You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

689 lines
24KB

  1. #ifndef DMAChannel_h_
  2. #define DMAChannel_h_
  3. #include "mk20dx128.h"
  4. // This code is a work-in-progress. It's incomplete and not usable yet...
  5. //
  6. // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
  7. // known libraries with DMA usage (in need of porting to this new scheme):
  8. //
  9. // https://github.com/PaulStoffregen/Audio
  10. // https://github.com/PaulStoffregen/OctoWS2811
  11. // https://github.com/pedvide/ADC
  12. // https://github.com/duff2013/SerialEvent
  13. // https://github.com/pixelmatix/SmartMatrix
  14. // https://github.com/crteensy/DmaSpi
  15. #ifdef __cplusplus
  16. class DMAChannel {
  17. typedef struct __attribute__((packed)) {
  18. volatile const void * volatile SADDR;
  19. int16_t SOFF;
  20. union { uint16_t ATTR;
  21. struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
  22. union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
  23. uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
  24. int32_t SLAST;
  25. volatile void * volatile DADDR;
  26. int16_t DOFF;
  27. union { volatile uint16_t CITER;
  28. volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
  29. int32_t DLASTSGA;
  30. volatile uint16_t CSR;
  31. union { volatile uint16_t BITER;
  32. volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
  33. } TCD_t;
  34. public:
  35. /*************************************************/
  36. /** Channel Allocation **/
  37. /*************************************************/
  38. // Constructor - allocates which DMA channel each object actually uses
  39. DMAChannel(uint8_t channelRequest=0);
  40. // TODO: should the copy constructor be private?
  41. /***************************************/
  42. /** Triggering **/
  43. /***************************************/
  44. // Triggers cause the DMA channel to actually move data. Each
  45. // trigger moves a single data unit, which is typically 8, 16 or 32 bits.
  46. // Use a hardware trigger to make the DMA channel run
  47. void attachTrigger(uint8_t source) {
  48. volatile uint8_t *mux;
  49. mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
  50. *mux = 0;
  51. *mux = (source & 63) | DMAMUX_ENABLE;
  52. }
  53. // Use another DMA channel as the trigger, causing this
  54. // channel to trigger after each transfer is makes, except
  55. // the its last transfer. This effectively makes the 2
  56. // channels run in parallel.
  57. void attachTriggerBeforeCompletion(DMAChannel &ch) {
  58. ch.TCD.BITER = (ch.TCD.BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
  59. | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
  60. ch.TCD.CITER = ch.TCD.BITER ;
  61. }
  62. // Use another DMA channel as the trigger, causing this
  63. // channel to trigger when the other channel completes.
  64. void attachTriggerAtCompletion(DMAChannel &ch) {
  65. ch.TCD.CSR = (ch.TCD.CSR & ~DMA_TCD_CSR_MAJORLINKCH_MASK)
  66. | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
  67. }
  68. // Cause this DMA channel to be continuously triggered, so
  69. // it will move data as rapidly as possible, without waiting.
  70. // Normally this would be used with disableOnCompletion().
  71. void attachTriggerContinuous(void) {
  72. volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
  73. mux[channel] = 0;
  74. #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
  75. mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
  76. #else
  77. // search for an unused "always on" source
  78. unsigned int i = DMAMUX_SOURCE_ALWAYS0;
  79. for (i = DMAMUX_SOURCE_ALWAYS0;
  80. i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
  81. unsigned int ch;
  82. for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
  83. if (mux[ch] == i) break;
  84. }
  85. if (ch >= DMA_NUM_CHANNELS) {
  86. mux[channel] = i;
  87. return;
  88. }
  89. }
  90. #endif
  91. }
  92. // Manually trigger the DMA channel.
  93. void trigger(void) {
  94. DMA_SSRT = channel;
  95. }
  96. /***************************************/
  97. /** Interrupts **/
  98. /***************************************/
  99. // An interrupt routine can be run when the DMA channel completes
  100. // the entire transfer, and also optionally when half of the
  101. // transfer is completed.
