您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

657 行
19KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL1_TX_BUFFER_SIZE
  37. #define SERIAL1_TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL1_RX_BUFFER_SIZE
  40. #define SERIAL1_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL1_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL1_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL1_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL1_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL1_TX_BUFFER_SIZE > 255
  76. static volatile uint16_t tx_buffer_head = 0;
  77. static volatile uint16_t tx_buffer_tail = 0;
  78. #else
  79. static volatile uint8_t tx_buffer_head = 0;
  80. static volatile uint8_t tx_buffer_tail = 0;
  81. #endif
  82. #if SERIAL1_RX_BUFFER_SIZE > 255
  83. static volatile uint16_t rx_buffer_head = 0;
  84. static volatile uint16_t rx_buffer_tail = 0;
  85. #else
  86. static volatile uint8_t rx_buffer_head = 0;
  87. static volatile uint8_t rx_buffer_tail = 0;
  88. #endif
  89. static uint8_t rx_pin_num = 0;
  90. static uint8_t tx_pin_num = 1;
  91. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  92. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  93. #ifdef HAS_KINETISK_UART0_FIFO
  94. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  95. #else
  96. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  97. #endif
  98. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  99. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  100. #define C2_TX_INACTIVE C2_ENABLE
  101. void serial_begin(uint32_t divisor)
  102. {
  103. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  104. rx_buffer_head = 0;
  105. rx_buffer_tail = 0;
  106. tx_buffer_head = 0;
  107. tx_buffer_tail = 0;
  108. transmitting = 0;
  109. switch (rx_pin_num) {
  110. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  111. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  112. #if defined(KINETISL)
  113. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  114. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  115. #endif
  116. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  117. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  118. #endif
  119. }
  120. switch (tx_pin_num) {
  121. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  122. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  123. #if defined(KINETISL)
  124. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  125. case 24: CORE_PIN24_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(4); break;
  126. #endif
  127. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  128. case 26: CORE_PIN26_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  129. #endif
  130. }
  131. #if defined(HAS_KINETISK_UART0)
  132. if (divisor < 32) divisor = 32;
  133. UART0_BDH = (divisor >> 13) & 0x1F;
  134. UART0_BDL = (divisor >> 5) & 0xFF;
  135. UART0_C4 = divisor & 0x1F;
  136. #ifdef HAS_KINETISK_UART0_FIFO
  137. UART0_C1 = UART_C1_ILT;
  138. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  139. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  140. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  141. #else
  142. UART0_C1 = 0;
  143. UART0_PFIFO = 0;
  144. #endif
  145. #elif defined(HAS_KINETISL_UART0)
  146. if (divisor < 1) divisor = 1;
  147. UART0_BDH = (divisor >> 8) & 0x1F;
  148. UART0_BDL = divisor & 0xFF;
  149. UART0_C1 = 0;
  150. #endif
  151. UART0_C2 = C2_TX_INACTIVE;
  152. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  153. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  154. }
  155. void serial_format(uint32_t format)
  156. {
  157. uint8_t c;
  158. c = UART0_C1;
  159. c = (c & ~0x13) | (format & 0x03); // configure parity
  160. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  161. UART0_C1 = c;
  162. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  163. c = UART0_S2 & ~0x10;
  164. if (format & 0x10) c |= 0x10; // rx invert
  165. UART0_S2 = c;
  166. c = UART0_C3 & ~0x10;
  167. if (format & 0x20) c |= 0x10; // tx invert
  168. UART0_C3 = c;
  169. #ifdef SERIAL_9BIT_SUPPORT
  170. c = UART0_C4 & 0x1F;
  171. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  172. UART0_C4 = c;
  173. use9Bits = format & 0x80;
  174. #endif
  175. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  176. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  177. if ( format & 0x100) {
  178. uint8_t bdl = UART0_BDL;
  179. UART0_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  180. UART0_BDL = bdl; // Says BDH not acted on until BDL is written
  181. }
  182. #endif
  183. }
  184. void serial_end(void)
  185. {
  186. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  187. while (transmitting) yield(); // wait for buffered data to send
  188. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  189. UART0_C2 = 0;
  190. switch (rx_pin_num) {
