Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

1153 lines
30KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2016 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. *
  30. * Trying to understand this rather complex code?
  31. *
  32. * Kevin Cuzner wrote a simpler version, and a great blog article:
  33. * http://kevincuzner.com/2014/12/12/teensy-3-1-bare-metal-writing-a-usb-driver/
  34. * https://github.com/kcuzner/teensy-oscilloscope/blob/master/scope-teensy/src/usb.c
  35. *
  36. * Andy Payne wrote another relatively simple USB example for Freescale Kinetis
  37. * https://github.com/payne92/bare-metal-arm
  38. */
  39. #include "usb_dev.h"
  40. #if F_CPU >= 20000000 && defined(NUM_ENDPOINTS)
  41. #include "kinetis.h"
  42. //#include "HardwareSerial.h"
  43. #include "usb_mem.h"
  44. // buffer descriptor table
  45. typedef struct {
  46. uint32_t desc;
  47. void * addr;
  48. } bdt_t;
  49. __attribute__ ((section(".usbdescriptortable"), used))
  50. static bdt_t table[(NUM_ENDPOINTS+1)*4];
  51. static usb_packet_t *rx_first[NUM_ENDPOINTS];
  52. static usb_packet_t *rx_last[NUM_ENDPOINTS];
  53. static usb_packet_t *tx_first[NUM_ENDPOINTS];
  54. static usb_packet_t *tx_last[NUM_ENDPOINTS];
  55. uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
  56. static uint8_t tx_state[NUM_ENDPOINTS];
  57. #define TX_STATE_BOTH_FREE_EVEN_FIRST 0
  58. #define TX_STATE_BOTH_FREE_ODD_FIRST 1
  59. #define TX_STATE_EVEN_FREE 2
  60. #define TX_STATE_ODD_FREE 3
  61. #define TX_STATE_NONE_FREE_EVEN_FIRST 4
  62. #define TX_STATE_NONE_FREE_ODD_FIRST 5
  63. #define BDT_OWN 0x80
  64. #define BDT_DATA1 0x40
  65. #define BDT_DATA0 0x00
  66. #define BDT_DTS 0x08
  67. #define BDT_STALL 0x04
  68. #define BDT_PID(n) (((n) >> 2) & 15)
  69. #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
  70. | ((data) ? BDT_DATA1 : BDT_DATA0) \
  71. | ((count) << 16))
  72. #define TX 1
  73. #define RX 0
  74. #define ODD 1
  75. #define EVEN 0
  76. #define DATA0 0
  77. #define DATA1 1
  78. #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  79. #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  80. static union {
  81. struct {
  82. union {
  83. struct {
  84. uint8_t bmRequestType;
  85. uint8_t bRequest;
  86. };
  87. uint16_t wRequestAndType;
  88. };
  89. uint16_t wValue;
  90. uint16_t wIndex;
  91. uint16_t wLength;
  92. };
  93. struct {
  94. uint32_t word1;
  95. uint32_t word2;
  96. };
  97. } setup;
  98. #define GET_STATUS 0
  99. #define CLEAR_FEATURE 1
  100. #define SET_FEATURE 3
  101. #define SET_ADDRESS 5
  102. #define GET_DESCRIPTOR 6
  103. #define SET_DESCRIPTOR 7
  104. #define GET_CONFIGURATION 8
  105. #define SET_CONFIGURATION 9
  106. #define GET_INTERFACE 10
  107. #define SET_INTERFACE 11
  108. #define SYNCH_FRAME 12
  109. // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
  110. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
  111. // Status stage uses a DATA1 PID.
  112. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  113. static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  114. static const uint8_t *ep0_tx_ptr = NULL;
  115. static uint16_t ep0_tx_len;
  116. static uint8_t ep0_tx_bdt_bank = 0;
  117. static uint8_t ep0_tx_data_toggle = 0;
  118. uint8_t usb_rx_memory_needed = 0;
  119. volatile uint8_t usb_configuration = 0;
  120. volatile uint8_t usb_reboot_timer = 0;
  121. static void endpoint0_stall(void)
  122. {
  123. USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  124. }
  125. static void endpoint0_transmit(const void *data, uint32_t len)
  126. {
  127. #if 0
  128. serial_print("tx0:");
  129. serial_phex32((uint32_t)data);
  130. serial_print(",");
  131. serial_phex16(len);
  132. serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
  133. serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
  134. #endif
  135. table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
  136. table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
  137. ep0_tx_data_toggle ^= 1;
  138. ep0_tx_bdt_bank ^= 1;
  139. }
  140. static uint8_t reply_buffer[8];
  141. static void usb_setup(void)
  142. {
  143. const uint8_t *data = NULL;
  144. uint32_t datalen = 0;
  145. const usb_descriptor_list_t *list;
  146. uint32_t size;
  147. volatile uint8_t *reg;
  148. uint8_t epconf;
  149. const uint8_t *cfg;
  150. int i;
  151. switch (setup.wRequestAndType) {
  152. case 0x0500: // SET_ADDRESS
  153. break;
  154. case 0x0900: // SET_CONFIGURATION
  155. //serial_print("configure\n");
  156. usb_configuration = setup.wValue;
  157. reg = &USB0_ENDPT1;
  158. cfg = usb_endpoint_config_table;
  159. // clear all BDT entries, free any allocated memory...
