選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

817 行
29KB

  1. #ifndef DMAChannel_h_
  2. #define DMAChannel_h_
  3. #include "kinetis.h"
  4. // This code is a work-in-progress. It's incomplete and not usable yet...
  5. //
  6. // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
  7. // known libraries with DMA usage (in need of porting to this new scheme):
  8. //
  9. // https://github.com/PaulStoffregen/Audio
  10. // https://github.com/PaulStoffregen/OctoWS2811
  11. // https://github.com/pedvide/ADC
  12. // https://github.com/duff2013/SerialEvent
  13. // https://github.com/pixelmatix/SmartMatrix
  14. // https://github.com/crteensy/DmaSpi <-- DmaSpi has adopted this scheme
  15. #if defined(KINETISK)
  16. #ifdef __cplusplus
  17. #define DMACHANNEL_HAS_BEGIN
  18. #define DMACHANNEL_HAS_BOOLEAN_CTOR
  19. class DMABaseClass {
  20. public:
  21. typedef struct __attribute__((packed)) {
  22. volatile const void * volatile SADDR;
  23. int16_t SOFF;
  24. union { uint16_t ATTR;
  25. struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
  26. union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
  27. uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
  28. int32_t SLAST;
  29. volatile void * volatile DADDR;
  30. int16_t DOFF;
  31. union { volatile uint16_t CITER;
  32. volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
  33. int32_t DLASTSGA;
  34. volatile uint16_t CSR;
  35. union { volatile uint16_t BITER;
  36. volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
  37. } TCD_t;
  38. TCD_t *TCD;
  39. /***************************************/
  40. /** Data Transfer **/
  41. /***************************************/
  42. // Use a single variable as the data source. Typically a register
  43. // for receiving data from one of the hardware peripherals is used.
  44. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
  45. void source(volatile const unsigned char &p) {
  46. TCD->SADDR = &p;
  47. TCD->SOFF = 0;
  48. TCD->ATTR_SRC = 0;
  49. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  50. TCD->SLAST = 0;
  51. }
  52. void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
  53. void source(volatile const unsigned short &p) {
  54. TCD->SADDR = &p;
  55. TCD->SOFF = 0;
  56. TCD->ATTR_SRC = 1;
  57. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  58. TCD->SLAST = 0;
  59. }
  60. void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
  61. void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
  62. void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
  63. void source(volatile const unsigned long &p) {
  64. TCD->SADDR = &p;
  65. TCD->SOFF = 0;
  66. TCD->ATTR_SRC = 2;
  67. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  68. TCD->SLAST = 0;
  69. }
  70. // Use a buffer (array of data) as the data source. Typically a
  71. // buffer for transmitting data is used.
  72. void sourceBuffer(volatile const signed char p[], unsigned int len) {
  73. sourceBuffer((volatile const uint8_t *)p, len); }
  74. void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
  75. TCD->SADDR = p;
  76. TCD->SOFF = 1;
  77. TCD->ATTR_SRC = 0;
  78. TCD->NBYTES = 1;
  79. TCD->SLAST = -len;
  80. TCD->BITER = len;
  81. TCD->CITER = len;
  82. }
  83. void sourceBuffer(volatile const signed short p[], unsigned int len) {
  84. sourceBuffer((volatile const uint16_t *)p, len); }
  85. void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
  86. TCD->SADDR = p;
  87. TCD->SOFF = 2;
  88. TCD->ATTR_SRC = 1;
  89. TCD->NBYTES = 2;
  90. TCD->SLAST = -len;