  102. void attachInterrupt(void (*isr)(void)) {
  103. _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
  104. NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
  105. TCD.CSR |= DMA_TCD_CSR_INTMAJOR;
  106. }
  107. void detachInterrupt(void) {
  108. NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
  109. }
  110. void interruptAtHalf(void) {
  111. TCD.CSR |= DMA_TCD_CSR_INTHALF;
  112. }
  113. void clearInterrupt(void) {
  114. DMA_CINT = channel;
  115. }
  116. /***************************************/
  117. /** Enable / Disable **/
  118. /***************************************/
  119. void enable(void) {
  120. DMA_SERQ = channel;
  121. }
  122. void disable(void) {
  123. DMA_CERQ = channel;
  124. }
  125. void disableOnCompletion(void) {
  126. TCD.CSR |= DMA_TCD_CSR_DREQ;
  127. }
  128. /***************************************/
  129. /** Data Transfer **/
  130. /***************************************/
  131. // Use a single variable as the data source. Typically a register
  132. // for receiving data from one of the hardware peripherals is used.
  133. void source(const signed char &p) { source(*(const uint8_t *)&p); }
  134. void source(const unsigned char &p) {
  135. TCD.SADDR = &p;
  136. TCD.SOFF = 0;
  137. TCD.ATTR_SRC = 0;
  138. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 1;
  139. TCD.SLAST = 0;
  140. }
  141. void source(const signed short &p) { source(*(const uint16_t *)&p); }
  142. void source(const unsigned short &p) {
  143. TCD.SADDR = &p;
  144. TCD.SOFF = 0;
  145. TCD.ATTR_SRC = 1;
  146. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 2;
  147. TCD.SLAST = 0;
  148. }
  149. void source(const signed int &p) { source(*(const uint32_t *)&p); }
  150. void source(const unsigned int &p) { source(*(const uint32_t *)&p); }
  151. void source(const signed long &p) { source(*(const uint32_t *)&p); }
  152. void source(const unsigned long &p) {
  153. TCD.SADDR = &p;
  154. TCD.SOFF = 0;
  155. TCD.ATTR_SRC = 2;
  156. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 4;
  157. TCD.SLAST = 0;
  158. }
  159. // Use a buffer (array of data) as the data source. Typically a
  160. // buffer for transmitting data is used.
  161. void sourceBuffer(const signed char p[], unsigned int len) {
  162. sourceBuffer((uint8_t *)p, len); }
  163. void sourceBuffer(const unsigned char p[], unsigned int len) {
  164. TCD.SADDR = p;
  165. TCD.SOFF = 1;
  166. TCD.ATTR_SRC = 0;
  167. TCD.NBYTES = 1;
  168. TCD.SLAST = -len;
  169. TCD.BITER = len;
  170. TCD.CITER = len;
  171. }
  172. void sourceBuffer(const signed short p[], unsigned int len) {
  173. sourceBuffer((uint16_t *)p, len); }
  174. void sourceBuffer(const unsigned short p[], unsigned int len) {
  175. TCD.SADDR = p;
  176. TCD.SOFF = 2;
  177. TCD.ATTR_SRC = 1;
  178. TCD.NBYTES = 2;
  179. TCD.SLAST = -len;
  180. TCD.BITER = len / 2;
  181. TCD.CITER = len / 2;
  182. }
  183. void sourceBuffer(const signed int p[], unsigned int len) {
  184. sourceBuffer((uint32_t *)p, len); }
  185. void sourceBuffer(const unsigned int p[], unsigned int len) {
  186. sourceBuffer((uint32_t *)p, len); }
  187. void sourceBuffer(const signed long p[], unsigned int len) {
  188. sourceBuffer((uint32_t *)p, len); }
  189. void sourceBuffer(const unsigned long p[], unsigned int len) {
  190. TCD.SADDR = p;
  191. TCD.SOFF = 4;
  192. TCD.ATTR_SRC = 2;
  193. TCD.NBYTES = 4;
  194. TCD.SLAST = -len;
  195. TCD.BITER = len / 4;
  196. TCD.CITER = len / 4;
  197. }
  198. // Use a circular buffer as the data source