  160. for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
  161. if (table[i].desc & BDT_OWN) {
  162. usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
  163. }
  164. }
  165. // free all queued packets
  166. for (i=0; i < NUM_ENDPOINTS; i++) {
  167. usb_packet_t *p, *n;
  168. p = rx_first[i];
  169. while (p) {
  170. n = p->next;
  171. usb_free(p);
  172. p = n;
  173. }
  174. rx_first[i] = NULL;
  175. rx_last[i] = NULL;
  176. p = tx_first[i];
  177. while (p) {
  178. n = p->next;
  179. usb_free(p);
  180. p = n;
  181. }
  182. tx_first[i] = NULL;
  183. tx_last[i] = NULL;
  184. usb_rx_byte_count_data[i] = 0;
  185. switch (tx_state[i]) {
  186. case TX_STATE_EVEN_FREE:
  187. case TX_STATE_NONE_FREE_EVEN_FIRST:
  188. tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  189. break;
  190. case TX_STATE_ODD_FREE:
  191. case TX_STATE_NONE_FREE_ODD_FIRST:
  192. tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
  193. break;
  194. default:
  195. break;
  196. }
  197. }
  198. usb_rx_memory_needed = 0;
  199. for (i=1; i <= NUM_ENDPOINTS; i++) {
  200. epconf = *cfg++;
  201. *reg = epconf;
  202. reg += 4;
  203. #ifdef AUDIO_INTERFACE
  204. if (i == AUDIO_RX_ENDPOINT) {
  205. table[index(i, RX, EVEN)].addr = usb_audio_receive_buffer;
  206. table[index(i, RX, EVEN)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  207. table[index(i, RX, ODD)].addr = usb_audio_receive_buffer;
  208. table[index(i, RX, ODD)].desc = (AUDIO_RX_SIZE<<16) | BDT_OWN;
  209. } else
  210. #endif
  211. if (epconf & USB_ENDPT_EPRXEN) {
  212. usb_packet_t *p;
  213. p = usb_malloc();
  214. if (p) {
  215. table[index(i, RX, EVEN)].addr = p->buf;
  216. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  217. } else {
  218. table[index(i, RX, EVEN)].desc = 0;
  219. usb_rx_memory_needed++;
  220. }
  221. p = usb_malloc();
  222. if (p) {
  223. table[index(i, RX, ODD)].addr = p->buf;
  224. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  225. } else {
  226. table[index(i, RX, ODD)].desc = 0;
  227. usb_rx_memory_needed++;
  228. }
  229. }
  230. table[index(i, TX, EVEN)].desc = 0;
  231. table[index(i, TX, ODD)].desc = 0;
  232. #ifdef AUDIO_INTERFACE
  233. if (i == AUDIO_SYNC_ENDPOINT) {
  234. table[index(i, TX, EVEN)].addr = &usb_audio_sync_feedback;
  235. table[index(i, TX, EVEN)].desc = (3<<16) | BDT_OWN;
  236. }
  237. #endif
  238. }
  239. break;
  240. case 0x0880: // GET_CONFIGURATION
  241. reply_buffer[0] = usb_configuration;
  242. datalen = 1;
  243. data = reply_buffer;
  244. break;
  245. case 0x0080: // GET_STATUS (device)
  246. reply_buffer[0] = 0;
  247. reply_buffer[1] = 0;
  248. datalen = 2;
  249. data = reply_buffer;
  250. break;
  251. case 0x0082: // GET_STATUS (endpoint)
  252. if (setup.wIndex > NUM_ENDPOINTS) {
  253. // TODO: do we need to handle IN vs OUT here?
  254. endpoint0_stall();
  255. return;
  256. }
  257. reply_buffer[0] = 0;
  258. reply_buffer[1] = 0;
  259. if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
  260. data = reply_buffer;
  261. datalen = 2;
  262. break;
  263. case 0x0102: // CLEAR_FEATURE (endpoint)
  264. i = setup.wIndex & 0x7F;
  265. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  266. // TODO: do we need to handle IN vs OUT here?
  267. endpoint0_stall();
  268. return;
  269. }
  270. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) &= ~0x02;
  271. // TODO: do we need to clear the data toggle here?
  272. break;
  273. case 0x0302: // SET_FEATURE (endpoint)
  274. i = setup.wIndex & 0x7F;
  275. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  276. // TODO: do we need to handle IN vs OUT here?
