Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

830 lines
23KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if 0
  34. // moved to pins_arduino.h
  35. struct digital_pin_bitband_and_config_table_struct {
  36. volatile uint32_t *reg;
  37. volatile uint32_t *config;
  38. };
  39. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
  40. // compatibility macros
  41. #define digitalPinToPort(pin) (pin)
  42. #define digitalPinToBitMask(pin) (1)
  43. #define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
  44. #define portSetRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
  45. #define portClearRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
  46. #define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
  47. #define portInputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
  48. #define portModeRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
  49. #define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
  50. #endif
  51. //#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
  52. //#define analogInPinToBit(P) (P)
  53. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  54. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  55. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  56. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  57. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  58. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  73. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  74. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
  92. };
  93. typedef void (*voidFuncPtr)(void);
  94. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  95. void init_pin_interrupts(void)
  96. {
  97. //SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
  98. NVIC_ENABLE_IRQ(IRQ_PORTA);
  99. NVIC_ENABLE_IRQ(IRQ_PORTB);
  100. NVIC_ENABLE_IRQ(IRQ_PORTC);
  101. NVIC_ENABLE_IRQ(IRQ_PORTD);
  102. NVIC_ENABLE_IRQ(IRQ_PORTE);
  103. // TODO: maybe these should be set to a lower priority
  104. // so if the user puts lots of slow code on attachInterrupt
  105. // fast interrupts will still be serviced quickly?
  106. }
  107. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  108. {
  109. _VectorsRam[irq + 16] = function;
  110. }
  111. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  112. {
  113. volatile uint32_t *config;
  114. uint32_t cfg, mask;
  115. if (pin >= CORE_NUM_DIGITAL) return;
  116. switch (mode) {
  117. case CHANGE: mask = 0x0B; break;
  118. case RISING: mask = 0x09; break;
  119. case FALLING: mask = 0x0A; break;
  120. case LOW: mask = 0x08; break;
  121. case HIGH: mask = 0x0C; break;
  122. default: return;
  123. }
  124. mask = (mask << 16) | 0x01000000;
  125. config = portConfigRegister(pin);
  126. __disable_irq();
  127. cfg = *config;
  128. cfg &= ~0x000F0000; // disable any previous interrupt
  129. *config = cfg;
  130. intFunc[pin] = function; // set the function pointer
  131. cfg |= mask;
  132. *config = cfg; // enable the new interrupt
  133. __enable_irq();
  134. }
  135. void detachInterrupt(uint8_t pin)
  136. {
  137. volatile uint32_t *config;
  138. config = portConfigRegister(pin);
  139. __disable_irq();
  140. *config = ((*config & ~0x000F0000) | 0x01000000);
  141. intFunc[pin] = NULL;
  142. __enable_irq();
  143. }
  144. void porta_isr(void)
  145. {
  146. uint32_t isfr = PORTA_ISFR;
  147. PORTA_ISFR = isfr;
  148. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  149. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  150. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  151. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  152. }
  153. void portb_isr(void)
  154. {
  155. uint32_t isfr = PORTB_ISFR;
  156. PORTB_ISFR = isfr;
  157. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  158. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  159. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  160. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  161. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  162. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  163. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  164. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  165. }
  166. void portc_isr(void)
  167. {
  168. // TODO: these are inefficent. Use CLZ somehow....
  169. uint32_t isfr = PORTC_ISFR;
  170. PORTC_ISFR = isfr;
  171. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  172. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  173. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  174. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  175. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  176. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  177. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  178. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  179. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  180. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  181. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  182. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  183. }
  184. void portd_isr(void)
  185. {
  186. uint32_t isfr = PORTD_ISFR;
  187. PORTD_ISFR = isfr;
  188. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  189. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  190. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  191. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  192. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  193. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  194. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  195. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  196. }
  197. void porte_isr(void)
  198. {
  199. uint32_t isfr = PORTE_ISFR;
  200. PORTE_ISFR = isfr;
  201. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  202. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  203. }
  204. unsigned long rtc_get(void)
  205. {
  206. return RTC_TSR;
  207. }
  208. void rtc_set(unsigned long t)
  209. {
  210. RTC_SR = 0;
  211. RTC_TPR = 0;
  212. RTC_TSR = t;
  213. RTC_SR = RTC_SR_TCE;
  214. }
  215. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  216. // For example, adjust = -100 is slows the clock by 11.92 ppm
  217. //
  218. void rtc_compensate(int adjust)
  219. {
  220. uint32_t comp, interval, tcr;
  221. // This simple approach tries to maximize the interval.