  91. TCD->BITER = len / 2;
  92. TCD->CITER = len / 2;
  93. }
  94. void sourceBuffer(volatile const signed int p[], unsigned int len) {
  95. sourceBuffer((volatile const uint32_t *)p, len); }
  96. void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
  97. sourceBuffer((volatile const uint32_t *)p, len); }
  98. void sourceBuffer(volatile const signed long p[], unsigned int len) {
  99. sourceBuffer((volatile const uint32_t *)p, len); }
  100. void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
  101. TCD->SADDR = p;
  102. TCD->SOFF = 4;
  103. TCD->ATTR_SRC = 2;
  104. TCD->NBYTES = 4;
  105. TCD->SLAST = -len;
  106. TCD->BITER = len / 4;
  107. TCD->CITER = len / 4;
  108. }
  109. // Use a circular buffer as the data source
  110. void sourceCircular(volatile const signed char p[], unsigned int len) {
  111. sourceCircular((volatile const uint8_t *)p, len); }
  112. void sourceCircular(volatile const unsigned char p[], unsigned int len) {
  113. TCD->SADDR = p;
  114. TCD->SOFF = 1;
  115. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
  116. TCD->NBYTES = 1;
  117. TCD->SLAST = 0;
  118. TCD->BITER = len;
  119. TCD->CITER = len;
  120. }
  121. void sourceCircular(volatile const signed short p[], unsigned int len) {
  122. sourceCircular((volatile const uint16_t *)p, len); }
  123. void sourceCircular(volatile const unsigned short p[], unsigned int len) {
  124. TCD->SADDR = p;
  125. TCD->SOFF = 2;
  126. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
  127. TCD->NBYTES = 2;
  128. TCD->SLAST = 0;
  129. TCD->BITER = len / 2;
  130. TCD->CITER = len / 2;
  131. }
  132. void sourceCircular(volatile const signed int p[], unsigned int len) {
  133. sourceCircular((volatile const uint32_t *)p, len); }
  134. void sourceCircular(volatile const unsigned int p[], unsigned int len) {
  135. sourceCircular((volatile const uint32_t *)p, len); }
  136. void sourceCircular(volatile const signed long p[], unsigned int len) {
  137. sourceCircular((volatile const uint32_t *)p, len); }
  138. void sourceCircular(volatile const unsigned long p[], unsigned int len) {
  139. TCD->SADDR = p;
  140. TCD->SOFF = 4;
  141. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
  142. TCD->NBYTES = 4;
  143. TCD->SLAST = 0;
  144. TCD->BITER = len / 4;
  145. TCD->CITER = len / 4;
  146. }
  147. // Use a single variable as the data destination. Typically a register
  148. // for transmitting data to one of the hardware peripherals is used.
  149. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
  150. void destination(volatile unsigned char &p) {
  151. TCD->DADDR = &p;
  152. TCD->DOFF = 0;
  153. TCD->ATTR_DST = 0;
  154. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  155. TCD->DLASTSGA = 0;
  156. }
  157. void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
  158. void destination(volatile unsigned short &p) {
  159. TCD->DADDR = &p;
  160. TCD->DOFF = 0;
  161. TCD->ATTR_DST = 1;
  162. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  163. TCD->DLASTSGA = 0;
  164. }
  165. void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
  166. void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
  167. void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
  168. void destination(volatile unsigned long &p) {
  169. TCD->DADDR = &p;
  170. TCD->DOFF = 0;
  171. TCD->ATTR_DST = 2;
  172. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  173. TCD->DLASTSGA = 0;
  174. }
  175. // Use a buffer (array of data) as the data destination. Typically a
  176. // buffer for receiving data is used.
