You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

456 lines
13KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  39. ////////////////////////////////////////////////////////////////
  40. // changes not recommended below this point....
  41. ////////////////////////////////////////////////////////////////
  42. #ifdef SERIAL_9BIT_SUPPORT
  43. static uint8_t use9Bits = 0;
  44. #define BUFTYPE uint16_t
  45. #else
  46. #define BUFTYPE uint8_t
  47. #define use9Bits 0
  48. #endif
  49. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  50. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  51. static volatile uint8_t transmitting = 0;
  52. #if defined(KINETISK)
  53. static volatile uint8_t *transmit_pin=NULL;
  54. #define transmit_assert() *transmit_pin = 1
  55. #define transmit_deassert() *transmit_pin = 0
  56. #elif defined(KINETISL)
  57. static volatile uint8_t *transmit_pin=NULL;
  58. static uint8_t transmit_mask=0;
  59. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  60. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  61. #endif
  62. #if TX_BUFFER_SIZE > 255
  63. static volatile uint16_t tx_buffer_head = 0;
  64. static volatile uint16_t tx_buffer_tail = 0;
  65. #else
  66. static volatile uint8_t tx_buffer_head = 0;
  67. static volatile uint8_t tx_buffer_tail = 0;
  68. #endif
  69. #if RX_BUFFER_SIZE > 255
  70. static volatile uint16_t rx_buffer_head = 0;
  71. static volatile uint16_t rx_buffer_tail = 0;
  72. #else
  73. static volatile uint8_t rx_buffer_head = 0;
  74. static volatile uint8_t rx_buffer_tail = 0;
  75. #endif
  76. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  77. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  78. #ifdef HAS_KINETISK_UART0_FIFO
  79. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  80. #else
  81. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  82. #endif
  83. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  84. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  85. #define C2_TX_INACTIVE C2_ENABLE
  86. void serial_begin(uint32_t divisor)
  87. {
  88. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  89. rx_buffer_head = 0;
  90. rx_buffer_tail = 0;
  91. tx_buffer_head = 0;
  92. tx_buffer_tail = 0;
  93. transmitting = 0;
  94. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  95. CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  96. #if defined(HAS_KINETISK_UART0)
  97. UART0_BDH = (divisor >> 13) & 0x1F;
  98. UART0_BDL = (divisor >> 5) & 0xFF;
  99. UART0_C4 = divisor & 0x1F;
  100. #ifdef HAS_KINETISK_UART0_FIFO
  101. UART0_C1 = UART_C1_ILT;
  102. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  103. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  104. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  105. #else
  106. UART0_C1 = 0;
  107. UART0_PFIFO = 0;
  108. #endif
  109. #elif defined(HAS_KINETISL_UART0)
  110. UART0_BDH = (divisor >> 8) & 0x1F;
  111. UART0_BDL = divisor & 0xFF;
  112. UART0_C1 = 0;
  113. #endif
  114. UART0_C2 = C2_TX_INACTIVE;
  115. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  116. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  117. }
  118. void serial_format(uint32_t format)
  119. {
  120. uint8_t c;
  121. c = UART0_C1;
  122. c = (c & ~0x13) | (format & 0x03); // configure parity
  123. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  124. UART0_C1 = c;
  125. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  126. c = UART0_S2 & ~0x10;
  127. if (format & 0x10) c |= 0x10; // rx invert
  128. UART0_S2 = c;
  129. c = UART0_C3 & ~0x10;
  130. if (format & 0x20) c |= 0x10; // tx invert
  131. UART0_C3 = c;
  132. #ifdef SERIAL_9BIT_SUPPORT
  133. c = UART0_C4 & 0x1F;
  134. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  135. UART0_C4 = c;
  136. use9Bits = format & 0x80;
  137. #endif
  138. }
  139. void serial_end(void)
  140. {
  141. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  142. while (transmitting) yield(); // wait for buffered data to send
  143. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  144. UART0_C2 = 0;
  145. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  146. CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  147. rx_buffer_head = 0;
  148. rx_buffer_tail = 0;
  149. }
  150. void serial_set_transmit_pin(uint8_t pin)
  151. {
  152. while (transmitting) ;
  153. pinMode(pin, OUTPUT);
  154. digitalWrite(pin, LOW);
  155. transmit_pin = portOutputRegister(pin);
  156. #if defined(KINETISL)
  157. transmit_mask = digitalPinToBitMask(pin);
  158. #endif
  159. }
  160. void serial_putchar(uint32_t c)
