You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

464 satır
13KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL3_TX_BUFFER_SIZE
  37. #define SERIAL3_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL3_RX_BUFFER_SIZE
  40. #define SERIAL3_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL3_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL3_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL3_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL3_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL3_TX_BUFFER_SIZE > 65535
  76. static volatile uint32_t tx_buffer_head = 0;
  77. static volatile uint32_t tx_buffer_tail = 0;
  78. #elif SERIAL3_TX_BUFFER_SIZE > 255
  79. static volatile uint16_t tx_buffer_head = 0;
  80. static volatile uint16_t tx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t tx_buffer_head = 0;
  83. static volatile uint8_t tx_buffer_tail = 0;
  84. #endif
  85. #if SERIAL3_RX_BUFFER_SIZE > 65535
  86. static volatile uint32_t rx_buffer_head = 0;
  87. static volatile uint32_t rx_buffer_tail = 0;
  88. #elif SERIAL3_RX_BUFFER_SIZE > 255
  89. static volatile uint16_t rx_buffer_head = 0;
  90. static volatile uint16_t rx_buffer_tail = 0;
  91. #else
  92. static volatile uint8_t rx_buffer_head = 0;
  93. static volatile uint8_t rx_buffer_tail = 0;
  94. #endif
  95. #if defined(KINETISL)
  96. static uint8_t rx_pin_num = 7;
  97. #endif
  98. static uint8_t tx_pin_num = 8;
  99. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  100. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  101. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  102. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  103. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  104. #define C2_TX_INACTIVE C2_ENABLE
  105. void serial3_begin(uint32_t divisor)
  106. {
  107. SIM_SCGC4 |= SIM_SCGC4_UART2; // turn on clock, TODO: use bitband
  108. rx_buffer_head = 0;
  109. rx_buffer_tail = 0;
  110. tx_buffer_head = 0;
  111. tx_buffer_tail = 0;
  112. transmitting = 0;
  113. #if defined(KINETISK)
  114. CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  115. CORE_PIN8_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  116. #elif defined(KINETISL)
  117. switch (rx_pin_num) {
  118. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  119. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  120. }
  121. switch (tx_pin_num) {
  122. case 8: CORE_PIN8_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  123. case 20: CORE_PIN20_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  124. }
  125. #endif
  126. #if defined(HAS_KINETISK_UART2)
  127. if (divisor < 32) divisor = 32;
  128. UART2_BDH = (divisor >> 13) & 0x1F;
  129. UART2_BDL = (divisor >> 5) & 0xFF;
  130. UART2_C4 = divisor & 0x1F;
  131. UART2_C1 = 0;
  132. UART2_PFIFO = 0;
  133. #elif defined(HAS_KINETISL_UART2)
  134. if (divisor < 1) divisor = 1;
  135. UART2_BDH = (divisor >> 8) & 0x1F;
  136. UART2_BDL = divisor & 0xFF;
  137. UART2_C1 = 0;
  138. #endif
  139. UART2_C2 = C2_TX_INACTIVE;
  140. NVIC_SET_PRIORITY(IRQ_UART2_STATUS, IRQ_PRIORITY);
  141. NVIC_ENABLE_IRQ(IRQ_UART2_STATUS);
  142. }
  143. void serial3_format(uint32_t format)
  144. {
  145. uint8_t c;
  146. c = UART2_C1;
  147. c = (c & ~0x13) | (format & 0x03); // configure parity
  148. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  149. UART2_C1 = c;
  150. if ((format & 0x0F) == 0x04) UART2_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  151. c = UART2_S2 & ~0x10;
  152. if (format & 0x10) c |= 0x10; // rx invert
  153. UART2_S2 = c;
  154. c = UART2_C3 & ~0x10;
  155. if (format & 0x20) c |= 0x10; // tx invert
  156. UART2_C3 = c;
  157. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  158. c = UART2_C4 & 0x1F;
  159. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  160. UART2_C4 = c;
  161. use9Bits = format & 0x80;
  162. #endif
  163. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  164. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  165. if ( format & 0x100) {