  177. void destinationBuffer(volatile signed char p[], unsigned int len) {
  178. destinationBuffer((volatile uint8_t *)p, len); }
  179. void destinationBuffer(volatile unsigned char p[], unsigned int len) {
  180. TCD->DADDR = p;
  181. TCD->DOFF = 1;
  182. TCD->ATTR_DST = 0;
  183. TCD->NBYTES = 1;
  184. TCD->DLASTSGA = -len;
  185. TCD->BITER = len;
  186. TCD->CITER = len;
  187. }
  188. void destinationBuffer(volatile signed short p[], unsigned int len) {
  189. destinationBuffer((volatile uint16_t *)p, len); }
  190. void destinationBuffer(volatile unsigned short p[], unsigned int len) {
  191. TCD->DADDR = p;
  192. TCD->DOFF = 2;
  193. TCD->ATTR_DST = 1;
  194. TCD->NBYTES = 2;
  195. TCD->DLASTSGA = -len;
  196. TCD->BITER = len / 2;
  197. TCD->CITER = len / 2;
  198. }
  199. void destinationBuffer(volatile signed int p[], unsigned int len) {
  200. destinationBuffer((volatile uint32_t *)p, len); }
  201. void destinationBuffer(volatile unsigned int p[], unsigned int len) {
  202. destinationBuffer((volatile uint32_t *)p, len); }
  203. void destinationBuffer(volatile signed long p[], unsigned int len) {
  204. destinationBuffer((volatile uint32_t *)p, len); }
  205. void destinationBuffer(volatile unsigned long p[], unsigned int len) {
  206. TCD->DADDR = p;
  207. TCD->DOFF = 4;
  208. TCD->ATTR_DST = 2;
  209. TCD->NBYTES = 4;
  210. TCD->DLASTSGA = -len;
  211. TCD->BITER = len / 4;
  212. TCD->CITER = len / 4;
  213. }
  214. // Use a circular buffer as the data destination
  215. void destinationCircular(volatile signed char p[], unsigned int len) {
  216. destinationCircular((volatile uint8_t *)p, len); }
  217. void destinationCircular(volatile unsigned char p[], unsigned int len) {
  218. TCD->DADDR = p;
  219. TCD->DOFF = 1;
  220. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3);
  221. TCD->NBYTES = 1;
  222. TCD->DLASTSGA = 0;
  223. TCD->BITER = len;
  224. TCD->CITER = len;
  225. }
  226. void destinationCircular(volatile signed short p[], unsigned int len) {
  227. destinationCircular((volatile uint16_t *)p, len); }
  228. void destinationCircular(volatile unsigned short p[], unsigned int len) {
  229. TCD->DADDR = p;
  230. TCD->DOFF = 2;
  231. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
  232. TCD->NBYTES = 2;
  233. TCD->DLASTSGA = 0;
  234. TCD->BITER = len / 2;
  235. TCD->CITER = len / 2;
  236. }
  237. void destinationCircular(volatile signed int p[], unsigned int len) {
  238. destinationCircular((volatile uint32_t *)p, len); }
  239. void destinationCircular(volatile unsigned int p[], unsigned int len) {
  240. destinationCircular((volatile uint32_t *)p, len); }
  241. void destinationCircular(volatile signed long p[], unsigned int len) {
  242. destinationCircular((volatile uint32_t *)p, len); }
  243. void destinationCircular(volatile unsigned long p[], unsigned int len) {
  244. TCD->DADDR = p;
  245. TCD->DOFF = 4;
  246. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
  247. TCD->NBYTES = 4;
  248. TCD->DLASTSGA = 0;
  249. TCD->BITER = len / 4;
  250. TCD->CITER = len / 4;
  251. }
  252. /*************************************************/
  253. /** Quantity of Data to Transfer **/
  254. /*************************************************/
  255. // Set the data size used for each triggered transfer
  256. void transferSize(unsigned int len) {
  257. if (len == 4) {
  258. TCD->NBYTES = 4;
  259. if (TCD->SOFF != 0) TCD->SOFF = 4;
  260. if (TCD->DOFF != 0) TCD->DOFF = 4;
  261. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202;
  262. } else if (len == 2) {
  263. TCD->NBYTES = 2;
  264. if (TCD->SOFF != 0) TCD->SOFF = 2;
  265. if (TCD->DOFF != 0) TCD->DOFF = 2;
  266. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101;
  267. } else {
  268. TCD->NBYTES = 1;
  269. if (TCD->SOFF != 0) TCD->SOFF = 1;
  270. if (TCD->DOFF != 0) TCD->DOFF = 1;
  271. TCD->ATTR = TCD->ATTR & 0xF8F8;
  272. }
  273. }
  274. // Set the number of transfers (number of triggers until complete)
  275. void transferCount(unsigned int len) {
  276. if (len > 32767) return;
  277. if (len >= 512) {
  278. TCD->BITER = len;
  279. TCD->CITER = len;
  280. } else {
  281. TCD->BITER = (TCD->BITER & 0xFE00) | len;
  282. TCD->CITER = (TCD->CITER & 0xFE00) | len;
  283. }
  284. }
  285. /*************************************************/
  286. /** Special Options / Features **/
  287. /*************************************************/
  288. void interruptAtCompletion(void) {
  289. TCD->CSR |= DMA_TCD_CSR_INTMAJOR;
  290. }
  291. void interruptAtHalf(void) {
  292. TCD->CSR |= DMA_TCD_CSR_INTHALF;
  293. }
  294. void disableOnCompletion(void) {
  295. TCD->CSR |= DMA_TCD_CSR_DREQ;
  296. }
  297. void replaceSettingsOnCompletion(const DMABaseClass &settings) {
  298. TCD->DLASTSGA = (int32_t)(settings.TCD);
  299. TCD->CSR &= ~DMA_TCD_CSR_DONE;
  300. TCD->CSR |= DMA_TCD_CSR_ESG;
  301. }
  302. protected:
  303. // users should not be able to create instances of DMABaseClass, which
  304. // require the inheriting class to initialize the TCD pointer.
