|
- /* Teensyduino Core Library
- * http://www.pjrc.com/teensy/
- * Copyright (c) 2017 PJRC.COM, LLC.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * 1. The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * 2. If the Software is incorporated into a build system that allows
- * selection among a list of target devices, then similar target
- * devices manufactured by PJRC.COM must be included in the list of
- * target devices and selectable in the same manner.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
- #include "kinetis.h"
- #include "core_pins.h"
- #include "HardwareSerial.h"
-
- ////////////////////////////////////////////////////////////////
- // Tunable parameters (relatively safe to edit these numbers)
- ////////////////////////////////////////////////////////////////
-
- #ifndef SERIAL2_TX_BUFFER_SIZE
- #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
- #endif
- #ifndef SERIAL2_RX_BUFFER_SIZE
- #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
- #endif
- #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
- #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
- #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
-
- ////////////////////////////////////////////////////////////////
- // changes not recommended below this point....
- ////////////////////////////////////////////////////////////////
-
- #ifdef SERIAL_9BIT_SUPPORT
- static uint8_t use9Bits = 0;
- #define BUFTYPE uint16_t
- #else
- #define BUFTYPE uint8_t
- #define use9Bits 0
- #endif
-
- static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
- static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
- static volatile uint8_t transmitting = 0;
- #if defined(KINETISK)
- static volatile uint8_t *transmit_pin=NULL;
- #define transmit_assert() *transmit_pin = 1
- #define transmit_deassert() *transmit_pin = 0
- static volatile uint8_t *rts_pin=NULL;
- #define rts_assert() *rts_pin = 0
- #define rts_deassert() *rts_pin = 1
- #elif defined(KINETISL)
- static volatile uint8_t *transmit_pin=NULL;
- static uint8_t transmit_mask=0;
- #define transmit_assert() *(transmit_pin+4) = transmit_mask;
- #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
- static volatile uint8_t *rts_pin=NULL;
- static uint8_t rts_mask=0;
- #define rts_assert() *(rts_pin+8) = rts_mask;
- #define rts_deassert() *(rts_pin+4) = rts_mask;
- #endif
- #if SERIAL2_TX_BUFFER_SIZE > 255
- static volatile uint16_t tx_buffer_head = 0;
- static volatile uint16_t tx_buffer_tail = 0;
- #else
- static volatile uint8_t tx_buffer_head = 0;
- static volatile uint8_t tx_buffer_tail = 0;
- #endif
- #if SERIAL2_RX_BUFFER_SIZE > 255
- static volatile uint16_t rx_buffer_head = 0;
- static volatile uint16_t rx_buffer_tail = 0;
- #else
- static volatile uint8_t rx_buffer_head = 0;
- static volatile uint8_t rx_buffer_tail = 0;
- #endif
- #if defined(KINETISK)
- static uint8_t rx_pin_num = 9;
- static uint8_t tx_pin_num = 10;
- #endif
-
- // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
- // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
-
- #ifdef HAS_KINETISK_UART1_FIFO
- #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
- #else
- #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
- #endif
- #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
- #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
- #define C2_TX_INACTIVE C2_ENABLE
-
- void serial2_begin(uint32_t divisor)
- {
- SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
- rx_buffer_head = 0;
- rx_buffer_tail = 0;
- tx_buffer_head = 0;
- tx_buffer_tail = 0;
- transmitting = 0;
- #if defined(KINETISK)
- switch (rx_pin_num) {
- case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
- case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #endif
- }
- switch (tx_pin_num) {
- case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
- case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