  222. // Perhaps minimizing TCR would be better, so the
  223. // compensation is distributed more evenly across
  224. // many seconds, rather than saving it all up and then
  225. // altering one second up to +/- 0.38%
  226. if (adjust >= 0) {
  227. comp = adjust;
  228. interval = 256;
  229. while (1) {
  230. tcr = comp * interval;
  231. if (tcr < 128*256) break;
  232. if (--interval == 1) break;
  233. }
  234. tcr = tcr >> 8;
  235. } else {
  236. comp = -adjust;
  237. interval = 256;
  238. while (1) {
  239. tcr = comp * interval;
  240. if (tcr < 129*256) break;
  241. if (--interval == 1) break;
  242. }
  243. tcr = tcr >> 8;
  244. tcr = 256 - tcr;
  245. }
  246. RTC_TCR = ((interval - 1) << 8) | tcr;
  247. }
  248. #if 0
  249. // TODO: build system should define this
  250. // so RTC is automatically initialized to approx correct time
  251. // at least when the program begins running right after upload
  252. #ifndef TIME_T
  253. #define TIME_T 1350160272
  254. #endif
  255. void init_rtc(void)
  256. {
  257. serial_print("init_rtc\n");
  258. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  259. // enable the RTC crystal oscillator, for approx 12pf crystal
  260. if (!(RTC_CR & RTC_CR_OSCE)) {
  261. serial_print("start RTC oscillator\n");
  262. RTC_SR = 0;
  263. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  264. }
  265. // should wait for crystal to stabilize.....
  266. serial_print("SR=");
  267. serial_phex32(RTC_SR);
  268. serial_print("\n");
  269. serial_print("CR=");
  270. serial_phex32(RTC_CR);
  271. serial_print("\n");
  272. serial_print("TSR=");
  273. serial_phex32(RTC_TSR);
  274. serial_print("\n");
  275. serial_print("TCR=");
  276. serial_phex32(RTC_TCR);
  277. serial_print("\n");
  278. if (RTC_SR & RTC_SR_TIF) {
  279. // enable the RTC
  280. RTC_SR = 0;
  281. RTC_TPR = 0;
  282. RTC_TSR = TIME_T;
  283. RTC_SR = RTC_SR_TCE;
  284. }
  285. }
  286. #endif
  287. extern void usb_init(void);
  288. // create a default PWM at the same 488.28 Hz as Arduino Uno
  289. #if F_BUS == 60000000
  290. #define DEFAULT_FTM_MOD (61440 - 1)
  291. #define DEFAULT_FTM_PRESCALE 1
  292. #elif F_BUS == 56000000
  293. #define DEFAULT_FTM_MOD (57344 - 1)
  294. #define DEFAULT_FTM_PRESCALE 1
  295. #elif F_BUS == 48000000
  296. #define DEFAULT_FTM_MOD (49152 - 1)
  297. #define DEFAULT_FTM_PRESCALE 1
  298. #elif F_BUS == 40000000
  299. #define DEFAULT_FTM_MOD (40960 - 1)
  300. #define DEFAULT_FTM_PRESCALE 1
  301. #elif F_BUS == 36000000
  302. #define DEFAULT_FTM_MOD (36864 - 1)
  303. #define DEFAULT_FTM_PRESCALE 1
  304. #elif F_BUS == 24000000
  305. #define DEFAULT_FTM_MOD (49152 - 1)
  306. #define DEFAULT_FTM_PRESCALE 0
  307. #elif F_BUS == 16000000
  308. #define DEFAULT_FTM_MOD (32768 - 1)
  309. #define DEFAULT_FTM_PRESCALE 0
  310. #elif F_BUS == 8000000
  311. #define DEFAULT_FTM_MOD (16384 - 1)
  312. #define DEFAULT_FTM_PRESCALE 0
  313. #elif F_BUS == 4000000
  314. #define DEFAULT_FTM_MOD (8192 - 1)
  315. #define DEFAULT_FTM_PRESCALE 0
  316. #elif F_BUS == 2000000
  317. #define DEFAULT_FTM_MOD (4096 - 1)
  318. #define DEFAULT_FTM_PRESCALE 0
  319. #endif
  320. //void init_pins(void)
  321. void _init_Teensyduino_internal_(void)
  322. {
  323. init_pin_interrupts();
  324. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  325. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  326. FTM0_CNT = 0;
  327. FTM0_MOD = DEFAULT_FTM_MOD;
  328. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  329. FTM0_C1SC = 0x28;
  330. FTM0_C2SC = 0x28;
  331. FTM0_C3SC = 0x28;
  332. FTM0_C4SC = 0x28;
  333. FTM0_C5SC = 0x28;
  334. FTM0_C6SC = 0x28;
  335. FTM0_C7SC = 0x28;
  336. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  337. FTM1_CNT = 0;
  338. FTM1_MOD = DEFAULT_FTM_MOD;
  339. FTM1_C0SC = 0x28;
  340. FTM1_C1SC = 0x28;
  341. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  342. #if defined(__MK20DX256__)
  343. FTM2_CNT = 0;
  344. FTM2_MOD = DEFAULT_FTM_MOD;
  345. FTM2_C0SC = 0x28;
  346. FTM2_C1SC = 0x28;
  347. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  348. #endif
  349. analog_init();
  350. //delay(100); // TODO: this is not necessary, right?