  305. DMABaseClass() {}
  306. static inline void copy_tcd(TCD_t *dst, const TCD_t *src) {
  307. const uint32_t *p = (const uint32_t *)src;
  308. uint32_t *q = (uint32_t *)dst;
  309. uint32_t t1, t2, t3, t4;
  310. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  311. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  312. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  313. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  314. }
  315. };
  316. // DMASetting represents settings stored only in memory, which can be
  317. // applied to any DMA channel.
  318. class DMASetting : public DMABaseClass {
  319. public:
  320. DMASetting() {
  321. TCD = &tcddata;
  322. }
  323. DMASetting(const DMASetting &c) {
  324. TCD = &tcddata;
  325. *this = c;
  326. }
  327. DMASetting(const DMABaseClass &c) {
  328. TCD = &tcddata;
  329. *this = c;
  330. }
  331. DMASetting & operator = (const DMABaseClass &rhs) {
  332. copy_tcd(TCD, rhs.TCD);
  333. return *this;
  334. }
  335. private:
  336. TCD_t tcddata __attribute__((aligned(32)));
  337. };
  338. // DMAChannel reprents an actual DMA channel and its current settings
  339. class DMAChannel : public DMABaseClass {
  340. public:
  341. /*************************************************/
  342. /** Channel Allocation **/
  343. /*************************************************/
  344. DMAChannel() {
  345. begin();
  346. }
  347. DMAChannel(const DMAChannel &c) {
  348. TCD = c.TCD;
  349. channel = c.channel;
  350. }
  351. DMAChannel(const DMASetting &c) {
  352. begin();
  353. copy_tcd(TCD, c.TCD);
  354. }
  355. DMAChannel(bool allocate) {
  356. if (allocate) begin();
  357. }
  358. DMAChannel & operator = (const DMAChannel &rhs) {
  359. if (channel != rhs.channel) {
  360. release();
  361. TCD = rhs.TCD;
  362. channel = rhs.channel;
  363. }
  364. return *this;
  365. }
  366. DMAChannel & operator = (const DMASetting &rhs) {
  367. copy_tcd(TCD, rhs.TCD);
  368. return *this;
  369. }
  370. ~DMAChannel() {
  371. release();
  372. }
  373. void begin(bool force_initialization = false);
  374. private:
  375. void release(void);
  376. public:
  377. /***************************************/
  378. /** Triggering **/
  379. /***************************************/
  380. // Triggers cause the DMA channel to actually move data. Each
  381. // trigger moves a single data unit, which is typically 8, 16 or
  382. // 32 bits. If a channel is configured for 200 transfers
  383. // Use a hardware trigger to make the DMA channel run
  384. void triggerAtHardwareEvent(uint8_t source) {
  385. volatile uint8_t *mux;
  386. mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
  387. *mux = 0;
  388. *mux = (source & 63) | DMAMUX_ENABLE;
  389. }
  390. // Use another DMA channel as the trigger, causing this
  391. // channel to trigger after each transfer is makes, except
  392. // the its last transfer. This effectively makes the 2
  393. // channels run in parallel until the last transfer
  394. void triggerAtTransfersOf(DMABaseClass &ch) {
  395. ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
  396. | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
  397. ch.TCD->CITER = ch.TCD->BITER ;
  398. }
  399. // Use another DMA channel as the trigger, causing this
  400. // channel to trigger when the other channel completes.