  277. endpoint0_stall();
  278. return;
  279. }
  280. (*(uint8_t *)(&USB0_ENDPT0 + i * 4)) |= 0x02;
  281. // TODO: do we need to clear the data toggle here?
  282. break;
  283. case 0x0680: // GET_DESCRIPTOR
  284. case 0x0681:
  285. //serial_print("desc:");
  286. //serial_phex16(setup.wValue);
  287. //serial_print("\n");
  288. for (list = usb_descriptor_list; 1; list++) {
  289. if (list->addr == NULL) break;
  290. //if (setup.wValue == list->wValue &&
  291. //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
  292. if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
  293. data = list->addr;
  294. if ((setup.wValue >> 8) == 3) {
  295. // for string descriptors, use the descriptor's
  296. // length field, allowing runtime configured
  297. // length.
  298. datalen = *(list->addr);
  299. } else {
  300. datalen = list->length;
  301. }
  302. #if 0
  303. serial_print("Desc found, ");
  304. serial_phex32((uint32_t)data);
  305. serial_print(",");
  306. serial_phex16(datalen);
  307. serial_print(",");
  308. serial_phex(data[0]);
  309. serial_phex(data[1]);
  310. serial_phex(data[2]);
  311. serial_phex(data[3]);
  312. serial_phex(data[4]);
  313. serial_phex(data[5]);
  314. serial_print("\n");
  315. #endif
  316. goto send;
  317. }
  318. }
  319. //serial_print("desc: not found\n");
  320. endpoint0_stall();
  321. return;
  322. #if defined(CDC_STATUS_INTERFACE)
  323. case 0x2221: // CDC_SET_CONTROL_LINE_STATE
  324. usb_cdc_line_rtsdtr_millis = systick_millis_count;
  325. usb_cdc_line_rtsdtr = setup.wValue;
  326. //serial_print("set control line state\n");
  327. break;
  328. case 0x2321: // CDC_SEND_BREAK
  329. break;
  330. case 0x2021: // CDC_SET_LINE_CODING
  331. //serial_print("set coding, waiting...\n");
  332. return;
  333. #endif
  334. #if defined(MTP_INTERFACE)
  335. case 0x2164: // Cancel Request (PTP spec, 5.2.1, page 8)
  336. // TODO: required by PTP spec
  337. endpoint0_stall();
  338. return;
  339. case 0x2166: // Device Reset (PTP spec, 5.2.3, page 10)
  340. // TODO: required by PTP spec
  341. endpoint0_stall();
  342. return;
  343. case 0x2167: // Get Device Statis (PTP spec, 5.2.4, page 10)
  344. // TODO: required by PTP spec
  345. endpoint0_stall();
  346. return;
  347. #endif
  348. // TODO: this does not work... why?
  349. #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
  350. case 0x0921: // HID SET_REPORT
  351. //serial_print(":)\n");
  352. return;
  353. case 0x0A21: // HID SET_IDLE
  354. break;
  355. // case 0xC940:
  356. #endif
  357. #if defined(AUDIO_INTERFACE)
  358. case 0x0B01: // SET_INTERFACE (alternate setting)
  359. if (setup.wIndex == AUDIO_INTERFACE+1) {
  360. usb_audio_transmit_setting = setup.wValue;
  361. if (usb_audio_transmit_setting > 0) {
  362. bdt_t *b = &table[index(AUDIO_TX_ENDPOINT, TX, EVEN)];
  363. uint8_t state = tx_state[AUDIO_TX_ENDPOINT-1];
  364. if (state) b++;
  365. if (!(b->desc & BDT_OWN)) {
  366. memset(usb_audio_transmit_buffer, 0, 176);
  367. b->addr = usb_audio_transmit_buffer;
  368. b->desc = (176 << 16) | BDT_OWN;
  369. tx_state[AUDIO_TX_ENDPOINT-1] = state ^ 1;
  370. }
  371. }
  372. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  373. usb_audio_receive_setting = setup.wValue;
  374. } else {
  375. endpoint0_stall();
  376. return;
  377. }
  378. break;
  379. case 0x0A81: // GET_INTERFACE (alternate setting)
  380. datalen = 1;
  381. data = reply_buffer;
  382. if (setup.wIndex == AUDIO_INTERFACE+1) {
  383. reply_buffer[0] = usb_audio_transmit_setting;
  384. } else if (setup.wIndex == AUDIO_INTERFACE+2) {
  385. reply_buffer[0] = usb_audio_receive_setting;
  386. } else {
  387. endpoint0_stall();
  388. return;
  389. }
  390. break;
  391. case 0x0121: // SET FEATURE
  392. case 0x0221:
  393. case 0x0321:
  394. case 0x0421:
  395. // handle these on the next packet. See usb_audio_set_feature()
  396. return;
  397. case 0x81A1: // GET FEATURE
  398. case 0x82A1:
  399. case 0x83A1:
  400. case 0x84A1:
  401. if (usb_audio_get_feature(&setup, reply_buffer, &datalen)) {
  402. data = reply_buffer;
  403. }
  404. else {
  405. endpoint0_stall();
  406. return;
  407. }
  408. break;