  351. delay(4);
  352. usb_init();
  353. }
  354. static uint8_t analog_write_res = 8;
  355. // SOPT4 is SIM select clocks?
  356. // FTM is clocked by the bus clock, either 24 or 48 MHz
  357. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  358. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  359. void analogWrite(uint8_t pin, int val)
  360. {
  361. uint32_t cval, max;
  362. #if defined(__MK20DX256__)
  363. if (pin == A14) {
  364. uint8_t res = analog_write_res;
  365. if (res < 12) {
  366. val <<= 12 - res;
  367. } else if (res > 12) {
  368. val >>= res - 12;
  369. }
  370. analogWriteDAC0(val);
  371. return;
  372. }
  373. #endif
  374. max = 1 << analog_write_res;
  375. if (val <= 0) {
  376. digitalWrite(pin, LOW);
  377. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  378. return;
  379. } else if (val >= max) {
  380. digitalWrite(pin, HIGH);
  381. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  382. return;
  383. }
  384. //serial_print("analogWrite\n");
  385. //serial_print("val = ");
  386. //serial_phex32(val);
  387. //serial_print("\n");
  388. //serial_print("analog_write_res = ");
  389. //serial_phex(analog_write_res);
  390. //serial_print("\n");
  391. if (pin == 3 || pin == 4) {
  392. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  393. #if defined(__MK20DX256__)
  394. } else if (pin == 25 || pin == 32) {
  395. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  396. #endif
  397. } else {
  398. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  399. }
  400. //serial_print("cval = ");
  401. //serial_phex32(cval);
  402. //serial_print("\n");
  403. switch (pin) {
  404. case 3: // PTA12, FTM1_CH0
  405. FTM1_C0V = cval;
  406. CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  407. break;
  408. case 4: // PTA13, FTM1_CH1
  409. FTM1_C1V = cval;
  410. CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  411. break;
  412. case 5: // PTD7, FTM0_CH7
  413. FTM0_C7V = cval;
  414. CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  415. break;
  416. case 6: // PTD4, FTM0_CH4
  417. FTM0_C4V = cval;
  418. CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  419. break;
  420. case 9: // PTC3, FTM0_CH2
  421. FTM0_C2V = cval;
  422. CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  423. break;
  424. case 10: // PTC4, FTM0_CH3
  425. FTM0_C3V = cval;
  426. CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  427. break;
  428. case 20: // PTD5, FTM0_CH5
  429. FTM0_C5V = cval;
  430. CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  431. break;
  432. case 21: // PTD6, FTM0_CH6
  433. FTM0_C6V = cval;
  434. CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  435. break;
  436. case 22: // PTC1, FTM0_CH0
  437. FTM0_C0V = cval;
  438. CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  439. break;
  440. case 23: // PTC2, FTM0_CH1
  441. FTM0_C1V = cval;
  442. CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  443. break;
  444. #if defined(__MK20DX256__)
  445. case 32: // PTB18, FTM2_CH0
  446. FTM2_C0V = cval;
  447. CORE_PIN32_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  448. break;
  449. case 25: // PTB19, FTM1_CH1
  450. FTM2_C1V = cval;
  451. CORE_PIN25_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  452. break;
  453. #endif
  454. default:
  455. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  456. pinMode(pin, OUTPUT);
  457. }
  458. }
  459. void analogWriteRes(uint32_t bits)
  460. {
  461. if (bits < 1) {
  462. bits = 1;
  463. } else if (bits > 16) {
  464. bits = 16;
  465. }
  466. analog_write_res = bits;
  467. }
  468. void analogWriteFrequency(uint8_t pin, uint32_t frequency)
  469. {
  470. uint32_t minfreq, prescale, mod;
  471. //serial_print("analogWriteFrequency: pin = ");
  472. //serial_phex(pin);
  473. //serial_print(", freq = ");
