You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

233 line
10KB

  1. #ifndef _SPIFIFO_h_
  2. #define _SPIFIFO_h_
  3. #include "avr_emulation.h"
  4. #if F_BUS == 60000000
  5. #define HAS_SPIFIFO
  6. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(60 / 3) * ((1+1)/2) = 20 MHz
  7. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(60 / 2) * ((1+0)/2) = 15 MHz
  8. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(60 / 5) * ((1+1)/2)
  9. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1)) //(60 / 2) * ((1+0)/4) = 7.5 MHz
  10. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0)) //(60 / 5) * ((1+0)/2)
  11. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(60 / 5) * ((1+1)/6)
  12. #elif F_BUS == 56000000
  13. #define HAS_SPIFIFO
  14. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 3) * ((1+1)/2) = 18.67
  15. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(56 / 2) * ((1+0)/2) = 14
  16. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 5) * ((1+1)/2) = 11.2
  17. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 7) * ((1+1)/2)
  18. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0)) //(56 / 5) * ((1+0)/2)
  19. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0)) //(56 / 7) * ((1+0)/2)
  20. #elif F_BUS == 48000000
  21. #define HAS_SPIFIFO
  22. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 2) * ((1+1)/2)
  23. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 3) * ((1+1)/2)
  24. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(48 / 2) * ((1+0)/2)
  25. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(48 / 2) * ((1+1)/6)
  26. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1)) //(48 / 2) * ((1+0)/4)
  27. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2)) //(48 / 2) * ((1+0)/6)
  28. #elif F_BUS == 40000000
  29. #define HAS_SPIFIFO
  30. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 2) * ((1+1)/2) = 20
  31. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 3) * ((1+1)/2) = 13.33
  32. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(40 / 2) * ((1+0)/2) = 10
  33. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 5) * ((1+1)/2)
  34. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(40 / 7) * ((1+1)/2) = 5.71
  35. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(1)) //(40 / 5) * ((1+0)/2)
  36. #elif F_BUS == 36000000
  37. #define HAS_SPIFIFO
  38. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 2) * ((1+1)/2) = 18
  39. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/2) = 12
  40. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/2) = 12
  41. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 5) * ((1+1)/2) = 7.2
  42. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(36 / 2) * ((1+1)/6)
  43. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/6)
  44. #elif F_BUS == 24000000
  45. #define HAS_SPIFIFO
  46. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz
  47. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz
  48. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2)
  49. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 3) * ((1+1)/2)
  50. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(24 / 2) * ((1+0)/2)
  51. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/6)
  52. #elif F_BUS == 16000000
  53. #define HAS_SPIFIFO
  54. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  55. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  56. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  57. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  58. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  59. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  60. #elif F_BUS == 8000000
  61. #define HAS_SPIFIFO
  62. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  63. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  64. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  65. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  66. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  67. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  68. #elif F_BUS == 4000000
  69. #define HAS_SPIFIFO
  70. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  71. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  72. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  73. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  74. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  75. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  76. #elif F_BUS == 2000000