  409. case 0x81A2: // GET_CUR (wValue=0, wIndex=interface, wLength=len)
  410. if (setup.wLength >= 3) {
  411. reply_buffer[0] = 44100 & 255;
  412. reply_buffer[1] = 44100 >> 8;
  413. reply_buffer[2] = 0;
  414. datalen = 3;
  415. data = reply_buffer;
  416. } else {
  417. endpoint0_stall();
  418. return;
  419. }
  420. break;
  421. #endif
  422. #if defined(MULTITOUCH_INTERFACE)
  423. case 0x01A1:
  424. if (setup.wValue == 0x0300 && setup.wIndex == MULTITOUCH_INTERFACE) {
  425. reply_buffer[0] = MULTITOUCH_FINGERS;
  426. data = reply_buffer;
  427. datalen = 1;
  428. } else {
  429. endpoint0_stall();
  430. return;
  431. }
  432. break;
  433. #endif
  434. default:
  435. endpoint0_stall();
  436. return;
  437. }
  438. send:
  439. //serial_print("setup send ");
  440. //serial_phex32(data);
  441. //serial_print(",");
  442. //serial_phex16(datalen);
  443. //serial_print("\n");
  444. if (datalen > setup.wLength) datalen = setup.wLength;
  445. size = datalen;
  446. if (size > EP0_SIZE) size = EP0_SIZE;
  447. endpoint0_transmit(data, size);
  448. data += size;
  449. datalen -= size;
  450. if (datalen == 0 && size < EP0_SIZE) return;
  451. size = datalen;
  452. if (size > EP0_SIZE) size = EP0_SIZE;
  453. endpoint0_transmit(data, size);
  454. data += size;
  455. datalen -= size;
  456. if (datalen == 0 && size < EP0_SIZE) return;
  457. ep0_tx_ptr = data;
  458. ep0_tx_len = datalen;
  459. }
  460. //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
  461. //experiences any configuration event (configuration events are explained in
  462. //Sections 9.1.1.5 and 9.4.5).
  463. //Configuring a device or changing an alternate setting causes all of the status
  464. //and configuration values associated with endpoints in the affected interfaces
  465. //to be set to their default values. This includes setting the data toggle of
  466. //any endpoint using data toggles to the value DATA0.
  467. //For endpoints using data toggle, regardless of whether an endpoint has the
  468. //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
  469. //data toggle being reinitialized to DATA0.
  470. // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  471. static void usb_control(uint32_t stat)
  472. {
  473. bdt_t *b;
  474. uint32_t pid, size;
  475. uint8_t *buf;
  476. const uint8_t *data;
  477. b = stat2bufferdescriptor(stat);
  478. pid = BDT_PID(b->desc);
  479. //count = b->desc >> 16;
  480. buf = b->addr;
  481. //serial_print("pid:");
  482. //serial_phex(pid);
  483. //serial_print(", count:");
  484. //serial_phex(count);
  485. //serial_print("\n");
  486. switch (pid) {
  487. case 0x0D: // Setup received from host
  488. //serial_print("PID=Setup\n");
  489. //if (count != 8) ; // panic?
  490. // grab the 8 byte setup info
  491. setup.word1 = *(uint32_t *)(buf);
  492. setup.word2 = *(uint32_t *)(buf + 4);
  493. // give the buffer back
  494. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  495. //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
  496. //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
  497. // clear any leftover pending IN transactions
  498. ep0_tx_ptr = NULL;
  499. if (ep0_tx_data_toggle) {
  500. }
  501. //if (table[index(0, TX, EVEN)].desc & 0x80) {
  502. //serial_print("leftover tx even\n");
  503. //}
  504. //if (table[index(0, TX, ODD)].desc & 0x80) {
  505. //serial_print("leftover tx odd\n");
  506. //}
  507. table[index(0, TX, EVEN)].desc = 0;
  508. table[index(0, TX, ODD)].desc = 0;
  509. // first IN after Setup is always DATA1
  510. ep0_tx_data_toggle = 1;
  511. #if 0
  512. serial_print("bmRequestType:");
  513. serial_phex(setup.bmRequestType);
  514. serial_print(", bRequest:");
  515. serial_phex(setup.bRequest);
  516. serial_print(", wValue:");
  517. serial_phex16(setup.wValue);
  518. serial_print(", wIndex:");
  519. serial_phex16(setup.wIndex);
  520. serial_print(", len:");
  521. serial_phex16(setup.wLength);
  522. serial_print("\n");
  523. #endif
  524. // actually "do" the setup request
  525. usb_setup();
  526. // unfreeze the USB, now that we're ready
  527. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  528. break;
  529. case 0x01: // OUT transaction received from host
  530. case 0x02:
  531. //serial_print("PID=OUT\n");
  532. #ifdef CDC_STATUS_INTERFACE
  533. if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
  534. int i;
  535. uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
  536. //serial_print("set line coding ");
  537. for (i=0; i<7; i++) {
  538. //serial_phex(*buf);
  539. *dst++ = *buf++;
  540. }
  541. //serial_phex32(usb_cdc_line_coding[0]);
  542. //serial_print("\n");
  543. if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
  544. endpoint0_transmit(NULL, 0);
  545. }
  546. #endif
  547. #ifdef KEYBOARD_INTERFACE
  548. if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
  549. keyboard_leds = buf[0];
  550. endpoint0_transmit(NULL, 0);
  551. }
  552. #endif
  553. #ifdef SEREMU_INTERFACE
  554. if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
  555. && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
  556. usb_reboot_timer = 5;
  557. endpoint0_transmit(NULL, 0);
  558. }
  559. #endif
  560. #ifdef AUDIO_INTERFACE
  561. if (usb_audio_set_feature(&setup, buf)) {
  562. endpoint0_transmit(NULL, 0);
  563. }
  564. #endif
  565. // give the buffer back
  566. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  567. break;
  568. case 0x09: // IN transaction completed to host
  569. //serial_print("PID=IN:");
  570. //serial_phex(stat);
  571. //serial_print("\n");
  572. // send remaining data, if any...
  573. data = ep0_tx_ptr;
  574. if (data) {
  575. size = ep0_tx_len;
  576. if (size > EP0_SIZE) size = EP0_SIZE;
  577. endpoint0_transmit(data, size);
  578. data += size;
  579. ep0_tx_len -= size;
  580. ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
  581. }
  582. if (setup.bRequest == 5 && setup.bmRequestType == 0) {
  583. setup.bRequest = 0;
  584. //serial_print("set address: ");
  585. //serial_phex16(setup.wValue);
  586. //serial_print("\n");
  587. USB0_ADDR = setup.wValue;
  588. }
  589. break;
  590. //default:
  591. //serial_print("PID=unknown:");
  592. //serial_phex(pid);
  593. //serial_print("\n");
  594. }
  595. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  596. }
  597. usb_packet_t *usb_rx(uint32_t endpoint)
  598. {
  599. usb_packet_t *ret;
  600. endpoint--;
  601. if (endpoint >= NUM_ENDPOINTS) return NULL;
  602. __disable_irq();
  603. ret = rx_first[endpoint];
  604. if (ret) {
  605. rx_first[endpoint] = ret->next;
  606. usb_rx_byte_count_data[endpoint] -= ret->len;
  607. }
  608. __enable_irq();
  609. //serial_print("rx, epidx=");
  610. //serial_phex(endpoint);
  611. //serial_print(", packet=");
  612. //serial_phex32(ret);
  613. //serial_print("\n");
  614. return ret;
  615. }
  616. static uint32_t usb_queue_byte_count(const usb_packet_t *p)
  617. {
  618. uint32_t count=0;
  619. __disable_irq();
  620. for ( ; p; p = p->next) {
  621. count += p->len;
  622. }
  623. __enable_irq();
  624. return count;
  625. }
  626. // TODO: make this an inline function...
  627. /*
  628. uint32_t usb_rx_byte_count(uint32_t endpoint)
  629. {
  630. endpoint--;
  631. if (endpoint >= NUM_ENDPOINTS) return 0;
  632. return usb_rx_byte_count_data[endpoint];
  633. //return usb_queue_byte_count(rx_first[endpoint]);
  634. }
  635. */
  636. uint32_t usb_tx_byte_count(uint32_t endpoint)
  637. {
  638. endpoint--;
  639. if (endpoint >= NUM_ENDPOINTS) return 0;
  640. return usb_queue_byte_count(tx_first[endpoint]);
  641. }
  642. uint32_t usb_tx_packet_count(uint32_t endpoint)
  643. {
  644. const usb_packet_t *p;
  645. uint32_t count=0;
  646. endpoint--;
  647. if (endpoint >= NUM_ENDPOINTS) return 0;
  648. __disable_irq();
  649. for (p = tx_first[endpoint]; p; p = p->next) count++;
  650. __enable_irq();
  651. return count;
  652. }
  653. // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
  654. // receive endpoints are starving for memory. The intention is to give
  655. // endpoints needing receive memory priority over the user's code, which is
  656. // likely calling usb_malloc to obtain memory for transmitting. When the
  657. // user is creating data very quickly, their consumption could starve reception
  658. // without this prioritization. The packet buffer (input) is assigned to the
  659. // first endpoint needing memory.