  166. uint8_t bdl = UART2_BDL;
  167. UART2_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  168. UART2_BDL = bdl; // Says BDH not acted on until BDL is written
  169. }
  170. #endif
  171. }
  172. void serial3_end(void)
  173. {
  174. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return;
  175. while (transmitting) yield(); // wait for buffered data to send
  176. NVIC_DISABLE_IRQ(IRQ_UART2_STATUS);
  177. UART2_C2 = 0;
  178. #if defined(KINETISK)
  179. CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  180. CORE_PIN8_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  181. #elif defined(KINETISL)
  182. switch (rx_pin_num) {
  183. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  184. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  185. }
  186. switch (tx_pin_num & 127) {
  187. case 8: CORE_PIN8_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  188. case 20: CORE_PIN20_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break;
  189. }
  190. #endif
  191. UART2_S1;
  192. UART2_D; // clear leftover error status
  193. rx_buffer_head = 0;
  194. rx_buffer_tail = 0;
  195. if (rts_pin) rts_deassert();
  196. }
  197. void serial3_set_transmit_pin(uint8_t pin)
  198. {
  199. while (transmitting) ;
  200. pinMode(pin, OUTPUT);
  201. digitalWrite(pin, LOW);
  202. transmit_pin = portOutputRegister(pin);
  203. #if defined(KINETISL)
  204. transmit_mask = digitalPinToBitMask(pin);
  205. #endif
  206. }
  207. void serial3_set_tx(uint8_t pin, uint8_t opendrain)
  208. {
  209. uint32_t cfg;
  210. if (opendrain) pin |= 128;
  211. if (pin == tx_pin_num) return;
  212. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  213. switch (tx_pin_num & 127) {
  214. case 8: CORE_PIN8_CONFIG = 0; break; // PTD3
  215. #if defined(KINETISL)
  216. case 20: CORE_PIN20_CONFIG = 0; break; // PTD5
  217. #endif
  218. }
  219. if (opendrain) {
  220. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  221. } else {
  222. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  223. }
  224. switch (pin & 127) {
  225. case 8: CORE_PIN8_CONFIG = cfg | PORT_PCR_MUX(3); break;
  226. #if defined(KINETISL)
  227. case 20: CORE_PIN20_CONFIG = cfg | PORT_PCR_MUX(3); break;
  228. #endif
  229. }
  230. }
  231. tx_pin_num = pin;
  232. }
  233. void serial3_set_rx(uint8_t pin)
  234. {
  235. #if defined(KINETISL)
  236. if (pin == rx_pin_num) return;
  237. if ((SIM_SCGC4 & SIM_SCGC4_UART2)) {
  238. switch (rx_pin_num) {
  239. case 7: CORE_PIN7_CONFIG = 0; break; // PTD2
  240. case 6: CORE_PIN6_CONFIG = 0; break; // PTD4
  241. }
  242. switch (pin) {
  243. case 7: CORE_PIN7_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  244. case 6: CORE_PIN6_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  245. }
  246. }
  247. rx_pin_num = pin;
  248. #endif
  249. }
  250. int serial3_set_rts(uint8_t pin)
  251. {
  252. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return 0;
  253. if (pin < CORE_NUM_DIGITAL) {
  254. rts_pin = portOutputRegister(pin);
  255. #if defined(KINETISL)
  256. rts_mask = digitalPinToBitMask(pin);
  257. #endif
  258. pinMode(pin, OUTPUT);
  259. rts_assert();
  260. } else {
  261. rts_pin = NULL;
  262. return 0;
  263. }
  264. /*
  265. if (pin == 2) {
  266. CORE_PIN2_CONFIG = PORT_PCR_MUX(3);
  267. } else {
  268. UART2_MODEM &= ~UART_MODEM_RXRTSE;
  269. return 0;
  270. }
  271. UART2_MODEM |= UART_MODEM_RXRTSE;
  272. */
  273. return 1;
  274. }
  275. int serial3_set_cts(uint8_t pin)
  276. {
  277. #if defined(KINETISK)
  278. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return 0;
  279. if (pin == 14) {
  280. CORE_PIN14_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  281. } else {
  282. UART2_MODEM &= ~UART_MODEM_TXCTSE;
  283. return 0;
  284. }
  285. UART2_MODEM |= UART_MODEM_TXCTSE;
  286. return 1;
  287. #else
  288. return 0;
  289. #endif
  290. }
  291. void serial3_putchar(uint32_t c)
  292. {
  293. uint32_t head, n;
  294. if (!(SIM_SCGC4 & SIM_SCGC4_UART2)) return;