  401. void triggerAtCompletionOf(DMABaseClass &ch) {
  402. ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE))
  403. | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
  404. }
  405. // Cause this DMA channel to be continuously triggered, so
  406. // it will move data as rapidly as possible, without waiting.
  407. // Normally this would be used with disableOnCompletion().
  408. void triggerContinuously(void) {
  409. volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
  410. mux[channel] = 0;
  411. #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
  412. mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
  413. #else
  414. // search for an unused "always on" source
  415. unsigned int i = DMAMUX_SOURCE_ALWAYS0;
  416. for (i = DMAMUX_SOURCE_ALWAYS0;
  417. i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
  418. unsigned int ch;
  419. for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
  420. if (mux[ch] == i) break;
  421. }
  422. if (ch >= DMA_NUM_CHANNELS) {
  423. mux[channel] = (i | DMAMUX_ENABLE);
  424. return;
  425. }
  426. }
  427. #endif
  428. }
  429. // Manually trigger the DMA channel.
  430. void triggerManual(void) {
  431. DMA_SSRT = channel;
  432. }
  433. /***************************************/
  434. /** Interrupts **/
  435. /***************************************/
  436. // An interrupt routine can be run when the DMA channel completes
  437. // the entire transfer, and also optionally when half of the
  438. // transfer is completed.
  439. void attachInterrupt(void (*isr)(void)) {
  440. _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
  441. NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
  442. }
  443. void detachInterrupt(void) {
  444. NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
  445. }
  446. void clearInterrupt(void) {
  447. DMA_CINT = channel;
  448. }
  449. /***************************************/
  450. /** Enable / Disable **/
  451. /***************************************/
  452. void enable(void) {
  453. DMA_SERQ = channel;
  454. }
  455. void disable(void) {
  456. DMA_CERQ = channel;
  457. }
  458. /***************************************/
  459. /** Status **/
  460. /***************************************/
  461. bool complete(void) {
  462. if (TCD->CSR & DMA_TCD_CSR_DONE) return true;
  463. return false;
  464. }
  465. void clearComplete(void) {
  466. DMA_CDNE = channel;
  467. }
  468. bool error(void) {
  469. if (DMA_ERR & (1<<channel)) return true;
  470. return false;
  471. }
  472. void clearError(void) {
  473. DMA_CERR = channel;
  474. }
  475. void * sourceAddress(void) {
  476. return (void *)(TCD->SADDR);
  477. }
  478. void * destinationAddress(void) {
  479. return (void *)(TCD->DADDR);
  480. }
  481. /***************************************/
  482. /** Direct Hardware Access **/
  483. /***************************************/
  484. // For complex and unusual configurations not possible with the above
  485. // functions, the Transfer Control Descriptor (TCD) and channel number
  486. // can be used directly. This leads to less portable and less readable
  487. // code, but direct control of all parameters is possible.