  660. //
  661. void usb_rx_memory(usb_packet_t *packet)
  662. {
  663. unsigned int i;
  664. const uint8_t *cfg;
  665. cfg = usb_endpoint_config_table;
  666. //serial_print("rx_mem:");
  667. __disable_irq();
  668. for (i=1; i <= NUM_ENDPOINTS; i++) {
  669. #ifdef AUDIO_INTERFACE
  670. if (i == AUDIO_RX_ENDPOINT) continue;
  671. #endif
  672. if (*cfg++ & USB_ENDPT_EPRXEN) {
  673. if (table[index(i, RX, EVEN)].desc == 0) {
  674. table[index(i, RX, EVEN)].addr = packet->buf;
  675. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  676. usb_rx_memory_needed--;
  677. __enable_irq();
  678. //serial_phex(i);
  679. //serial_print(",even\n");
  680. return;
  681. }
  682. if (table[index(i, RX, ODD)].desc == 0) {
  683. table[index(i, RX, ODD)].addr = packet->buf;
  684. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  685. usb_rx_memory_needed--;
  686. __enable_irq();
  687. //serial_phex(i);
  688. //serial_print(",odd\n");
  689. return;
  690. }
  691. }
  692. }
  693. __enable_irq();
  694. // we should never reach this point. If we get here, it means
  695. // usb_rx_memory_needed was set greater than zero, but no memory
  696. // was actually needed.
  697. usb_rx_memory_needed = 0;
  698. usb_free(packet);
  699. return;
  700. }
  701. //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  702. //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  703. void usb_tx(uint32_t endpoint, usb_packet_t *packet)
  704. {
  705. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  706. uint8_t next;
  707. endpoint--;
  708. if (endpoint >= NUM_ENDPOINTS) return;
  709. __disable_irq();
  710. //serial_print("txstate=");
  711. //serial_phex(tx_state[endpoint]);
  712. //serial_print("\n");
  713. switch (tx_state[endpoint]) {
  714. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  715. next = TX_STATE_ODD_FREE;
  716. break;
  717. case TX_STATE_BOTH_FREE_ODD_FIRST:
  718. b++;
  719. next = TX_STATE_EVEN_FREE;
  720. break;
  721. case TX_STATE_EVEN_FREE:
  722. next = TX_STATE_NONE_FREE_ODD_FIRST;
  723. break;
  724. case TX_STATE_ODD_FREE:
  725. b++;
  726. next = TX_STATE_NONE_FREE_EVEN_FIRST;
  727. break;
  728. default:
  729. if (tx_first[endpoint] == NULL) {
  730. tx_first[endpoint] = packet;
  731. } else {
  732. tx_last[endpoint]->next = packet;
  733. }
  734. tx_last[endpoint] = packet;
  735. __enable_irq();
  736. return;
  737. }
  738. tx_state[endpoint] = next;
  739. b->addr = packet->buf;
  740. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  741. __enable_irq();
  742. }
  743. void usb_tx_isochronous(uint32_t endpoint, void *data, uint32_t len)
  744. {
  745. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  746. uint8_t next, state;
  747. endpoint--;
  748. if (endpoint >= NUM_ENDPOINTS) return;
  749. __disable_irq();
  750. state = tx_state[endpoint];
  751. if (state == 0) {
  752. next = 1;
  753. } else {
  754. b++;
  755. next = 0;
  756. }
  757. tx_state[endpoint] = next;
  758. b->addr = data;
  759. b->desc = (len << 16) | BDT_OWN;
  760. __enable_irq();
  761. }
  762. void _reboot_Teensyduino_(void)
  763. {
  764. // TODO: initialize R0 with a code....
