You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

362 lines
10KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "mk20dx128.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  39. ////////////////////////////////////////////////////////////////
  40. // changes not recommended below this point....
  41. ////////////////////////////////////////////////////////////////
  42. #ifdef SERIAL_9BIT_SUPPORT
  43. static uint8_t use9Bits = 0;
  44. #define BUFTYPE uint16_t
  45. #else
  46. #define BUFTYPE uint8_t
  47. #define use9Bits 0
  48. #endif
  49. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  50. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  51. static volatile uint8_t transmitting = 0;
  52. #if TX_BUFFER_SIZE > 255
  53. static volatile uint16_t tx_buffer_head = 0;
  54. static volatile uint16_t tx_buffer_tail = 0;
  55. #else
  56. static volatile uint8_t tx_buffer_head = 0;
  57. static volatile uint8_t tx_buffer_tail = 0;
  58. #endif
  59. #if RX_BUFFER_SIZE > 255
  60. static volatile uint16_t rx_buffer_head = 0;
  61. static volatile uint16_t rx_buffer_tail = 0;
  62. #else
  63. static volatile uint8_t rx_buffer_head = 0;
  64. static volatile uint8_t rx_buffer_tail = 0;
  65. #endif
  66. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  67. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  68. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  69. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  70. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  71. #define C2_TX_INACTIVE C2_ENABLE
  72. void serial_begin(uint32_t divisor)
  73. {
  74. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  75. rx_buffer_head = 0;
  76. rx_buffer_tail = 0;
  77. tx_buffer_head = 0;
  78. tx_buffer_tail = 0;
  79. transmitting = 0;
  80. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  81. CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  82. UART0_BDH = (divisor >> 13) & 0x1F;
  83. UART0_BDL = (divisor >> 5) & 0xFF;
  84. UART0_C4 = divisor & 0x1F;
  85. //UART0_C1 = 0;
  86. UART0_C1 = UART_C1_ILT;
  87. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  88. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  89. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  90. UART0_C2 = C2_TX_INACTIVE;
  91. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  92. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  93. }
  94. void serial_format(uint32_t format)
  95. {
  96. uint8_t c;
  97. c = UART0_C1;
  98. c = (c & ~0x13) | (format & 0x03); // configure parity
  99. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  100. UART0_C1 = c;
  101. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  102. c = UART0_S2 & ~0x10;
  103. if (format & 0x10) c |= 0x10; // rx invert
  104. UART0_S2 = c;
  105. c = UART0_C3 & ~0x10;
  106. if (format & 0x20) c |= 0x10; // tx invert
  107. UART0_C3 = c;
  108. #ifdef SERIAL_9BIT_SUPPORT
  109. c = UART0_C4 & 0x1F;
  110. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  111. UART0_C4 = c;
  112. use9Bits = format & 0x80;
  113. #endif
  114. }
  115. void serial_end(void)
  116. {
  117. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  118. while (transmitting) yield(); // wait for buffered data to send
  119. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  120. UART0_C2 = 0;
  121. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  122. CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  123. rx_buffer_head = 0;
  124. rx_buffer_tail = 0;
  125. }
  126. void serial_putchar(uint32_t c)
  127. {
  128. uint32_t head;
  129. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  130. head = tx_buffer_head;
  131. if (++head >= TX_BUFFER_SIZE) head = 0;
  132. while (tx_buffer_tail == head) {
  133. int priority = nvic_execution_priority();
  134. if (priority <= IRQ_PRIORITY) {
  135. if ((UART0_S1 & UART_S1_TDRE)) {
  136. uint32_t tail = tx_buffer_tail;
  137. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  138. UART0_D = tx_buffer[tail];
  139. tx_buffer_tail = tail;
  140. }
  141. } else if (priority >= 256) {
  142. yield();
  143. }
  144. }
  145. tx_buffer[head] = c;
  146. transmitting = 1;
  147. tx_buffer_head = head;
  148. UART0_C2 = C2_TX_ACTIVE;
  149. }
  150. void serial_write(const void *buf, unsigned int count)
  151. {
  152. const uint8_t *p = (const uint8_t *)buf;
  153. const uint8_t *end = p + count;
  154. uint32_t head;
  155. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  156. while (p < end) {
  157. head = tx_buffer_head;
  158. if (++head >= TX_BUFFER_SIZE) head = 0;
  159. if (tx_buffer_tail == head) {
  160. UART0_C2 = C2_TX_ACTIVE;
  161. do {
  162. int priority = nvic_execution_priority();
  163. if (priority <= IRQ_PRIORITY) {
  164. if ((UART0_S1 & UART_S1_TDRE)) {
  165. uint32_t tail = tx_buffer_tail;