  199. void sourceCircular(const signed char p[], unsigned int len) {
  200. sourceCircular((uint8_t *)p, len); }
  201. void sourceCircular(const unsigned char p[], unsigned int len) {
  202. TCD.SADDR = p;
  203. TCD.SOFF = 1;
  204. TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
  205. TCD.NBYTES = 1;
  206. TCD.SLAST = 0;
  207. TCD.BITER = len;
  208. TCD.CITER = len;
  209. }
  210. void sourceCircular(const signed short p[], unsigned int len) {
  211. sourceCircular((uint16_t *)p, len); }
  212. void sourceCircular(const unsigned short p[], unsigned int len) {
  213. TCD.SADDR = p;
  214. TCD.SOFF = 2;
  215. TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
  216. TCD.NBYTES = 2;
  217. TCD.SLAST = 0;
  218. TCD.BITER = len / 2;
  219. TCD.CITER = len / 2;
  220. }
  221. void sourceCircular(const signed int p[], unsigned int len) {
  222. sourceCircular((uint32_t *)p, len); }
  223. void sourceCircular(const unsigned int p[], unsigned int len) {
  224. sourceCircular((uint32_t *)p, len); }
  225. void sourceCircular(const signed long p[], unsigned int len) {
  226. sourceCircular((uint32_t *)p, len); }
  227. void sourceCircular(const unsigned long p[], unsigned int len) {
  228. TCD.SADDR = p;
  229. TCD.SOFF = 4;
  230. TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
  231. TCD.NBYTES = 4;
  232. TCD.SLAST = 0;
  233. TCD.BITER = len / 4;
  234. TCD.CITER = len / 4;
  235. }
  236. // Use a single variable as the data destination. Typically a register
  237. // for transmitting data to one of the hardware peripherals is used.
  238. void destination(signed char &p) { destination(*(uint8_t *)&p); }
  239. void destination(unsigned char &p) {
  240. TCD.DADDR = &p;
  241. TCD.DOFF = 0;
  242. TCD.ATTR_DST = 0;
  243. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 1;
  244. TCD.DLASTSGA = 0;
  245. }
  246. void destination(signed short &p) { destination(*(uint16_t *)&p); }
  247. void destination(unsigned short &p) {
  248. TCD.DADDR = &p;
  249. TCD.DOFF = 0;
  250. TCD.ATTR_DST = 1;
  251. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 2;
  252. TCD.DLASTSGA = 0;
  253. }
  254. void destination(signed int &p) { destination(*(uint32_t *)&p); }
  255. void destination(unsigned int &p) { destination(*(uint32_t *)&p); }
  256. void destination(signed long &p) { destination(*(uint32_t *)&p); }
  257. void destination(unsigned long &p) {
  258. TCD.DADDR = &p;
  259. TCD.DOFF = 0;
  260. TCD.ATTR_DST = 2;
  261. if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 4;
  262. TCD.DLASTSGA = 0;
  263. }
  264. // Use a buffer (array of data) as the data destination. Typically a
  265. // buffer for receiving data is used.
  266. void destinationBuffer(signed char p[], unsigned int len) {
  267. destinationBuffer((uint8_t *)p, len); }
  268. void destinationBuffer(unsigned char p[], unsigned int len) {
  269. TCD.DADDR = p;
  270. TCD.DOFF = 1;
  271. TCD.ATTR_DST = 0;
  272. TCD.NBYTES = 1;
  273. TCD.DLASTSGA = -len;
  274. TCD.BITER = len;
  275. TCD.CITER = len;
  276. }
  277. void destinationBuffer(signed short p[], unsigned int len) {
  278. destinationBuffer((uint16_t *)p, len); }
  279. void destinationBuffer(unsigned short p[], unsigned int len) {
  280. TCD.DADDR = p;
  281. TCD.DOFF = 2;
  282. TCD.ATTR_DST = 1;
  283. TCD.NBYTES = 2;
  284. TCD.DLASTSGA = -len;
  285. TCD.BITER = len / 2;
  286. TCD.CITER = len / 2;
  287. }
  288. void destinationBuffer(signed int p[], unsigned int len) {
  289. destinationBuffer((uint32_t *)p, len); }
  290. void destinationBuffer(unsigned int p[], unsigned int len) {