  765. __asm__ volatile("bkpt");
  766. }
  767. void usb_isr(void)
  768. {
  769. uint8_t status, stat, t;
  770. //serial_print("isr");
  771. //status = USB0_ISTAT;
  772. //serial_phex(status);
  773. //serial_print("\n");
  774. restart:
  775. status = USB0_ISTAT;
  776. if ((status & USB_ISTAT_SOFTOK /* 04 */ )) {
  777. if (usb_configuration) {
  778. t = usb_reboot_timer;
  779. if (t) {
  780. usb_reboot_timer = --t;
  781. if (!t) _reboot_Teensyduino_();
  782. }
  783. #ifdef CDC_DATA_INTERFACE
  784. t = usb_cdc_transmit_flush_timer;
  785. if (t) {
  786. usb_cdc_transmit_flush_timer = --t;
  787. if (t == 0) usb_serial_flush_callback();
  788. }
  789. #endif
  790. #ifdef SEREMU_INTERFACE
  791. t = usb_seremu_transmit_flush_timer;
  792. if (t) {
  793. usb_seremu_transmit_flush_timer = --t;
  794. if (t == 0) usb_seremu_flush_callback();
  795. }
  796. #endif
  797. #ifdef MIDI_INTERFACE
  798. usb_midi_flush_output();
  799. #endif
  800. #ifdef FLIGHTSIM_INTERFACE
  801. usb_flightsim_flush_callback();
  802. #endif
  803. #ifdef MULTITOUCH_INTERFACE
  804. usb_touchscreen_update_callback();
  805. #endif
  806. }
  807. USB0_ISTAT = USB_ISTAT_SOFTOK;
  808. }
  809. if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
  810. uint8_t endpoint;
  811. stat = USB0_STAT;
  812. //serial_print("token: ep=");
  813. //serial_phex(stat >> 4);
  814. //serial_print(stat & 0x08 ? ",tx" : ",rx");
  815. //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
  816. endpoint = stat >> 4;
  817. if (endpoint == 0) {
  818. usb_control(stat);
  819. } else {
  820. bdt_t *b = stat2bufferdescriptor(stat);
  821. usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
  822. #if 0
  823. serial_print("ep:");
  824. serial_phex(endpoint);
  825. serial_print(", pid:");
  826. serial_phex(BDT_PID(b->desc));
  827. serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
  828. serial_print(", count:");
  829. serial_phex(b->desc >> 16);
  830. serial_print("\n");
  831. #endif
  832. endpoint--; // endpoint is index to zero-based arrays
  833. #ifdef AUDIO_INTERFACE
  834. if ((endpoint == AUDIO_TX_ENDPOINT-1) && (stat & 0x08)) {
  835. unsigned int len;
  836. len = usb_audio_transmit_callback();
  837. if (len > 0) {
  838. b = (bdt_t *)((uint32_t)b ^ 8);
  839. b->addr = usb_audio_transmit_buffer;
  840. b->desc = (len << 16) | BDT_OWN;
  841. tx_state[endpoint] ^= 1;
  842. }
  843. } else if ((endpoint == AUDIO_RX_ENDPOINT-1) && !(stat & 0x08)) {
  844. usb_audio_receive_callback(b->desc >> 16);
  845. b->addr = usb_audio_receive_buffer;
  846. b->desc = (AUDIO_RX_SIZE << 16) | BDT_OWN;
  847. } else if ((endpoint == AUDIO_SYNC_ENDPOINT-1) && (stat & 0x08)) {
  848. b = (bdt_t *)((uint32_t)b ^ 8);
  849. b->addr = &usb_audio_sync_feedback;
  850. b->desc = (3 << 16) | BDT_OWN;
  851. tx_state[endpoint] ^= 1;
  852. } else
  853. #endif
  854. if (stat & 0x08) { // transmit
  855. usb_free(packet);
  856. packet = tx_first[endpoint];
  857. if (packet) {
  858. //serial_print("tx packet\n");
  859. tx_first[endpoint] = packet->next;
  860. b->addr = packet->buf;
  861. switch (tx_state[endpoint]) {
  862. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  863. tx_state[endpoint] = TX_STATE_ODD_FREE;
  864. break;
  865. case TX_STATE_BOTH_FREE_ODD_FIRST:
  866. tx_state[endpoint] = TX_STATE_EVEN_FREE;
  867. break;
  868. case TX_STATE_EVEN_FREE:
  869. tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
  870. break;
  871. case TX_STATE_ODD_FREE:
  872. tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
  873. break;
  874. default:
  875. break;
  876. }
  877. b->desc = BDT_DESC(packet->len,
  878. ((uint32_t)b & 8) ? DATA1 : DATA0);
  879. } else {
  880. //serial_print("tx no packet\n");
  881. switch (tx_state[endpoint]) {
  882. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  883. case TX_STATE_BOTH_FREE_ODD_FIRST:
  884. break;
  885. case TX_STATE_EVEN_FREE:
  886. tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  887. break;
  888. case TX_STATE_ODD_FREE:
  889. tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
  890. break;
  891. default:
  892. tx_state[endpoint] = ((uint32_t)b & 8) ?