  295. if (transmit_pin) transmit_assert();
  296. head = tx_buffer_head;
  297. if (++head >= SERIAL3_TX_BUFFER_SIZE) head = 0;
  298. while (tx_buffer_tail == head) {
  299. int priority = nvic_execution_priority();
  300. if (priority <= IRQ_PRIORITY) {
  301. if ((UART2_S1 & UART_S1_TDRE)) {
  302. uint32_t tail = tx_buffer_tail;
  303. if (++tail >= SERIAL3_TX_BUFFER_SIZE) tail = 0;
  304. n = tx_buffer[tail];
  305. if (use9Bits) UART2_C3 = (UART2_C3 & ~0x40) | ((n & 0x100) >> 2);
  306. UART2_D = n;
  307. tx_buffer_tail = tail;
  308. }
  309. } else if (priority >= 256) {
  310. yield(); // wait
  311. }
  312. }
  313. tx_buffer[head] = c;
  314. transmitting = 1;
  315. tx_buffer_head = head;
  316. UART2_C2 = C2_TX_ACTIVE;
  317. }
  318. void serial3_write(const void *buf, unsigned int count)
  319. {
  320. const uint8_t *p = (const uint8_t *)buf;
  321. while (count-- > 0) serial3_putchar(*p++);
  322. }
  323. void serial3_flush(void)
  324. {
  325. while (transmitting) yield(); // wait
  326. }
  327. int serial3_write_buffer_free(void)
  328. {
  329. uint32_t head, tail;
  330. head = tx_buffer_head;
  331. tail = tx_buffer_tail;
  332. if (head >= tail) return SERIAL3_TX_BUFFER_SIZE - 1 - head + tail;
  333. return tail - head - 1;
  334. }
  335. int serial3_available(void)
  336. {
  337. uint32_t head, tail;
  338. head = rx_buffer_head;
  339. tail = rx_buffer_tail;
  340. if (head >= tail) return head - tail;
  341. return SERIAL3_RX_BUFFER_SIZE + head - tail;
  342. }
  343. int serial3_getchar(void)
  344. {
  345. uint32_t head, tail;
  346. int c;
  347. head = rx_buffer_head;
  348. tail = rx_buffer_tail;
  349. if (head == tail) return -1;
  350. if (++tail >= SERIAL3_RX_BUFFER_SIZE) tail = 0;
  351. c = rx_buffer[tail];
  352. rx_buffer_tail = tail;
  353. if (rts_pin) {
  354. int avail;
  355. if (head >= tail) avail = head - tail;
  356. else avail = SERIAL3_RX_BUFFER_SIZE + head - tail;
  357. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  358. }
  359. return c;
  360. }
  361. int serial3_peek(void)
  362. {
  363. uint32_t head, tail;
  364. head = rx_buffer_head;
  365. tail = rx_buffer_tail;
  366. if (head == tail) return -1;
  367. if (++tail >= SERIAL3_RX_BUFFER_SIZE) tail = 0;
  368. return rx_buffer[tail];
  369. }
  370. void serial3_clear(void)
  371. {
  372. rx_buffer_head = rx_buffer_tail;
  373. if (rts_pin) rts_assert();
  374. }
  375. // status interrupt combines
  376. // Transmit data below watermark UART_S1_TDRE
  377. // Transmit complete UART_S1_TC
  378. // Idle line UART_S1_IDLE
  379. // Receive data above watermark UART_S1_RDRF
  380. // LIN break detect UART_S2_LBKDIF
  381. // RxD pin active edge UART_S2_RXEDGIF
  382. void uart2_status_isr(void)
  383. {
  384. uint32_t head, tail, n;
  385. uint8_t c;
  386. if (UART2_S1 & UART_S1_RDRF) {
  387. if (use9Bits && (UART2_C3 & 0x80)) {
  388. n = UART2_D | 0x100;
  389. } else {
  390. n = UART2_D;
  391. }
  392. head = rx_buffer_head + 1;
  393. if (head >= SERIAL3_RX_BUFFER_SIZE) head = 0;
  394. if (head != rx_buffer_tail) {
  395. rx_buffer[head] = n;
  396. rx_buffer_head = head;
  397. }
  398. if (rts_pin) {
  399. int avail;
  400. tail = tx_buffer_tail;
  401. if (head >= tail) avail = head - tail;
  402. else avail = SERIAL3_RX_BUFFER_SIZE + head - tail;
  403. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  404. }
  405. }
  406. c = UART2_C2;
  407. if ((c & UART_C2_TIE) && (UART2_S1 & UART_S1_TDRE)) {
  408. head = tx_buffer_head;
  409. tail = tx_buffer_tail;
  410. if (head == tail) {
  411. UART2_C2 = C2_TX_COMPLETING;
  412. } else {
  413. if (++tail >= SERIAL3_TX_BUFFER_SIZE) tail = 0;
  414. n = tx_buffer[tail];
  415. if (use9Bits) UART2_C3 = (UART2_C3 & ~0x40) | ((n & 0x100) >> 2);
  416. UART2_D = n;
  417. tx_buffer_tail = tail;
  418. }
  419. }
  420. if ((c & UART_C2_TCIE) && (UART2_S1 & UART_S1_TC)) {
  421. transmitting = 0;
  422. if (transmit_pin) transmit_deassert();
  423. UART2_C2 = C2_TX_INACTIVE;
  424. }
  425. }