  474. //serial_phex32(frequency);
  475. //serial_print("\n");
  476. for (prescale = 0; prescale < 7; prescale++) {
  477. minfreq = (F_BUS >> 16) >> prescale;
  478. if (frequency > minfreq) break;
  479. }
  480. //serial_print("F_BUS = ");
  481. //serial_phex32(F_BUS >> prescale);
  482. //serial_print("\n");
  483. //serial_print("prescale = ");
  484. //serial_phex(prescale);
  485. //serial_print("\n");
  486. //mod = ((F_BUS >> prescale) / frequency) - 1;
  487. mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
  488. if (mod > 65535) mod = 65535;
  489. //serial_print("mod = ");
  490. //serial_phex32(mod);
  491. //serial_print("\n");
  492. if (pin == 3 || pin == 4) {
  493. FTM1_SC = 0;
  494. FTM1_CNT = 0;
  495. FTM1_MOD = mod;
  496. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  497. } else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
  498. (pin >= 20 && pin <= 23)) {
  499. FTM0_SC = 0;
  500. FTM0_CNT = 0;
  501. FTM0_MOD = mod;
  502. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  503. }
  504. #if defined(__MK20DX256__)
  505. else if (pin == 25 || pin == 32) {
  506. FTM2_SC = 0;
  507. FTM2_CNT = 0;
  508. FTM2_MOD = mod;
  509. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  510. }
  511. #endif
  512. }
  513. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  514. void digitalWrite(uint8_t pin, uint8_t val)
  515. {
  516. if (pin >= CORE_NUM_DIGITAL) return;
  517. if (*portModeRegister(pin)) {
  518. if (val) {
  519. *portSetRegister(pin) = 1;
  520. } else {
  521. *portClearRegister(pin) = 1;
  522. }
  523. } else {
  524. volatile uint32_t *config = portConfigRegister(pin);
  525. if (val) {
  526. // TODO use bitband for atomic read-mod-write
  527. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  528. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  529. } else {
  530. // TODO use bitband for atomic read-mod-write
  531. *config &= ~(PORT_PCR_PE);
  532. //*config = PORT_PCR_MUX(1);
  533. }
  534. }
  535. }
  536. uint8_t digitalRead(uint8_t pin)
  537. {
  538. if (pin >= CORE_NUM_DIGITAL) return 0;
  539. return *portInputRegister(pin);
  540. }
  541. void pinMode(uint8_t pin, uint8_t mode)
  542. {
  543. volatile uint32_t *config;
  544. if (pin >= CORE_NUM_DIGITAL) return;
  545. config = portConfigRegister(pin);
  546. if (mode == OUTPUT) {
  547. *portModeRegister(pin) = 1;
  548. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  549. } else {
  550. *portModeRegister(pin) = 0;
  551. if (mode == INPUT) {
  552. *config = PORT_PCR_MUX(1);
  553. } else {
  554. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  555. }
  556. }
  557. }
  558. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  559. {
  560. if (bitOrder == LSBFIRST) {
  561. shiftOut_lsbFirst(dataPin, clockPin, value);
  562. } else {
  563. shiftOut_msbFirst(dataPin, clockPin, value);
  564. }
  565. }
  566. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  567. {
  568. uint8_t mask;
  569. for (mask=0x01; mask; mask <<= 1) {
  570. digitalWrite(dataPin, value & mask);
  571. digitalWrite(clockPin, HIGH);
  572. digitalWrite(clockPin, LOW);
  573. }
  574. }
  575. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  576. {
  577. uint8_t mask;
  578. for (mask=0x80; mask; mask >>= 1) {
  579. digitalWrite(dataPin, value & mask);
  580. digitalWrite(clockPin, HIGH);
  581. digitalWrite(clockPin, LOW);
  582. }
  583. }
  584. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  585. {
  586. if (bitOrder == LSBFIRST) {
  587. return shiftIn_lsbFirst(dataPin, clockPin);
  588. } else {
  589. return shiftIn_msbFirst(dataPin, clockPin);
  590. }
  591. }
  592. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  593. {
  594. uint8_t mask, value=0;
  595. for (mask=0x01; mask; mask <<= 1) {