  893. TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
  894. break;
  895. }
  896. }
  897. } else { // receive
  898. packet->len = b->desc >> 16;
  899. if (packet->len > 0) {
  900. packet->index = 0;
  901. packet->next = NULL;
  902. if (rx_first[endpoint] == NULL) {
  903. //serial_print("rx 1st, epidx=");
  904. //serial_phex(endpoint);
  905. //serial_print(", packet=");
  906. //serial_phex32((uint32_t)packet);
  907. //serial_print("\n");
  908. rx_first[endpoint] = packet;
  909. } else {
  910. //serial_print("rx Nth, epidx=");
  911. //serial_phex(endpoint);
  912. //serial_print(", packet=");
  913. //serial_phex32((uint32_t)packet);
  914. //serial_print("\n");
  915. rx_last[endpoint]->next = packet;
  916. }
  917. rx_last[endpoint] = packet;
  918. usb_rx_byte_count_data[endpoint] += packet->len;
  919. // TODO: implement a per-endpoint maximum # of allocated
  920. // packets, so a flood of incoming data on 1 endpoint
  921. // doesn't starve the others if the user isn't reading
  922. // it regularly
  923. packet = usb_malloc();
  924. if (packet) {
  925. b->addr = packet->buf;
  926. b->desc = BDT_DESC(64,
  927. ((uint32_t)b & 8) ? DATA1 : DATA0);
  928. } else {
  929. //serial_print("starving ");
  930. //serial_phex(endpoint + 1);
  931. b->desc = 0;
  932. usb_rx_memory_needed++;
  933. }
  934. } else {
  935. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  936. }
  937. }
  938. }
  939. USB0_ISTAT = USB_ISTAT_TOKDNE;
  940. goto restart;
  941. }
  942. if (status & USB_ISTAT_USBRST /* 01 */ ) {
  943. //serial_print("reset\n");
  944. // initialize BDT toggle bits
  945. USB0_CTL = USB_CTL_ODDRST;
  946. ep0_tx_bdt_bank = 0;
  947. // set up buffers to receive Setup and OUT packets
  948. table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
  949. table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
  950. table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
  951. table[index(0, RX, ODD)].addr = ep0_rx1_buf;
  952. table[index(0, TX, EVEN)].desc = 0;
  953. table[index(0, TX, ODD)].desc = 0;
  954. // activate endpoint 0
  955. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  956. // clear all ending interrupts
  957. USB0_ERRSTAT = 0xFF;
  958. USB0_ISTAT = 0xFF;
  959. // set the address to zero during enumeration
  960. USB0_ADDR = 0;
  961. // enable other interrupts
  962. USB0_ERREN = 0xFF;
  963. USB0_INTEN = USB_INTEN_TOKDNEEN |
  964. USB_INTEN_SOFTOKEN |
  965. USB_INTEN_STALLEN |
  966. USB_INTEN_ERROREN |
  967. USB_INTEN_USBRSTEN |
  968. USB_INTEN_SLEEPEN;
  969. // is this necessary?
  970. USB0_CTL = USB_CTL_USBENSOFEN;
  971. return;
  972. }
  973. if ((status & USB_ISTAT_STALL /* 80 */ )) {
  974. //serial_print("stall:\n");
  975. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  976. USB0_ISTAT = USB_ISTAT_STALL;
  977. }
  978. if ((status & USB_ISTAT_ERROR /* 02 */ )) {
  979. uint8_t err = USB0_ERRSTAT;
  980. USB0_ERRSTAT = err;
  981. //serial_print("err:");
  982. //serial_phex(err);
  983. //serial_print("\n");
  984. USB0_ISTAT = USB_ISTAT_ERROR;
  985. }
  986. if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
  987. //serial_print("sleep\n");
  988. USB0_ISTAT = USB_ISTAT_SLEEP;
  989. }
  990. }
  991. void usb_init(void)
  992. {
  993. int i;
  994. //serial_begin(BAUD2DIV(115200));
  995. //serial_print("usb_init\n");
  996. usb_init_serialnumber();
  997. for (i=0; i <= NUM_ENDPOINTS*4; i++) {
  998. table[i].desc = 0;
  999. table[i].addr = 0;
  1000. }
  1001. // this basically follows the flowchart in the Kinetis
  1002. // Quick Reference User Guide, Rev. 1, 03/2012, page 141
  1003. // assume 48 MHz clock already running
  1004. // SIM - enable clock
  1005. SIM_SCGC4 |= SIM_SCGC4_USBOTG;
  1006. #ifdef HAS_KINETIS_MPU
  1007. MPU_RGDAAC0 |= 0x03000000;
  1008. #endif
  1009. // reset USB module
  1010. //USB0_USBTRC0 = USB_USBTRC_USBRESET;
  1011. //while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
  1012. // set desc table base addr
  1013. USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
  1014. USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
  1015. USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
  1016. // clear all ISR flags
  1017. USB0_ISTAT = 0xFF;
  1018. USB0_ERRSTAT = 0xFF;
  1019. USB0_OTGISTAT = 0xFF;
  1020. //USB0_USBTRC0 |= 0x40; // undocumented bit
  1021. // enable USB
  1022. USB0_CTL = USB_CTL_USBENSOFEN;
  1023. USB0_USBCTRL = 0;
  1024. // enable reset interrupt
  1025. USB0_INTEN = USB_INTEN_USBRSTEN;
  1026. // enable interrupt in NVIC...
  1027. NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
  1028. NVIC_ENABLE_IRQ(IRQ_USBOTG);
  1029. // enable d+ pullup
  1030. USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
  1031. }
  1032. #else // F_CPU < 20 MHz && defined(NUM_ENDPOINTS)
  1033. void usb_init(void)
  1034. {
  1035. }
  1036. #endif // F_CPU >= 20 MHz && defined(NUM_ENDPOINTS)