  77. #define HAS_SPIFIFO
  78. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  79. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  80. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  81. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  82. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  83. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  84. #endif
  85. /*
  86. #! /usr/bin/perl
  87. $clock = 60;
  88. for $i (2, 3, 5, 7) {
  89. for $j (0, 1) {
  90. for $k (2, 4, 6, 8, 16, 32) {
  91. $out = $clock / $i * (1 + $j) / $k;
  92. printf "%0.2f : ", $out;
  93. print "$clock / $i * (1 + $j) / $k = $out\n";
  94. }
  95. }
  96. }
  97. */
  98. // sck = F_BUS / PBR * ((1+DBR)/BR)
  99. // PBR = 2, 3, 5, 7
  100. // DBR = 0, 1 -- zero preferred
  101. // BR = 2, 4, 6, 8, 16, 32, 64, 128, 256, 512
  102. #ifdef HAS_SPIFIFO
  103. #ifndef SPI_MODE0
  104. #define SPI_MODE0 0x00 // CPOL = 0, CPHA = 0
  105. #define SPI_MODE1 0x04 // CPOL = 0, CPHA = 1
  106. #define SPI_MODE2 0x08 // CPOL = 1, CPHA = 0
  107. #define SPI_MODE3 0x0C // CPOL = 1, CPHA = 1
  108. #endif
  109. #define SPI_CONTINUE 1
  110. class SPIFIFOclass
  111. {
  112. public:
  113. inline void begin(uint8_t pin, uint32_t speed, uint32_t mode=SPI_MODE0) __attribute__((always_inline)) {
  114. uint32_t p, ctar = speed;
  115. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  116. SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  117. if (mode & 0x08) ctar |= SPI_CTAR_CPOL;
  118. if (mode & 0x04) {
  119. ctar |= SPI_CTAR_CPHA;
  120. ctar |= (ctar & 0x0F) << 8;
  121. } else {
  122. ctar |= (ctar & 0x0F) << 12;
  123. }
  124. SPI0.CTAR0 = ctar | SPI_CTAR_FMSZ(7);
  125. SPI0.CTAR1 = ctar | SPI_CTAR_FMSZ(15);
  126. if (pin == 10) { // PTC4
  127. CORE_PIN10_CONFIG = PORT_PCR_MUX(2);
  128. p = 0x01;
  129. } else if (pin == 2) { // PTD0
  130. CORE_PIN2_CONFIG = PORT_PCR_MUX(2);
  131. p = 0x01;
  132. } else if (pin == 9) { // PTC3
  133. CORE_PIN9_CONFIG = PORT_PCR_MUX(2);
  134. p = 0x02;
  135. } else if (pin == 6) { // PTD4
  136. CORE_PIN6_CONFIG = PORT_PCR_MUX(2);
  137. p = 0x02;
  138. } else if (pin == 20) { // PTD5
  139. CORE_PIN20_CONFIG = PORT_PCR_MUX(2);
  140. p = 0x04;
  141. } else if (pin == 23) { // PTC2
  142. CORE_PIN23_CONFIG = PORT_PCR_MUX(2);
  143. p = 0x04;
  144. } else if (pin == 21) { // PTD6
  145. CORE_PIN21_CONFIG = PORT_PCR_MUX(2);
  146. p = 0x08;
  147. } else if (pin == 22) { // PTC1
  148. CORE_PIN22_CONFIG = PORT_PCR_MUX(2);
  149. p = 0x08;
  150. } else if (pin == 15) { // PTC0
  151. CORE_PIN15_CONFIG = PORT_PCR_MUX(2);
  152. p = 0x10;
  153. } else {
  154. reg = portOutputRegister(pin);
  155. *reg = 1;
  156. pinMode(pin, OUTPUT);
  157. p = 0;
  158. }
  159. pcs = p;
  160. clear();
  161. SPCR.enable_pins();
  162. }
  163. inline void write(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) {
  164. uint32_t pcsbits = pcs << 16;
  165. if (pcsbits) {
  166. SPI0.PUSHR = (b & 0xFF) | pcsbits | (cont ? SPI_PUSHR_CONT : 0);
  167. while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ; // wait if FIFO full
  168. } else {
  169. *reg = 0;
  170. SPI0.SR = SPI_SR_EOQF;
  171. SPI0.PUSHR = (b & 0xFF) | (cont ? 0 : SPI_PUSHR_EOQ);
  172. if (cont) {
  173. while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  174. } else {
  175. while (!(SPI0.SR & SPI_SR_EOQF)) ;
  176. *reg = 1;
  177. }
  178. }
  179. }
  180. inline void write16(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) {
  181. uint32_t pcsbits = pcs << 16;
  182. if (pcsbits) {
  183. SPI0.PUSHR = (b & 0xFFFF) | (pcs << 16) |
  184. (cont ? SPI_PUSHR_CONT : 0) | SPI_PUSHR_CTAS(1);
  185. while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  186. } else {
  187. *reg = 0;
  188. SPI0.SR = SPI_SR_EOQF;
  189. SPI0.PUSHR = (b & 0xFFFF) | (cont ? 0 : SPI_PUSHR_EOQ) | SPI_PUSHR_CTAS(1);
  190. if (cont) {
  191. while (((SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  192. } else {
  193. while (!(SPI0.SR & SPI_SR_EOQF)) ;
  194. *reg = 1;
  195. }
  196. }
  197. }
  198. inline uint32_t read(void) __attribute__((always_inline)) {
  199. while ((SPI0.SR & (15 << 4)) == 0) ; // TODO, could wait forever
  200. return SPI0.POPR;
  201. }
  202. inline void clear(void) __attribute__((always_inline)) {
  203. SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
  204. }
  205. private:
  206. static uint8_t pcs;
  207. static volatile uint8_t *reg;
  208. };
  209. extern SPIFIFOclass SPIFIFO;
  210. #endif
  211. #endif