  161. {
  162. uint32_t head, n;
  163. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  164. if (transmit_pin) transmit_assert();
  165. head = tx_buffer_head;
  166. if (++head >= TX_BUFFER_SIZE) head = 0;
  167. while (tx_buffer_tail == head) {
  168. int priority = nvic_execution_priority();
  169. if (priority <= IRQ_PRIORITY) {
  170. if ((UART0_S1 & UART_S1_TDRE)) {
  171. uint32_t tail = tx_buffer_tail;
  172. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  173. n = tx_buffer[tail];
  174. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  175. UART0_D = n;
  176. tx_buffer_tail = tail;
  177. }
  178. } else if (priority >= 256) {
  179. yield();
  180. }
  181. }
  182. tx_buffer[head] = c;
  183. transmitting = 1;
  184. tx_buffer_head = head;
  185. UART0_C2 = C2_TX_ACTIVE;
  186. }
  187. #ifdef HAS_KINETISK_UART0_FIFO
  188. void serial_write(const void *buf, unsigned int count)
  189. {
  190. const uint8_t *p = (const uint8_t *)buf;
  191. const uint8_t *end = p + count;
  192. uint32_t head, n;
  193. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  194. if (transmit_pin) transmit_assert();
  195. while (p < end) {
  196. head = tx_buffer_head;
  197. if (++head >= TX_BUFFER_SIZE) head = 0;
  198. if (tx_buffer_tail == head) {
  199. UART0_C2 = C2_TX_ACTIVE;
  200. do {
  201. int priority = nvic_execution_priority();
  202. if (priority <= IRQ_PRIORITY) {
  203. if ((UART0_S1 & UART_S1_TDRE)) {
  204. uint32_t tail = tx_buffer_tail;
  205. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  206. n = tx_buffer[tail];
  207. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  208. UART0_D = n;
  209. tx_buffer_tail = tail;
  210. }
  211. } else if (priority >= 256) {
  212. yield();
  213. }
  214. } while (tx_buffer_tail == head);
  215. }
  216. tx_buffer[head] = *p++;
  217. transmitting = 1;
  218. tx_buffer_head = head;
  219. }
  220. UART0_C2 = C2_TX_ACTIVE;
  221. }
  222. #else
  223. void serial_write(const void *buf, unsigned int count)
  224. {
  225. const uint8_t *p = (const uint8_t *)buf;
  226. while (count-- > 0) serial_putchar(*p++);
  227. }
  228. #endif
  229. void serial_flush(void)
  230. {
  231. while (transmitting) yield(); // wait
  232. }
  233. int serial_write_buffer_free(void)
  234. {
  235. uint32_t head, tail;
  236. head = tx_buffer_head;
  237. tail = tx_buffer_tail;
  238. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  239. return tail - head - 1;
  240. }
  241. int serial_available(void)
  242. {
  243. uint32_t head, tail;
  244. head = rx_buffer_head;
  245. tail = rx_buffer_tail;
  246. if (head >= tail) return head - tail;
  247. return RX_BUFFER_SIZE + head - tail;
  248. }
  249. int serial_getchar(void)
  250. {
  251. uint32_t head, tail;
  252. int c;
  253. head = rx_buffer_head;
  254. tail = rx_buffer_tail;
  255. if (head == tail) return -1;
  256. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  257. c = rx_buffer[tail];
  258. rx_buffer_tail = tail;
  259. return c;
  260. }
  261. int serial_peek(void)
  262. {
  263. uint32_t head, tail;
  264. head = rx_buffer_head;
  265. tail = rx_buffer_tail;
  266. if (head == tail) return -1;
  267. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  268. return rx_buffer[tail];
  269. }
  270. void serial_clear(void)
  271. {
  272. #ifdef HAS_KINETISK_UART0_FIFO
  273. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  274. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  275. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  276. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  277. #endif
  278. rx_buffer_head = rx_buffer_tail;
  279. }
  280. // status interrupt combines
  281. // Transmit data below watermark UART_S1_TDRE
  282. // Transmit complete UART_S1_TC
  283. // Idle line UART_S1_IDLE
  284. // Receive data above watermark UART_S1_RDRF
  285. // LIN break detect UART_S2_LBKDIF
  286. // RxD pin active edge UART_S2_RXEDGIF
  287. void uart0_status_isr(void)
  288. {
  289. uint32_t head, tail, n;
  290. uint8_t c;
  291. #ifdef HAS_KINETISK_UART0_FIFO
  292. uint32_t newhead;
  293. uint8_t avail;
  294. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  295. __disable_irq();
  296. avail = UART0_RCFIFO;
  297. if (avail == 0) {
  298. // The only way to clear the IDLE interrupt flag is
  299. // to read the data register. But reading with no
  300. // data causes a FIFO underrun, which causes the
  301. // FIFO to return corrupted data. If anyone from
  302. // Freescale reads this, what a poor design! There
  303. // write should be a write-1-to-clear for IDLE.
