|
- /* Teensyduino Core Library
- * http://www.pjrc.com/teensy/
- * Copyright (c) 2017 PJRC.COM, LLC.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * 1. The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * 2. If the Software is incorporated into a build system that allows
- * selection among a list of target devices, then similar target
- * devices manufactured by PJRC.COM must be included in the list of
- * target devices and selectable in the same manner.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
- #include "core_pins.h"
- #include "pins_arduino.h"
- #include "HardwareSerial.h"
-
-
- #if defined(KINETISK)
- #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
- #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
- //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
- //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
- const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
- {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
- #ifdef CORE_PIN34_PORTREG
- {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN58_PORTREG, CORE_PIN58_BIT), &CORE_PIN58_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN59_PORTREG, CORE_PIN59_BIT), &CORE_PIN59_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN60_PORTREG, CORE_PIN60_BIT), &CORE_PIN60_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN61_PORTREG, CORE_PIN61_BIT), &CORE_PIN61_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN62_PORTREG, CORE_PIN62_BIT), &CORE_PIN62_CONFIG},
- {GPIO_BITBAND_PTR(CORE_PIN63_PORTREG, CORE_PIN63_BIT), &CORE_PIN63_CONFIG},
- #endif
- };
-
- #elif defined(KINETISL)
- const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
- {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
- {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
- };
-
- #endif
-
- static void dummy_isr() {};
-
- typedef void (*voidFuncPtr)(void);
- #if defined(KINETISK)
- #ifdef NO_PORT_ISR_FASTRUN
- static void port_A_isr(void);
- static void port_B_isr(void);
- static void port_C_isr(void);
- static void port_D_isr(void);
- static void port_E_isr(void);
- #else
- static void port_A_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
- static void port_B_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
- static void port_C_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
- static void port_D_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
- static void port_E_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
- #endif
-
- voidFuncPtr isr_table_portA[CORE_MAX_PIN_PORTA+1] = { [0 ... CORE_MAX_PIN_PORTA] = dummy_isr };
- voidFuncPtr isr_table_portB[CORE_MAX_PIN_PORTB+1] = { [0 ... CORE_MAX_PIN_PORTB] = dummy_isr };
- voidFuncPtr isr_table_portC[CORE_MAX_PIN_PORTC+1] = { [0 ... CORE_MAX_PIN_PORTC] = dummy_isr };
- voidFuncPtr isr_table_portD[CORE_MAX_PIN_PORTD+1] = { [0 ... CORE_MAX_PIN_PORTD] = dummy_isr };
- voidFuncPtr isr_table_portE[CORE_MAX_PIN_PORTE+1] = { [0 ... CORE_MAX_PIN_PORTE] = dummy_isr };
-
- // The Pin Config Register is used to look up the correct interrupt table
- // for the corresponding port.
- static inline voidFuncPtr* getIsrTable(volatile uint32_t *config) {
- voidFuncPtr* isr_table = NULL;
- if(&PORTA_PCR0 <= config && config <= &PORTA_PCR31) isr_table = isr_table_portA;
- else if(&PORTB_PCR0 <= config && config <= &PORTB_PCR31) isr_table = isr_table_portB;
- else if(&PORTC_PCR0 <= config && config <= &PORTC_PCR31) isr_table = isr_table_portC;
- else if(&PORTD_PCR0 <= config && config <= &PORTD_PCR31) isr_table = isr_table_portD;
- else if(&PORTE_PCR0 <= config && config <= &PORTE_PCR31) isr_table = isr_table_portE;
- return isr_table;
- }
-
- inline uint32_t getPinIndex(volatile uint32_t *config) {
- uintptr_t v = (uintptr_t) config;
- // There are 32 pin config registers for each port, each port starting at a round address.
- // They are spaced 4 bytes apart.
- return (v % 128) / 4;
- }
- #elif defined(KINETISL)
- volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL] = { [0 ... CORE_NUM_DIGITAL-1] = dummy_isr };
- static void porta_interrupt(void);
- static void portcd_interrupt(void);
- #endif
-
- void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
- {
- _VectorsRam[irq + 16] = function;
- }
-
- void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
- {
- volatile uint32_t *config;
- uint32_t cfg, mask;
-
- if (pin >= CORE_NUM_DIGITAL) return;
- switch (mode) {
- case CHANGE: mask = 0x0B; break;
- case RISING: mask = 0x09; break;
- case FALLING: mask = 0x0A; break;
- case LOW: mask = 0x08; break;
- case HIGH: mask = 0x0C; break;
- default: return;
- }
- mask = (mask << 16) | 0x01000000;
- config = portConfigRegister(pin);
- if ((*config & 0x00000700) == 0) {
- // for compatibility with programs which depend
- // on AVR hardware default to input mode.