  191. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  192. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  193. #if defined(KINETISL)
  194. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  195. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  196. #endif
  197. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  198. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  199. #endif
  200. }
  201. switch (tx_pin_num & 127) {
  202. case 1: CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  203. case 5: CORE_PIN5_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  204. #if defined(KINETISL)
  205. case 4: CORE_PIN4_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  206. case 24: CORE_PIN24_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  207. #endif
  208. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  209. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  210. #endif
  211. }
  212. UART0_S1;
  213. UART0_D; // clear leftover error status
  214. rx_buffer_head = 0;
  215. rx_buffer_tail = 0;
  216. if (rts_pin) rts_deassert();
  217. }
  218. void serial_set_transmit_pin(uint8_t pin)
  219. {
  220. while (transmitting) ;
  221. pinMode(pin, OUTPUT);
  222. digitalWrite(pin, LOW);
  223. transmit_pin = portOutputRegister(pin);
  224. #if defined(KINETISL)
  225. transmit_mask = digitalPinToBitMask(pin);
  226. #endif
  227. }
  228. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  229. {
  230. uint32_t cfg;
  231. if (opendrain) pin |= 128;
  232. if (pin == tx_pin_num) return;
  233. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  234. switch (tx_pin_num & 127) {
  235. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  236. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  237. #if defined(KINETISL)
  238. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  239. case 24: CORE_PIN24_CONFIG = 0; break; // PTE20
  240. #endif
  241. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  242. case 26: CORE_PIN26_CONFIG = 0; break; //PTA14
  243. #endif
  244. }
  245. if (opendrain) {
  246. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  247. } else {
  248. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  249. }
  250. switch (pin & 127) {
  251. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  252. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  253. #if defined(KINETISL)
  254. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  255. case 24: CORE_PIN24_CONFIG = cfg | PORT_PCR_MUX(4); break;
  256. #endif
  257. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  258. case 26: CORE_PIN26_CONFIG = cfg | PORT_PCR_MUX(3); break;
  259. #endif
  260. }
  261. }
  262. tx_pin_num = pin;
  263. }
  264. void serial_set_rx(uint8_t pin)
  265. {
  266. if (pin == rx_pin_num) return;
  267. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  268. switch (rx_pin_num) {
  269. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  270. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  271. #if defined(KINETISL)
  272. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  273. case 25: CORE_PIN25_CONFIG = 0; break; // PTE21
  274. #endif
  275. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  276. case 27: CORE_PIN27_CONFIG = 0; break; // PTA15
  277. #endif
  278. }
  279. switch (pin) {
  280. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  281. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  282. #if defined(KINETISL)
  283. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  284. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  285. #endif
  286. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  287. case 27: CORE_PIN27_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  288. #endif
  289. }
  290. }
  291. rx_pin_num = pin;
  292. }
  293. int serial_set_rts(uint8_t pin)
  294. {
  295. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  296. if (pin < CORE_NUM_DIGITAL) {
  297. rts_pin = portOutputRegister(pin);
  298. #if defined(KINETISL)
  299. rts_mask = digitalPinToBitMask(pin);
  300. #endif
  301. pinMode(pin, OUTPUT);
  302. rts_assert();
  303. } else {
  304. rts_pin = NULL;
  305. return 0;
  306. }
  307. /*
  308. if (pin == 6) {
  309. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  310. } else if (pin == 19) {
  311. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  312. } else {
  313. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  314. return 0;
  315. }
  316. UART0_MODEM |= UART_MODEM_RXRTSE;
  317. */
  318. return 1;
  319. }
  320. int serial_set_cts(uint8_t pin)
  321. {
  322. #if defined(KINETISK)
  323. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  324. if (pin == 18) {
  325. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  326. } else if (pin == 20) {
  327. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  328. } else {
  329. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  330. return 0;
  331. }
  332. UART0_MODEM |= UART_MODEM_TXCTSE;
  333. return 1;
  334. #else