- #endif
- }
- #elif defined(KINETISL)
- CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
- CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
- #endif
- #if defined(HAS_KINETISK_UART1)
- if (divisor < 32) divisor = 32;
- UART1_BDH = (divisor >> 13) & 0x1F;
- UART1_BDL = (divisor >> 5) & 0xFF;
- UART1_C4 = divisor & 0x1F;
- #ifdef HAS_KINETISK_UART1_FIFO
- UART1_C1 = UART_C1_ILT;
- UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
- UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
- UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
- #else
- UART1_C1 = 0;
- UART1_PFIFO = 0;
- #endif
- #elif defined(HAS_KINETISL_UART1)
- if (divisor < 1) divisor = 1;
- UART1_BDH = (divisor >> 8) & 0x1F;
- UART1_BDL = divisor & 0xFF;
- UART1_C1 = 0;
- #endif
- UART1_C2 = C2_TX_INACTIVE;
- NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
- NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
- }
-
- void serial2_format(uint32_t format)
- {
- uint8_t c;
-
- c = UART1_C1;
- c = (c & ~0x13) | (format & 0x03); // configure parity
- if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
- UART1_C1 = c;
- if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
- c = UART1_S2 & ~0x10;
- if (format & 0x10) c |= 0x10; // rx invert
- UART1_S2 = c;
- c = UART1_C3 & ~0x10;
- if (format & 0x20) c |= 0x10; // tx invert
- UART1_C3 = c;
- #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
- c = UART1_C4 & 0x1F;
- if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
- UART1_C4 = c;
- use9Bits = format & 0x80;
- #endif
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
- // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
- if ( format & 0x100) {
- uint8_t bdl = UART1_BDL;
- UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
- UART1_BDL = bdl; // Says BDH not acted on until BDL is written
- }
- #endif
- }
-
- void serial2_end(void)
- {
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
- while (transmitting) yield(); // wait for buffered data to send
- NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
- UART1_C2 = 0;
- #if defined(KINETISK)
- switch (rx_pin_num) {
- case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 59: CORE_PIN59_CONFIG = 0; break;
- #endif
- }
- switch (tx_pin_num & 127) {
- case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 58: CORE_PIN58_CONFIG = 0; break;
- #endif
- }
- #elif defined(KINETISL)
- CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
- CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
- #endif
- UART1_S1;
- UART1_D; // clear leftover error status
- rx_buffer_head = 0;
- rx_buffer_tail = 0;
- if (rts_pin) rts_deassert();
- }
-
- void serial2_set_transmit_pin(uint8_t pin)
- {
- while (transmitting) ;
- pinMode(pin, OUTPUT);
- digitalWrite(pin, LOW);
- transmit_pin = portOutputRegister(pin);
- #if defined(KINETISL)
- transmit_mask = digitalPinToBitMask(pin);
- #endif
- }
-
- void serial2_set_tx(uint8_t pin, uint8_t opendrain)
- {
- #if defined(KINETISK)
- uint32_t cfg;
-
- if (opendrain) pin |= 128;
- if (pin == tx_pin_num) return;
- if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
- switch (tx_pin_num & 127) {
- case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 58: CORE_PIN58_CONFIG = 0; break;
- #endif
- }
- if (opendrain) {
- cfg = PORT_PCR_DSE | PORT_PCR_ODE;
- } else {
- cfg = PORT_PCR_DSE | PORT_PCR_SRE;
- }
- switch (pin & 127) {
- case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
- #endif
- }
- }
- tx_pin_num = pin;
- #endif
- }
-
- void serial2_set_rx(uint8_t pin)
- {
- #if defined(KINETISK)
- if (pin == rx_pin_num) return;
- if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
- switch (rx_pin_num) {
- case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 59: CORE_PIN59_CONFIG = 0; break;
- #endif
- }
- switch (pin) {
- case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
- case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