  291. destinationBuffer((uint32_t *)p, len); }
  292. void destinationBuffer(signed long p[], unsigned int len) {
  293. destinationBuffer((uint32_t *)p, len); }
  294. void destinationBuffer(unsigned long p[], unsigned int len) {
  295. TCD.DADDR = p;
  296. TCD.DOFF = 4;
  297. TCD.ATTR_DST = 1;
  298. TCD.NBYTES = 4;
  299. TCD.DLASTSGA = -len;
  300. TCD.BITER = len / 4;
  301. TCD.CITER = len / 4;
  302. }
  303. // Use a circular buffer as the data destination
  304. void destinationCircular(signed char p[], unsigned int len) {
  305. destinationCircular((uint8_t *)p, len); }
  306. void destinationCircular(unsigned char p[], unsigned int len) {
  307. TCD.DADDR = p;
  308. TCD.DOFF = 1;
  309. TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3);
  310. TCD.NBYTES = 1;
  311. TCD.DLASTSGA = 0;
  312. TCD.BITER = len;
  313. TCD.CITER = len;
  314. }
  315. void destinationCircular(signed short p[], unsigned int len) {
  316. destinationCircular((uint16_t *)p, len); }
  317. void destinationCircular(unsigned short p[], unsigned int len) {
  318. TCD.DADDR = p;
  319. TCD.DOFF = 2;
  320. TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
  321. TCD.NBYTES = 2;
  322. TCD.DLASTSGA = 0;
  323. TCD.BITER = len / 2;
  324. TCD.CITER = len / 2;
  325. }
  326. void destinationCircular(signed int p[], unsigned int len) {
  327. destinationCircular((uint32_t *)p, len); }
  328. void destinationCircular(unsigned int p[], unsigned int len) {
  329. destinationCircular((uint32_t *)p, len); }
  330. void destinationCircular(signed long p[], unsigned int len) {
  331. destinationCircular((uint32_t *)p, len); }
  332. void destinationCircular(unsigned long p[], unsigned int len) {
  333. TCD.DADDR = p;
  334. TCD.DOFF = 4;
  335. TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
  336. TCD.NBYTES = 4;
  337. TCD.DLASTSGA = 0;
  338. TCD.BITER = len / 4;
  339. TCD.CITER = len / 4;
  340. }
  341. // Set the data size used for each triggered transfer
  342. void size(unsigned int len) {
  343. if (len == 4) {
  344. TCD.NBYTES = 4;
  345. if (TCD.SOFF != 0) TCD.SOFF = 4;
  346. if (TCD.DOFF != 0) TCD.DOFF = 4;
  347. TCD.ATTR = (TCD.ATTR & 0xF8F8) | 0x0202;
  348. } else if (len == 2) {
  349. TCD.NBYTES = 2;
  350. if (TCD.SOFF != 0) TCD.SOFF = 2;
  351. if (TCD.DOFF != 0) TCD.DOFF = 2;
  352. TCD.ATTR = (TCD.ATTR & 0xF8F8) | 0x0101;
  353. } else {
  354. TCD.NBYTES = 1;
  355. if (TCD.SOFF != 0) TCD.SOFF = 1;
  356. if (TCD.DOFF != 0) TCD.DOFF = 1;
  357. TCD.ATTR = TCD.ATTR & 0xF8F8;
  358. }
  359. }
  360. // Set the number of transfers (number of triggers until complete)
  361. void count(unsigned int len) {
  362. if (len > 32767) return;
  363. if (len >= 512) {
  364. TCD.BITER = len;
  365. TCD.CITER = len;
  366. } else {
  367. TCD.BITER = (TCD.BITER & 0xFE00) | len;
  368. TCD.CITER = (TCD.CITER & 0xFE00) | len;
  369. }
  370. }
  371. /***************************************/
  372. /** Status **/
  373. /***************************************/
  374. // TODO: "get" functions, to read important stuff, like SADDR & DADDR...
  375. // error status, etc
  376. /***************************************/
  377. /** Direct Hardware Access **/
  378. /***************************************/
  379. // For complex and unusual configurations not possible with the above
  380. // functions, the Transfer Control Descriptor (TCD) and channel number
  381. // can be used directly. This leads to less portable and less readable
  382. // code, but direct control of all parameters is possible.