  335. return 0;
  336. #endif
  337. }
  338. void serial_putchar(uint32_t c)
  339. {
  340. uint32_t head, n;
  341. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  342. if (transmit_pin) transmit_assert();
  343. head = tx_buffer_head;
  344. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  345. while (tx_buffer_tail == head) {
  346. int priority = nvic_execution_priority();
  347. if (priority <= IRQ_PRIORITY) {
  348. if ((UART0_S1 & UART_S1_TDRE)) {
  349. uint32_t tail = tx_buffer_tail;
  350. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  351. n = tx_buffer[tail];
  352. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  353. UART0_D = n;
  354. tx_buffer_tail = tail;
  355. }
  356. } else if (priority >= 256) {
  357. yield();
  358. }
  359. }
  360. tx_buffer[head] = c;
  361. transmitting = 1;
  362. tx_buffer_head = head;
  363. UART0_C2 = C2_TX_ACTIVE;
  364. }
  365. #ifdef HAS_KINETISK_UART0_FIFO
  366. void serial_write(const void *buf, unsigned int count)
  367. {
  368. const uint8_t *p = (const uint8_t *)buf;
  369. const uint8_t *end = p + count;
  370. uint32_t head, n;
  371. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  372. if (transmit_pin) transmit_assert();
  373. while (p < end) {
  374. head = tx_buffer_head;
  375. if (++head >= SERIAL1_TX_BUFFER_SIZE) head = 0;
  376. if (tx_buffer_tail == head) {
  377. UART0_C2 = C2_TX_ACTIVE;
  378. do {
  379. int priority = nvic_execution_priority();
  380. if (priority <= IRQ_PRIORITY) {
  381. if ((UART0_S1 & UART_S1_TDRE)) {
  382. uint32_t tail = tx_buffer_tail;
  383. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  384. n = tx_buffer[tail];
  385. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  386. UART0_D = n;
  387. tx_buffer_tail = tail;
  388. }
  389. } else if (priority >= 256) {
  390. yield();
  391. }
  392. } while (tx_buffer_tail == head);
  393. }
  394. tx_buffer[head] = *p++;
  395. transmitting = 1;
  396. tx_buffer_head = head;
  397. }
  398. UART0_C2 = C2_TX_ACTIVE;
  399. }
  400. #else
  401. void serial_write(const void *buf, unsigned int count)
  402. {
  403. const uint8_t *p = (const uint8_t *)buf;
  404. while (count-- > 0) serial_putchar(*p++);
  405. }
  406. #endif
  407. void serial_flush(void)
  408. {
  409. while (transmitting) yield(); // wait
  410. }
  411. int serial_write_buffer_free(void)
  412. {
  413. uint32_t head, tail;
  414. head = tx_buffer_head;
  415. tail = tx_buffer_tail;
  416. if (head >= tail) return SERIAL1_TX_BUFFER_SIZE - 1 - head + tail;
  417. return tail - head - 1;
  418. }
  419. int serial_available(void)
  420. {
  421. uint32_t head, tail;
  422. head = rx_buffer_head;
  423. tail = rx_buffer_tail;
  424. if (head >= tail) return head - tail;
  425. return SERIAL1_RX_BUFFER_SIZE + head - tail;
  426. }
  427. int serial_getchar(void)
  428. {
  429. uint32_t head, tail;
  430. int c;
  431. head = rx_buffer_head;
  432. tail = rx_buffer_tail;
  433. if (head == tail) return -1;
  434. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  435. c = rx_buffer[tail];
  436. rx_buffer_tail = tail;
  437. if (rts_pin) {
  438. int avail;
  439. if (head >= tail) avail = head - tail;
  440. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  441. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  442. }
  443. return c;
  444. }
  445. int serial_peek(void)
  446. {
  447. uint32_t head, tail;
  448. head = rx_buffer_head;
  449. tail = rx_buffer_tail;
  450. if (head == tail) return -1;
  451. if (++tail >= SERIAL1_RX_BUFFER_SIZE) tail = 0;
  452. return rx_buffer[tail];
  453. }
  454. void serial_clear(void)
  455. {
  456. #ifdef HAS_KINETISK_UART0_FIFO
  457. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  458. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  459. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  460. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  461. #endif
  462. rx_buffer_head = rx_buffer_tail;
  463. if (rts_pin) rts_assert();
  464. }
  465. // status interrupt combines
  466. // Transmit data below watermark UART_S1_TDRE
  467. // Transmit complete UART_S1_TC
  468. // Idle line UART_S1_IDLE
  469. // Receive data above watermark UART_S1_RDRF
  470. // LIN break detect UART_S2_LBKDIF
  471. // RxD pin active edge UART_S2_RXEDGIF
  472. void uart0_status_isr(void)
  473. {
  474. uint32_t head, tail, n;
  475. uint8_t c;
  476. #ifdef HAS_KINETISK_UART0_FIFO
  477. uint32_t newhead;
  478. uint8_t avail;
  479. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  480. __disable_irq();
  481. avail = UART0_RCFIFO;
  482. if (avail == 0) {
  483. // The only way to clear the IDLE interrupt flag is
  484. // to read the data register. But reading with no
  485. // data causes a FIFO underrun, which causes the
  486. // FIFO to return corrupted data. If anyone from
  487. // Freescale reads this, what a poor design! There
  488. // write should be a write-1-to-clear for IDLE.