- case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
- #endif
- }
- }
- rx_pin_num = pin;
- #endif
- }
-
- int serial2_set_rts(uint8_t pin)
- {
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
- if (pin < CORE_NUM_DIGITAL) {
- rts_pin = portOutputRegister(pin);
- #if defined(KINETISL)
- rts_mask = digitalPinToBitMask(pin);
- #endif
- pinMode(pin, OUTPUT);
- rts_assert();
- } else {
- rts_pin = NULL;
- return 0;
- }
- /*
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
- if (pin == 22) {
- CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
- } else {
- UART1_MODEM &= ~UART_MODEM_RXRTSE;
- return 0;
- }
- UART1_MODEM |= UART_MODEM_RXRTSE;
- */
- return 1;
- }
-
- int serial2_set_cts(uint8_t pin)
- {
- #if defined(KINETISK)
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
- if (pin == 23) {
- CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
- } else if (pin == 60) {
- CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
- #endif
- } else {
- UART1_MODEM &= ~UART_MODEM_TXCTSE;
- return 0;
- }
- UART1_MODEM |= UART_MODEM_TXCTSE;
- return 1;
- #else
- return 0;
- #endif
- }
-
- void serial2_putchar(uint32_t c)
- {
- uint32_t head, n;
-
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
- if (transmit_pin) transmit_assert();
- head = tx_buffer_head;
- if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
- while (tx_buffer_tail == head) {
- int priority = nvic_execution_priority();
- if (priority <= IRQ_PRIORITY) {
- if ((UART1_S1 & UART_S1_TDRE)) {
- uint32_t tail = tx_buffer_tail;
- if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
- n = tx_buffer[tail];
- if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
- UART1_D = n;
- tx_buffer_tail = tail;
- }
- } else if (priority >= 256) {
- yield(); // wait
- }
- }
- tx_buffer[head] = c;
- transmitting = 1;
- tx_buffer_head = head;
- UART1_C2 = C2_TX_ACTIVE;
- }
-
- #ifdef HAS_KINETISK_UART1_FIFO
- void serial2_write(const void *buf, unsigned int count)
- {
- const uint8_t *p = (const uint8_t *)buf;
- const uint8_t *end = p + count;
- uint32_t head, n;
-
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
- if (transmit_pin) transmit_assert();
- while (p < end) {
- head = tx_buffer_head;
- if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
- if (tx_buffer_tail == head) {
- UART1_C2 = C2_TX_ACTIVE;
- do {
- int priority = nvic_execution_priority();
- if (priority <= IRQ_PRIORITY) {
- if ((UART1_S1 & UART_S1_TDRE)) {
- uint32_t tail = tx_buffer_tail;
- if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
- n = tx_buffer[tail];
- if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
- UART1_D = n;
- tx_buffer_tail = tail;
- }
- } else if (priority >= 256) {
- yield();
- }
- } while (tx_buffer_tail == head);
- }
- tx_buffer[head] = *p++;
- transmitting = 1;
- tx_buffer_head = head;
- }
- UART1_C2 = C2_TX_ACTIVE;
- }
- #else
- void serial2_write(const void *buf, unsigned int count)
- {
- const uint8_t *p = (const uint8_t *)buf;
- while (count-- > 0) serial2_putchar(*p++);
- }
- #endif
-
- void serial2_flush(void)
- {
- while (transmitting) yield(); // wait
- }
-
- int serial2_write_buffer_free(void)
- {
- uint32_t head, tail;
-
- head = tx_buffer_head;
- tail = tx_buffer_tail;
- if (head >= tail) return SERIAL2_TX_BUFFER_SIZE - 1 - head + tail;
- return tail - head - 1;
- }
-
- int serial2_available(void)
- {
- uint32_t head, tail;
-
- head = rx_buffer_head;
- tail = rx_buffer_tail;
- if (head >= tail) return head - tail;
- return SERIAL2_RX_BUFFER_SIZE + head - tail;
- }
-
- int serial2_getchar(void)
- {
- uint32_t head, tail;
- int c;
-
- head = rx_buffer_head;
- tail = rx_buffer_tail;
- if (head == tail) return -1;
- if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
- c = rx_buffer[tail];
- rx_buffer_tail = tail;
- if (rts_pin) {
- int avail;
- if (head >= tail) avail = head - tail;
- else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