  166. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  167. UART0_D = tx_buffer[tail];
  168. tx_buffer_tail = tail;
  169. }
  170. } else if (priority >= 256) {
  171. yield();
  172. }
  173. } while (tx_buffer_tail == head);
  174. }
  175. tx_buffer[head] = *p++;
  176. transmitting = 1;
  177. tx_buffer_head = head;
  178. }
  179. UART0_C2 = C2_TX_ACTIVE;
  180. }
  181. void serial_flush(void)
  182. {
  183. while (transmitting) yield(); // wait
  184. }
  185. int serial_available(void)
  186. {
  187. uint32_t head, tail;
  188. head = rx_buffer_head;
  189. tail = rx_buffer_tail;
  190. if (head >= tail) return head - tail;
  191. return RX_BUFFER_SIZE + head - tail;
  192. }
  193. int serial_getchar(void)
  194. {
  195. uint32_t head, tail;
  196. int c;
  197. head = rx_buffer_head;
  198. tail = rx_buffer_tail;
  199. if (head == tail) return -1;
  200. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  201. c = rx_buffer[tail];
  202. rx_buffer_tail = tail;
  203. return c;
  204. }
  205. int serial_peek(void)
  206. {
  207. uint32_t head, tail;
  208. head = rx_buffer_head;
  209. tail = rx_buffer_tail;
  210. if (head == tail) return -1;
  211. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  212. return rx_buffer[tail];
  213. }
  214. void serial_clear(void)
  215. {
  216. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  217. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  218. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  219. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  220. rx_buffer_head = rx_buffer_tail;
  221. }
  222. // status interrupt combines
  223. // Transmit data below watermark UART_S1_TDRE
  224. // Transmit complete UART_S1_TC
  225. // Idle line UART_S1_IDLE
  226. // Receive data above watermark UART_S1_RDRF
  227. // LIN break detect UART_S2_LBKDIF
  228. // RxD pin active edge UART_S2_RXEDGIF
  229. void uart0_status_isr(void)
  230. {
  231. uint32_t head, newhead, tail, n;
  232. uint8_t avail, c;
  233. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  234. __disable_irq();
  235. avail = UART0_RCFIFO;
  236. if (avail == 0) {
  237. // The only way to clear the IDLE interrupt flag is
  238. // to read the data register. But reading with no
  239. // data causes a FIFO underrun, which causes the
  240. // FIFO to return corrupted data. If anyone from
  241. // Freescale reads this, what a poor design! There
  242. // write should be a write-1-to-clear for IDLE.
  243. c = UART0_D;
  244. // flushing the fifo recovers from the underrun,
  245. // but there's a possible race condition where a
  246. // new character could be received between reading
  247. // RCFIFO == 0 and flushing the FIFO. To minimize
  248. // the chance, interrupts are disabled so a higher
  249. // priority interrupt (hopefully) doesn't delay.
  250. // TODO: change this to disabling the IDLE interrupt
  251. // which won't be simple, since we already manage
  252. // which transmit interrupts are enabled.
  253. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  254. __enable_irq();
  255. } else {
  256. __enable_irq();
  257. head = rx_buffer_head;
  258. tail = rx_buffer_tail;
  259. do {
  260. n = UART0_D;
  261. if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
  262. newhead = head + 1;
  263. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  264. if (newhead != tail) {
  265. head = newhead;
  266. rx_buffer[head] = n;
  267. }
  268. } while (--avail > 0);
  269. rx_buffer_head = head;
  270. }
  271. }
  272. c = UART0_C2;
  273. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  274. head = tx_buffer_head;
  275. tail = tx_buffer_tail;
  276. do {
  277. if (tail == head) break;
  278. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  279. avail = UART0_S1;
  280. n = tx_buffer[tail];
  281. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  282. UART0_D = n;
  283. } while (UART0_TCFIFO < 8);
  284. tx_buffer_tail = tail;
  285. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  286. }
  287. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  288. transmitting = 0;
  289. UART0_C2 = C2_TX_INACTIVE;
  290. }
  291. }
  292. void serial_print(const char *p)
  293. {
  294. while (*p) {
  295. char c = *p++;
  296. if (c == '\n') serial_putchar('\r');
  297. serial_putchar(c);
  298. }
  299. }
  300. static void serial_phex1(uint32_t n)
  301. {
  302. n &= 15;
  303. if (n < 10) {
  304. serial_putchar('0' + n);
  305. } else {
  306. serial_putchar('A' - 10 + n);
  307. }
  308. }
  309. void serial_phex(uint32_t n)
  310. {
  311. serial_phex1(n >> 4);
  312. serial_phex1(n);
  313. }
  314. void serial_phex16(uint32_t n)
  315. {
  316. serial_phex(n >> 8);
  317. serial_phex(n);
  318. }
  319. void serial_phex32(uint32_t n)
  320. {
  321. serial_phex(n >> 24);
  322. serial_phex(n >> 16);
  323. serial_phex(n >> 8);
  324. serial_phex(n);
  325. }