (pin <= 12) {
  366. index = pin; // 0-12 refer to A0-A12
  367. } else if (pin >= 14 && pin <= 26) {
  368. index = pin - 14; // 14-26 are A0-A12
  369. } else if (pin >= 38 && pin <= 39) {
  370. index = pin - 25; // 38=temperature
  371. // 39=bandgap ref (PMC_REGSC |= PMC_REGSC_BGBE)
  372. } else {
  373. return 0;
  374. }
  375. #endif
  376. //serial_phex(index);
  377. //serial_print(" ");
  378. channel = channel2sc1a[index];
  379. //serial_phex(channel);
  380. //serial_print(" ");
  381. //serial_print("analogRead");
  382. //return 0;
  383. if (calibrating) wait_for_cal();
  384. //pin = 5; // PTD1/SE5b, pin 14, analog 0
  385. #if defined(__MK20DX256__)
  386. if (channel & 0x80) goto beginADC1;
  387. #endif
  388. __disable_irq();
  389. startADC0:
  390. //serial_print("startADC0\n");
  391. #if defined(__MKL26Z64__)
  392. if (channel & 0x40) {
  393. ADC0_CFG2 &= ~ADC_CFG2_MUXSEL;
  394. channel &= 0x3F;
  395. } else {
  396. ADC0_CFG2 |= ADC_CFG2_MUXSEL;
  397. }
  398. #endif
  399. ADC0_SC1A = channel;
  400. analogReadBusyADC0 = 1;
  401. __enable_irq();
  402. while (1) {
  403. __disable_irq();
  404. if ((ADC0_SC1A & ADC_SC1_COCO)) {
  405. result = ADC0_RA;
  406. analogReadBusyADC0 = 0;
  407. __enable_irq();
  408. result >>= analog_right_shift;
  409. return result;
  410. }
  411. // detect if analogRead was used from an interrupt
  412. // if so, our analogRead got canceled, so it must
  413. // be restarted.
  414. if (!analogReadBusyADC0) goto startADC0;
  415. __enable_irq();
  416. yield();
  417. }
  418. #if defined(__MK20DX256__)
  419. beginADC1:
  420. __disable_irq();
  421. startADC1:
  422. //serial_print("startADC0\n");
  423. // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
  424. if (channel & 0x40) {
  425. ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
  426. } else {
  427. ADC1_CFG2 |= ADC_CFG2_MUXSEL;
  428. }
  429. ADC1_SC1A = channel & 0x3F;
  430. analogReadBusyADC1 = 1;
  431. __enable_irq();
  432. while (1) {
  433. __disable_irq();
  434. if ((ADC1_SC1A & ADC_SC1_COCO)) {
  435. result = ADC1_RA;
  436. analogReadBusyADC1 = 0;
  437. __enable_irq();
  438. result >>= analog_right_shift;
  439. return result;
  440. }
  441. // detect if analogRead was used from an interrupt
  442. // if so, our analogRead got canceled, so it must
  443. // be restarted.
  444. if (!analogReadBusyADC1) goto startADC1;
  445. __enable_irq();
  446. yield();
  447. }
  448. #endif
  449. }
  450. void analogWriteDAC0(int val)
  451. {
  452. #if defined(__MK20DX256__)
  453. SIM_SCGC2 |= SIM_SCGC2_DAC0;
  454. if (analog_reference_internal) {
  455. DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
  456. } else {
  457. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
  458. }
  459. if (val < 0) val = 0; // TODO: saturate instruction?
  460. else if (val > 4095) val = 4095;
  461. *(int16_t *)&(DAC0_DAT0L) = val;
  462. #elif defined(__MKL26Z64__)
  463. SIM_SCGC6 |= SIM_SCGC6_DAC0;
  464. if (analog_reference_internal == 0) {
  465. // use 3.3V VDDA power as the reference (this is the default)
  466. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS | DAC_C0_DACSWTRG; // 3.3V VDDA
  467. } else {
  468. // use whatever voltage is on the AREF pin
  469. DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACSWTRG; // 3.3V VDDA
  470. }
  471. if (val < 0) val = 0;
  472. else if (val > 4095) val = 4095;
  473. *(int16_t *)&(DAC0_DAT0L) = val;
  474. #endif
  475. }
  476. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  477. void analogWriteDAC1(int val)
  478. {
  479. SIM_SCGC2 |= SIM_SCGC2_DAC1;
  480. if (analog_reference_internal) {
  481. DAC1_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
  482. } else {
  483. DAC1_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
  484. }
  485. if (val < 0) val = 0; // TODO: saturate instruction?
  486. else if (val > 4095) val = 4095;
  487. *(int16_t *)&(DAC1_DAT0L) = val;
  488. }
  489. #endif