  488. uint8_t channel;
  489. // TCD is accessible due to inheritance from DMABaseClass
  490. /* usage cases:
  491. ************************
  492. OctoWS2811:
  493. ************************
  494. // enable clocks to the DMA controller and DMAMUX
  495. SIM_SCGC7 |= SIM_SCGC7_DMA;
  496. SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
  497. DMA_CR = 0;
  498. DMA_CERQ = 1;
  499. DMA_CERQ = 2;
  500. DMA_CERQ = 3;
  501. // DMA channel #1 sets WS2811 high at the beginning of each cycle
  502. DMA_TCD1_SADDR = &ones;
  503. DMA_TCD1_SOFF = 0;
  504. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  505. DMA_TCD1_NBYTES_MLNO = 1;
  506. DMA_TCD1_SLAST = 0;
  507. DMA_TCD1_DADDR = &GPIOD_PSOR;
  508. DMA_TCD1_DOFF = 0;
  509. DMA_TCD1_CITER_ELINKNO = bufsize;
  510. DMA_TCD1_DLASTSGA = 0;
  511. DMA_TCD1_CSR = DMA_TCD_CSR_DREQ;
  512. DMA_TCD1_BITER_ELINKNO = bufsize;
  513. dma1.source(ones);
  514. dma1.destination(GPIOD_PSOR);
  515. dma1.size(1);
  516. dma1.count(bufsize);
  517. dma1.disableOnCompletion();
  518. // DMA channel #2 writes the pixel data at 20% of the cycle
  519. DMA_TCD2_SADDR = frameBuffer;
  520. DMA_TCD2_SOFF = 1;
  521. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  522. DMA_TCD2_NBYTES_MLNO = 1;
  523. DMA_TCD2_SLAST = -bufsize;
  524. DMA_TCD2_DADDR = &GPIOD_PDOR;
  525. DMA_TCD2_DOFF = 0;
  526. DMA_TCD2_CITER_ELINKNO = bufsize;
  527. DMA_TCD2_DLASTSGA = 0;
  528. DMA_TCD2_CSR = DMA_TCD_CSR_DREQ;
  529. DMA_TCD2_BITER_ELINKNO = bufsize;
  530. dma2.source(frameBuffer, sizeof(frameBuffer));
  531. dma2.destination(GPIOD_PDOR);
  532. dma2.size(1);
  533. dma2.count(bufsize);
  534. dma2.disableOnCompletion();
  535. // DMA channel #3 clear all the pins low at 48% of the cycle
  536. DMA_TCD3_SADDR = &ones;
  537. DMA_TCD3_SOFF = 0;
  538. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  539. DMA_TCD3_NBYTES_MLNO = 1;
  540. DMA_TCD3_SLAST = 0;
  541. DMA_TCD3_DADDR = &GPIOD_PCOR;
  542. DMA_TCD3_DOFF = 0;
  543. DMA_TCD3_CITER_ELINKNO = bufsize;
  544. DMA_TCD3_DLASTSGA = 0;
  545. DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR;
  546. DMA_TCD3_BITER_ELINKNO = bufsize;
  547. dma3.source(ones);
  548. dma3.destination(GPIOD_PCOR);
  549. dma3.size(1);
  550. dma3.count(bufsize);
  551. dma3.disableOnCompletion();
  552. ************************
  553. Audio, DAC
  554. ************************
  555. DMA_CR = 0;
  556. DMA_TCD4_SADDR = dac_buffer;
  557. DMA_TCD4_SOFF = 2;
  558. DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  559. DMA_TCD4_NBYTES_MLNO = 2;
  560. DMA_TCD4_SLAST = -sizeof(dac_buffer);
  561. DMA_TCD4_DADDR = &DAC0_DAT0L;
  562. DMA_TCD4_DOFF = 0;
  563. DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2;
  564. DMA_TCD4_DLASTSGA = 0;
  565. DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2;
  566. DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  567. DMAMUX0_CHCFG4 = DMAMUX_DISABLE;
  568. DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE;
  569. ************************
  570. Audio, I2S
  571. ************************
  572. DMA_CR = 0;
  573. DMA_TCD0_SADDR = i2s_tx_buffer;
  574. DMA_TCD0_SOFF = 2;
  575. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  576. DMA_TCD0_NBYTES_MLNO = 2;
  577. DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer);
  578. DMA_TCD0_DADDR = &I2S0_TDR0;
  579. DMA_TCD0_DOFF = 0;
  580. DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  581. DMA_TCD0_DLASTSGA = 0;
  582. DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  583. DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  584. DMAMUX0_CHCFG0 = DMAMUX_DISABLE;
  585. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE;
  586. ************************
  587. ADC lib, Pedro Villanueva
  588. ************************
  589. DMA_CR = 0; // normal mode of operation
  590. *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing
  591. *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  592. DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  593. DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values
  594. *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop)
  595. *DMA_TCD_SADDR = ADC_RA; // source address
  596. *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes
  597. *DMA_TCD_SLAST = 0; // don't change src address after major loop completes
  598. *DMA_TCD_DADDR = elems; // destination address
  599. *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop
  600. *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element
  601. *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled
  602. *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled
  603. *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete
  604. DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request
  605. DMA_CINT = DMA_channel; // clear interrupts
  606. uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0;
  607. if(ADC_number==1){
  608. DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1;
  609. }
  610. *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0
  611. DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request
  612. NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts
  613. ************************
  614. SmartMatrix
  615. ************************
  616. // enable minor loop mapping so addresses can get reset after minor loops
  617. DMA_CR = 1 << 7;
  618. // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO
  619. // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins
  620. // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2)
  621. // only use single major loop, never disable channel
  622. #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2
  623. DMA_TCD0_SADDR = &gpiosync.gpio_pcor;
  624. DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  625. DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  626. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  627. // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete
  628. // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop
  629. DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE |
  630. ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) |
  631. (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor));
  632. // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset)
  633. DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER;
  634. // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER
  635. DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER;
  636. DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  637. // single major loop
  638. DMA_TCD0_CITER_ELINKNO = 1;
  639. DMA_TCD0_BITER_ELINKNO = 1;
  640. // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete
  641. DMA_TCD0_CSR = (1 << 8) | (1 << 5);
  642. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE;
  643. // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle
  644. // only use single major loop, never disable channel
  645. DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues;
  646. DMA_TCD1_SOFF = sizeof(uint16_t);
  647. DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  648. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  649. // 16-bit = 2 bytes transferred
  650. // transfer two 16-bit values, reset destination address back after each minor loop
  651. DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  652. // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset)
  653. DMA_TCD1_DADDR = &gpiosync.gpio_pcor;
  654. DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  655. DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor));
  656. // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete
  657. DMA_TCD1_CITER_ELINKNO = 1;
  658. DMA_TCD1_BITER_ELINKNO = 1;
  659. DMA_TCD1_CSR = 0;
  660. // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block
  661. // only use single major loop, never disable channel
  662. // link to channel 3 when complete
  663. #define TIMER_REGISTERS_TO_UPDATE 2
  664. DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe;
  665. DMA_TCD2_SOFF = sizeof(uint16_t);
  666. DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  667. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  668. // 16-bit = 2 bytes transferred
  669. DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t);
  670. DMA_TCD2_DADDR = &FTM1_C1V;
  671. DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V;
  672. DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD);
  673. // no minor loop linking, single major loop
  674. DMA_TCD2_CITER_ELINKNO = 1;
  675. DMA_TCD2_BITER_ELINKNO = 1;
  676. // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete
  677. DMA_TCD2_CSR = (3 << 8) | (1 << 5);
  678. DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE;
  679. #define DMA_TCD_MLOFF_MASK (0x3FFFFC00)
  680. // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete
  681. DMA_TCD3_SADDR = matrixUpdateData[0][0];
  682. DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2;
  683. // SADDR will get updated by ISR, no need to set SLAST
  684. DMA_TCD3_SLAST = 0;
  685. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  686. // after each minor loop, set source to point back to the beginning of this set of data,
  687. // but advance by 1 byte to get the next significant bits data
  688. DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE |
  689. (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) |
  690. (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK);
  691. DMA_TCD3_DADDR = &GPIOD_PDOR;
  692. DMA_TCD3_DOFF = 0;
  693. DMA_TCD3_DLASTSGA = 0;
  694. DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW;
  695. DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW;
  696. // int after major loop is complete
  697. DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR;
  698. // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer)
  699. //DMA_TCD3_CSR |= (0x02 << 14);
  700. // enable a done interrupt when all DMA operations are complete
  701. NVIC_ENABLE_IRQ(IRQ_DMA_CH3);
  702. // enable additional dma interrupt used as software interrupt
  703. NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority
  704. NVIC_ENABLE_IRQ(IRQ_DMA_CH1);
  705. // enable channels 0, 1, 2, 3
  706. DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
  707. // at the end after everything is set up: enable timer from system clock, with appropriate prescale
  708. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE);
  709. */
  710. };
  711. // arrange the relative priority of 2 or more DMA channels
  712. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
  713. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
  714. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
  715. extern "C" {
  716. #endif
  717. extern uint16_t dma_channel_allocated_mask;
  718. #ifdef __cplusplus
  719. }
  720. #endif
  721. #endif // KINETISK
  722. #endif