  383. TCD_t &TCD;
  384. uint8_t channel;
  385. /* usage cases:
  386. ************************
  387. OctoWS2811:
  388. ************************
  389. // enable clocks to the DMA controller and DMAMUX
  390. SIM_SCGC7 |= SIM_SCGC7_DMA;
  391. SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
  392. DMA_CR = 0;
  393. DMA_CERQ = 1;
  394. DMA_CERQ = 2;
  395. DMA_CERQ = 3;
  396. // DMA channel #1 sets WS2811 high at the beginning of each cycle
  397. DMA_TCD1_SADDR = &ones;
  398. DMA_TCD1_SOFF = 0;
  399. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  400. DMA_TCD1_NBYTES_MLNO = 1;
  401. DMA_TCD1_SLAST = 0;
  402. DMA_TCD1_DADDR = &GPIOD_PSOR;
  403. DMA_TCD1_DOFF = 0;
  404. DMA_TCD1_CITER_ELINKNO = bufsize;
  405. DMA_TCD1_DLASTSGA = 0;
  406. DMA_TCD1_CSR = DMA_TCD_CSR_DREQ;
  407. DMA_TCD1_BITER_ELINKNO = bufsize;
  408. dma1.source(ones);
  409. dma1.destination(GPIOD_PSOR);
  410. dma1.size(1);
  411. dma1.count(bufsize);
  412. // DMA channel #2 writes the pixel data at 20% of the cycle
  413. DMA_TCD2_SADDR = frameBuffer;
  414. DMA_TCD2_SOFF = 1;
  415. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  416. DMA_TCD2_NBYTES_MLNO = 1;
  417. DMA_TCD2_SLAST = -bufsize;
  418. DMA_TCD2_DADDR = &GPIOD_PDOR;
  419. DMA_TCD2_DOFF = 0;
  420. DMA_TCD2_CITER_ELINKNO = bufsize;
  421. DMA_TCD2_DLASTSGA = 0;
  422. DMA_TCD2_CSR = DMA_TCD_CSR_DREQ;
  423. DMA_TCD2_BITER_ELINKNO = bufsize;
  424. dma2.source(frameBuffer, sizeof(frameBuffer));
  425. dma2.destination(GPIOD_PDOR);
  426. // DMA channel #3 clear all the pins low at 48% of the cycle
  427. DMA_TCD3_SADDR = &ones;
  428. DMA_TCD3_SOFF = 0;
  429. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  430. DMA_TCD3_NBYTES_MLNO = 1;
  431. DMA_TCD3_SLAST = 0;
  432. DMA_TCD3_DADDR = &GPIOD_PCOR;
  433. DMA_TCD3_DOFF = 0;
  434. DMA_TCD3_CITER_ELINKNO = bufsize;
  435. DMA_TCD3_DLASTSGA = 0;
  436. DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR;
  437. DMA_TCD3_BITER_ELINKNO = bufsize;
  438. ************************
  439. Audio, DAC
  440. ************************
  441. DMA_CR = 0;
  442. DMA_TCD4_SADDR = dac_buffer;
  443. DMA_TCD4_SOFF = 2;
  444. DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  445. DMA_TCD4_NBYTES_MLNO = 2;
  446. DMA_TCD4_SLAST = -sizeof(dac_buffer);
  447. DMA_TCD4_DADDR = &DAC0_DAT0L;
  448. DMA_TCD4_DOFF = 0;
  449. DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2;
  450. DMA_TCD4_DLASTSGA = 0;
  451. DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2;
  452. DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  453. DMAMUX0_CHCFG4 = DMAMUX_DISABLE;
  454. DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE;
  455. ************************
  456. Audio, I2S
  457. ************************
  458. DMA_CR = 0;
  459. DMA_TCD0_SADDR = i2s_tx_buffer;
  460. DMA_TCD0_SOFF = 2;
  461. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  462. DMA_TCD0_NBYTES_MLNO = 2;
  463. DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer);
  464. DMA_TCD0_DADDR = &I2S0_TDR0;
  465. DMA_TCD0_DOFF = 0;
  466. DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  467. DMA_TCD0_DLASTSGA = 0;
  468. DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  469. DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  470. DMAMUX0_CHCFG0 = DMAMUX_DISABLE;
  471. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE;
  472. ************************
  473. ADC lib, Pedro Villanueva
  474. ************************
  475. DMA_CR = 0; // normal mode of operation
  476. *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing
  477. *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  478. DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  479. DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values
  480. *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop)
  481. *DMA_TCD_SADDR = ADC_RA; // source address
  482. *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes
  483. *DMA_TCD_SLAST = 0; // don't change src address after major loop completes
  484. *DMA_TCD_DADDR = elems; // destination address
  485. *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop
  486. *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element
  487. *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled
  488. *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled
  489. *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete
  490. DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request
  491. DMA_CINT = DMA_channel; // clear interrupts
  492. uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0;
  493. if(ADC_number==1){
  494. DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1;
  495. }
  496. *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0
  497. DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request
  498. NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts
  499. ************************
  500. SmartMatrix
  501. ************************
  502. // enable minor loop mapping so addresses can get reset after minor loops
  503. DMA_CR = 1 << 7;
  504. // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO
  505. // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins
  506. // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2)
  507. // only use single major loop, never disable channel
  508. #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2
  509. DMA_TCD0_SADDR = &gpiosync.gpio_pcor;
  510. DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  511. DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  512. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  513. // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete
  514. // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop
  515. DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE |
  516. ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) |
  517. (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor));
  518. // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset)
  519. DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER;
  520. // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER
  521. DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER;
  522. DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  523. // single major loop
  524. DMA_TCD0_CITER_ELINKNO = 1;
  525. DMA_TCD0_BITER_ELINKNO = 1;
  526. // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete
  527. DMA_TCD0_CSR = (1 << 8) | (1 << 5);
  528. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE;
  529. // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle
  530. // only use single major loop, never disable channel
  531. DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues;
  532. DMA_TCD1_SOFF = sizeof(uint16_t);
  533. DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  534. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  535. // 16-bit = 2 bytes transferred
  536. // transfer two 16-bit values, reset destination address back after each minor loop
  537. DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  538. // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset)
  539. DMA_TCD1_DADDR = &gpiosync.gpio_pcor;
  540. DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  541. DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor));
  542. // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete
  543. DMA_TCD1_CITER_ELINKNO = 1;
  544. DMA_TCD1_BITER_ELINKNO = 1;
  545. DMA_TCD1_CSR = 0;
  546. // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block
  547. // only use single major loop, never disable channel
  548. // link to channel 3 when complete
  549. #define TIMER_REGISTERS_TO_UPDATE 2
  550. DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe;
  551. DMA_TCD2_SOFF = sizeof(uint16_t);
  552. DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  553. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  554. // 16-bit = 2 bytes transferred
  555. DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t);
  556. DMA_TCD2_DADDR = &FTM1_C1V;
  557. DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V;
  558. DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD);
  559. // no minor loop linking, single major loop
  560. DMA_TCD2_CITER_ELINKNO = 1;
  561. DMA_TCD2_BITER_ELINKNO = 1;
  562. // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete
  563. DMA_TCD2_CSR = (3 << 8) | (1 << 5);
  564. DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE;
  565. #define DMA_TCD_MLOFF_MASK (0x3FFFFC00)
  566. // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete
  567. DMA_TCD3_SADDR = matrixUpdateData[0][0];
  568. DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2;
  569. // SADDR will get updated by ISR, no need to set SLAST
  570. DMA_TCD3_SLAST = 0;
  571. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  572. // after each minor loop, set source to point back to the beginning of this set of data,
  573. // but advance by 1 byte to get the next significant bits data
  574. DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE |
  575. (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) |
  576. (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK);
  577. DMA_TCD3_DADDR = &GPIOD_PDOR;
  578. DMA_TCD3_DOFF = 0;
  579. DMA_TCD3_DLASTSGA = 0;
  580. DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW;
  581. DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW;
  582. // int after major loop is complete
  583. DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR;
  584. // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer)
  585. //DMA_TCD3_CSR |= (0x02 << 14);
  586. // enable a done interrupt when all DMA operations are complete
  587. NVIC_ENABLE_IRQ(IRQ_DMA_CH3);
  588. // enable additional dma interrupt used as software interrupt
  589. NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority
  590. NVIC_ENABLE_IRQ(IRQ_DMA_CH1);
  591. // enable channels 0, 1, 2, 3
  592. DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
  593. // at the end after everything is set up: enable timer from system clock, with appropriate prescale
  594. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE);
  595. */
  596. };
  597. extern "C" {
  598. #endif
  599. extern uint16_t dma_channel_allocated_mask;
  600. #ifdef __cplusplus
  601. }
  602. #endif
  603. #endif