- if (avail <= RTS_LOW_WATERMARK) rts_assert();
- }
- return c;
- }
-
- int serial2_peek(void)
- {
- uint32_t head, tail;
-
- head = rx_buffer_head;
- tail = rx_buffer_tail;
- if (head == tail) return -1;
- if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
- return rx_buffer[tail];
- }
-
- void serial2_clear(void)
- {
- #ifdef HAS_KINETISK_UART1_FIFO
- if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
- UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
- UART1_CFIFO = UART_CFIFO_RXFLUSH;
- UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
- #endif
- rx_buffer_head = rx_buffer_tail;
- if (rts_pin) rts_assert();
- }
-
- // status interrupt combines
- // Transmit data below watermark UART_S1_TDRE
- // Transmit complete UART_S1_TC
- // Idle line UART_S1_IDLE
- // Receive data above watermark UART_S1_RDRF
- // LIN break detect UART_S2_LBKDIF
- // RxD pin active edge UART_S2_RXEDGIF
-
- void uart1_status_isr(void)
- {
- uint32_t head, tail, n;
- uint8_t c;
- #ifdef HAS_KINETISK_UART1_FIFO
- uint32_t newhead;
- uint8_t avail;
-
- if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
- __disable_irq();
- avail = UART1_RCFIFO;
- if (avail == 0) {
- // The only way to clear the IDLE interrupt flag is
- // to read the data register. But reading with no
- // data causes a FIFO underrun, which causes the
- // FIFO to return corrupted data. If anyone from
- // Freescale reads this, what a poor design! There
- // write should be a write-1-to-clear for IDLE.
- c = UART1_D;
- // flushing the fifo recovers from the underrun,
- // but there's a possible race condition where a
- // new character could be received between reading
- // RCFIFO == 0 and flushing the FIFO. To minimize
- // the chance, interrupts are disabled so a higher
- // priority interrupt (hopefully) doesn't delay.
- // TODO: change this to disabling the IDLE interrupt
- // which won't be simple, since we already manage
- // which transmit interrupts are enabled.
- UART1_CFIFO = UART_CFIFO_RXFLUSH;
- __enable_irq();
- } else {
- __enable_irq();
- head = rx_buffer_head;
- tail = rx_buffer_tail;
- do {
- if (use9Bits && (UART1_C3 & 0x80)) {
- n = UART1_D | 0x100;
- } else {
- n = UART1_D;
- }
- newhead = head + 1;
- if (newhead >= SERIAL2_RX_BUFFER_SIZE) newhead = 0;
- if (newhead != tail) {
- head = newhead;
- rx_buffer[head] = n;
- }
- } while (--avail > 0);
- rx_buffer_head = head;
- if (rts_pin) {
- int avail;
- if (head >= tail) avail = head - tail;
- else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
- if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
- }
- }
- }
- c = UART1_C2;
- if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
- head = tx_buffer_head;
- tail = tx_buffer_tail;
- do {
- if (tail == head) break;
- if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
- avail = UART1_S1;
- n = tx_buffer[tail];
- if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
- UART1_D = n;
- } while (UART1_TCFIFO < 8);
- tx_buffer_tail = tail;
- if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
- }
- #else
- if (UART1_S1 & UART_S1_RDRF) {
- if (use9Bits && (UART1_C3 & 0x80)) {
- n = UART1_D | 0x100;
- } else {
- n = UART1_D;
- }
- head = rx_buffer_head + 1;
- if (head >= SERIAL2_RX_BUFFER_SIZE) head = 0;
- if (head != rx_buffer_tail) {
- rx_buffer[head] = n;
- rx_buffer_head = head;
- }
- }
- c = UART1_C2;
- if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
- head = tx_buffer_head;
- tail = tx_buffer_tail;
- if (head == tail) {
- UART1_C2 = C2_TX_COMPLETING;
- } else {
- if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
- n = tx_buffer[tail];
- if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
- UART1_D = n;
- tx_buffer_tail = tail;
- }
- }
- #endif
- if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
- transmitting = 0;
- if (transmit_pin) transmit_deassert();
- UART1_C2 = C2_TX_INACTIVE;
- }
- }
-
|