  596. digitalWrite(clockPin, HIGH);
  597. if (digitalRead(dataPin)) value |= mask;
  598. digitalWrite(clockPin, LOW);
  599. }
  600. return value;
  601. }
  602. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  603. {
  604. uint8_t mask, value=0;
  605. for (mask=0x80; mask; mask >>= 1) {
  606. digitalWrite(clockPin, HIGH);
  607. if (digitalRead(dataPin)) value |= mask;
  608. digitalWrite(clockPin, LOW);
  609. }
  610. return value;
  611. }
  612. // the systick interrupt is supposed to increment this at 1 kHz rate
  613. volatile uint32_t systick_millis_count = 0;
  614. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  615. uint32_t micros(void)
  616. {
  617. uint32_t count, current, istatus;
  618. __disable_irq();
  619. current = SYST_CVR;
  620. count = systick_millis_count;
  621. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  622. __enable_irq();
  623. //systick_current = current;
  624. //systick_count = count;
  625. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  626. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  627. current = ((F_CPU / 1000) - 1) - current;
  628. return count * 1000 + current / (F_CPU / 1000000);
  629. }
  630. void delay(uint32_t ms)
  631. {
  632. uint32_t start = micros();
  633. if (ms > 0) {
  634. while (1) {
  635. if ((micros() - start) >= 1000) {
  636. ms--;
  637. if (ms == 0) return;
  638. start += 1000;
  639. }
  640. yield();
  641. }
  642. }
  643. }
  644. // TODO: verify these result in correct timeouts...
  645. #if F_CPU == 168000000
  646. #define PULSEIN_LOOPS_PER_USEC 25
  647. #elif F_CPU == 144000000
  648. #define PULSEIN_LOOPS_PER_USEC 21
  649. #elif F_CPU == 120000000
  650. #define PULSEIN_LOOPS_PER_USEC 18
  651. #elif F_CPU == 96000000
  652. #define PULSEIN_LOOPS_PER_USEC 14
  653. #elif F_CPU == 72000000
  654. #define PULSEIN_LOOPS_PER_USEC 10
  655. #elif F_CPU == 48000000
  656. #define PULSEIN_LOOPS_PER_USEC 7
  657. #elif F_CPU == 24000000
  658. #define PULSEIN_LOOPS_PER_USEC 4
  659. #elif F_CPU == 16000000
  660. #define PULSEIN_LOOPS_PER_USEC 1
  661. #elif F_CPU == 8000000
  662. #define PULSEIN_LOOPS_PER_USEC 1
  663. #elif F_CPU == 4000000
  664. #define PULSEIN_LOOPS_PER_USEC 1
  665. #elif F_CPU == 2000000
  666. #define PULSEIN_LOOPS_PER_USEC 1
  667. #endif
  668. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  669. {
  670. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  671. uint32_t usec_start, usec_stop;
  672. // wait for any previous pulse to end
  673. while (*reg) {
  674. if (--timeout_count == 0) return 0;
  675. }
  676. // wait for the pulse to start
  677. while (!*reg) {
  678. if (--timeout_count == 0) return 0;
  679. }
  680. usec_start = micros();
  681. // wait for the pulse to stop
  682. while (*reg) {
  683. if (--timeout_count == 0) return 0;
  684. }
  685. usec_stop = micros();
  686. return usec_stop - usec_start;
  687. }
  688. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  689. {
  690. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  691. uint32_t usec_start, usec_stop;
  692. // wait for any previous pulse to end
  693. while (!*reg) {
  694. if (--timeout_count == 0) return 0;
  695. }
  696. // wait for the pulse to start
  697. while (*reg) {
  698. if (--timeout_count == 0) return 0;
  699. }
  700. usec_start = micros();
  701. // wait for the pulse to stop
  702. while (!*reg) {
  703. if (--timeout_count == 0) return 0;
  704. }
  705. usec_stop = micros();
  706. return usec_stop - usec_start;
  707. }
  708. // TODO: an inline version should handle the common case where state is const
  709. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  710. {
  711. if (pin >= CORE_NUM_DIGITAL) return 0;
  712. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  713. return pulseIn_low(portInputRegister(pin), timeout);;
  714. }