  489. c = UART0_D;
  490. // flushing the fifo recovers from the underrun,
  491. // but there's a possible race condition where a
  492. // new character could be received between reading
  493. // RCFIFO == 0 and flushing the FIFO. To minimize
  494. // the chance, interrupts are disabled so a higher
  495. // priority interrupt (hopefully) doesn't delay.
  496. // TODO: change this to disabling the IDLE interrupt
  497. // which won't be simple, since we already manage
  498. // which transmit interrupts are enabled.
  499. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  500. __enable_irq();
  501. } else {
  502. __enable_irq();
  503. head = rx_buffer_head;
  504. tail = rx_buffer_tail;
  505. do {
  506. if (use9Bits && (UART0_C3 & 0x80)) {
  507. n = UART0_D | 0x100;
  508. } else {
  509. n = UART0_D;
  510. }
  511. newhead = head + 1;
  512. if (newhead >= SERIAL1_RX_BUFFER_SIZE) newhead = 0;
  513. if (newhead != tail) {
  514. head = newhead;
  515. rx_buffer[head] = n;
  516. }
  517. } while (--avail > 0);
  518. rx_buffer_head = head;
  519. if (rts_pin) {
  520. int avail;
  521. if (head >= tail) avail = head - tail;
  522. else avail = SERIAL1_RX_BUFFER_SIZE + head - tail;
  523. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  524. }
  525. }
  526. }
  527. c = UART0_C2;
  528. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  529. head = tx_buffer_head;
  530. tail = tx_buffer_tail;
  531. do {
  532. if (tail == head) break;
  533. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  534. avail = UART0_S1;
  535. n = tx_buffer[tail];
  536. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  537. UART0_D = n;
  538. } while (UART0_TCFIFO < 8);
  539. tx_buffer_tail = tail;
  540. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  541. }
  542. #else
  543. if (UART0_S1 & UART_S1_RDRF) {
  544. if (use9Bits && (UART0_C3 & 0x80)) {
  545. n = UART0_D | 0x100;
  546. } else {
  547. n = UART0_D;
  548. }
  549. head = rx_buffer_head + 1;
  550. if (head >= SERIAL1_RX_BUFFER_SIZE) head = 0;
  551. if (head != rx_buffer_tail) {
  552. rx_buffer[head] = n;
  553. rx_buffer_head = head;
  554. }
  555. }
  556. c = UART0_C2;
  557. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  558. head = tx_buffer_head;
  559. tail = tx_buffer_tail;
  560. if (head == tail) {
  561. UART0_C2 = C2_TX_COMPLETING;
  562. } else {
  563. if (++tail >= SERIAL1_TX_BUFFER_SIZE) tail = 0;
  564. n = tx_buffer[tail];
  565. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  566. UART0_D = n;
  567. tx_buffer_tail = tail;
  568. }
  569. }
  570. #endif
  571. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  572. transmitting = 0;
  573. if (transmit_pin) transmit_deassert();
  574. UART0_C2 = C2_TX_INACTIVE;
  575. }
  576. }
  577. void serial_print(const char *p)
  578. {
  579. while (*p) {
  580. char c = *p++;
  581. if (c == '\n') serial_putchar('\r');
  582. serial_putchar(c);
  583. }
  584. }
  585. static void serial_phex1(uint32_t n)
  586. {
  587. n &= 15;
  588. if (n < 10) {
  589. serial_putchar('0' + n);
  590. } else {
  591. serial_putchar('A' - 10 + n);
  592. }
  593. }
  594. void serial_phex(uint32_t n)
  595. {
  596. serial_phex1(n >> 4);
  597. serial_phex1(n);
  598. }
  599. void serial_phex16(uint32_t n)
  600. {
  601. serial_phex(n >> 8);
  602. serial_phex(n);
  603. }
  604. void serial_phex32(uint32_t n)
  605. {
  606. serial_phex(n >> 24);
  607. serial_phex(n >> 16);
  608. serial_phex(n >> 8);
  609. serial_phex(n);
  610. }