  304. c = UART0_D;
  305. // flushing the fifo recovers from the underrun,
  306. // but there's a possible race condition where a
  307. // new character could be received between reading
  308. // RCFIFO == 0 and flushing the FIFO. To minimize
  309. // the chance, interrupts are disabled so a higher
  310. // priority interrupt (hopefully) doesn't delay.
  311. // TODO: change this to disabling the IDLE interrupt
  312. // which won't be simple, since we already manage
  313. // which transmit interrupts are enabled.
  314. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  315. __enable_irq();
  316. } else {
  317. __enable_irq();
  318. head = rx_buffer_head;
  319. tail = rx_buffer_tail;
  320. do {
  321. if (use9Bits && (UART0_C3 & 0x80)) {
  322. n = UART0_D | 0x100;
  323. } else {
  324. n = UART0_D;
  325. }
  326. newhead = head + 1;
  327. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  328. if (newhead != tail) {
  329. head = newhead;
  330. rx_buffer[head] = n;
  331. }
  332. } while (--avail > 0);
  333. rx_buffer_head = head;
  334. }
  335. }
  336. c = UART0_C2;
  337. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  338. head = tx_buffer_head;
  339. tail = tx_buffer_tail;
  340. do {
  341. if (tail == head) break;
  342. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  343. avail = UART0_S1;
  344. n = tx_buffer[tail];
  345. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  346. UART0_D = n;
  347. } while (UART0_TCFIFO < 8);
  348. tx_buffer_tail = tail;
  349. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  350. }
  351. #else
  352. if (UART0_S1 & UART_S1_RDRF) {
  353. n = UART0_D;
  354. if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
  355. head = rx_buffer_head + 1;
  356. if (head >= RX_BUFFER_SIZE) head = 0;
  357. if (head != rx_buffer_tail) {
  358. rx_buffer[head] = n;
  359. rx_buffer_head = head;
  360. }
  361. }
  362. c = UART0_C2;
  363. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  364. head = tx_buffer_head;
  365. tail = tx_buffer_tail;
  366. if (head == tail) {
  367. UART0_C2 = C2_TX_COMPLETING;
  368. } else {
  369. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  370. n = tx_buffer[tail];
  371. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  372. UART0_D = n;
  373. tx_buffer_tail = tail;
  374. }
  375. }
  376. #endif
  377. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  378. transmitting = 0;
  379. if (transmit_pin) transmit_deassert();
  380. UART0_C2 = C2_TX_INACTIVE;
  381. }
  382. }
  383. void serial_print(const char *p)
  384. {
  385. while (*p) {
  386. char c = *p++;
  387. if (c == '\n') serial_putchar('\r');
  388. serial_putchar(c);
  389. }
  390. }
  391. static void serial_phex1(uint32_t n)
  392. {
  393. n &= 15;
  394. if (n < 10) {
  395. serial_putchar('0' + n);
  396. } else {
  397. serial_putchar('A' - 10 + n);
  398. }
  399. }
  400. void serial_phex(uint32_t n)
  401. {
  402. serial_phex1(n >> 4);
  403. serial_phex1(n);
  404. }
  405. void serial_phex16(uint32_t n)
  406. {
  407. serial_phex(n >> 8);
  408. serial_phex(n);
  409. }
  410. void serial_phex32(uint32_t n)
  411. {
  412. serial_phex(n >> 24);
  413. serial_phex(n >> 16);
  414. serial_phex(n >> 8);
  415. serial_phex(n);
  416. }