- pinMode(pin, INPUT);
- }
- #if defined(KINETISK)
- attachInterruptVector(IRQ_PORTA, port_A_isr);
- attachInterruptVector(IRQ_PORTB, port_B_isr);
- attachInterruptVector(IRQ_PORTC, port_C_isr);
- attachInterruptVector(IRQ_PORTD, port_D_isr);
- attachInterruptVector(IRQ_PORTE, port_E_isr);
- voidFuncPtr* isr_table = getIsrTable(config);
- if(!isr_table) return;
- uint32_t pin_index = getPinIndex(config);
- __disable_irq();
- cfg = *config;
- cfg &= ~0x000F0000; // disable any previous interrupt
- *config = cfg;
- isr_table[pin_index] = function; // set the function pointer
- cfg |= mask;
- *config = cfg; // enable the new interrupt
- __enable_irq();
- #elif defined(KINETISL)
- attachInterruptVector(IRQ_PORTA, porta_interrupt);
- attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
- __disable_irq();
- cfg = *config;
- cfg &= ~0x000F0000; // disable any previous interrupt
- *config = cfg;
- intFunc[pin] = function; // set the function pointer
- cfg |= mask;
- *config = cfg; // enable the new interrupt
- __enable_irq();
- #endif
- }
-
- void detachInterrupt(uint8_t pin)
- {
- volatile uint32_t *config;
-
- config = portConfigRegister(pin);
- #if defined(KINETISK)
- voidFuncPtr* isr_table = getIsrTable(config);
- if(!isr_table) return;
- uint32_t pin_index = getPinIndex(config);
- __disable_irq();
- *config = ((*config & ~0x000F0000) | 0x01000000);
- isr_table[pin_index] = dummy_isr;
- __enable_irq();
- #elif defined(KINETISL)
- __disable_irq();
- *config = ((*config & ~0x000F0000) | 0x01000000);
- intFunc[pin] = dummy_isr;
- __enable_irq();
- #endif
- }
-
-
- typedef void (*voidFuncPtr)(void);
-
- // Using CTZ instead of CLZ is faster, since it allows more efficient bit
- // clearing and fast indexing into the pin ISR table.
- #define PORT_ISR_FUNCTION_CLZ(port_name) \
- static void port_ ## port_name ## _isr(void) { \
- uint32_t isfr = PORT ## port_name ##_ISFR; \
- PORT ## port_name ##_ISFR = isfr; \
- voidFuncPtr* isr_table = isr_table_port ## port_name; \
- uint32_t bit_nr; \
- while(isfr) { \
- bit_nr = __builtin_ctz(isfr); \
- isr_table[bit_nr](); \
- isfr = isfr & (isfr-1); \
- if(!isfr) return; \
- } \
- }
- // END PORT_ISR_FUNCTION_CLZ
-
- #if defined(KINETISK)
- PORT_ISR_FUNCTION_CLZ(A)
- PORT_ISR_FUNCTION_CLZ(B)
- PORT_ISR_FUNCTION_CLZ(C)
- PORT_ISR_FUNCTION_CLZ(D)
- PORT_ISR_FUNCTION_CLZ(E)
- #elif defined(KINETISL)
- // Kinetis L (Teensy LC) is based on Cortex M0 and doesn't have hardware
- // support for CLZ.
-
- #define DISPATCH_PIN_ISR(pin_nr) { voidFuncPtr pin_isr = intFunc[pin_nr]; \
- if(isfr & CORE_PIN ## pin_nr ## _BITMASK) pin_isr(); }
-
- static void porta_interrupt(void)
- {
- uint32_t isfr = PORTA_ISFR;
- PORTA_ISFR = isfr;
- DISPATCH_PIN_ISR(3);
- DISPATCH_PIN_ISR(4);
- }
-
- static void portcd_interrupt(void)
- {
- uint32_t isfr = PORTC_ISFR;
- PORTC_ISFR = isfr;
- DISPATCH_PIN_ISR(9);
- DISPATCH_PIN_ISR(10);
- DISPATCH_PIN_ISR(11);
- DISPATCH_PIN_ISR(12);
- DISPATCH_PIN_ISR(13);
- DISPATCH_PIN_ISR(15);
- DISPATCH_PIN_ISR(22);
- DISPATCH_PIN_ISR(23);
- isfr = PORTD_ISFR;
- PORTD_ISFR = isfr;
- DISPATCH_PIN_ISR(2);
- DISPATCH_PIN_ISR(5);
- DISPATCH_PIN_ISR(6);
- DISPATCH_PIN_ISR(7);
- DISPATCH_PIN_ISR(8);
- DISPATCH_PIN_ISR(14);
- DISPATCH_PIN_ISR(20);
- DISPATCH_PIN_ISR(21);
- }
- #undef DISPATCH_PIN_ISR
-
- #endif
-
-
- #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
-
- unsigned long rtc_get(void)
- {
- return RTC_TSR;
- }
-
- void rtc_set(unsigned long t)
- {
- RTC_SR = 0;
- RTC_TPR = 0;
- RTC_TSR = t;
- RTC_SR = RTC_SR_TCE;
- }
-
- // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
- // For example, adjust = -100 is slows the clock by 11.92 ppm
- //
- void rtc_compensate(int adjust)
- {
- uint32_t comp, interval, tcr;
-
- // This simple approach tries to maximize the interval.
- // Perhaps minimizing TCR would be better, so the
- // compensation is distributed more evenly across
- // many seconds, rather than saving it all up and then
- // altering one second up to +/- 0.38%
- if (adjust >= 0) {
- comp = adjust;
- interval = 256;
- while (1) {
- tcr = comp * interval;
- if (tcr < 128*256) break;
- if (--interval == 1) break;
- }
- tcr = tcr >> 8;
- } else {
- comp = -adjust;
- interval = 256;
- while (1) {
- tcr = comp * interval;
- if (tcr < 129*256) break;
- if (--interval == 1) break;
- }
- tcr = tcr >> 8;
- tcr = 256 - tcr;
- }
- RTC_TCR = ((interval - 1) << 8) | tcr;
- }
-
- #else
-
- unsigned long rtc_get(void) { return 0; }
- void rtc_set(unsigned long t) { }
- void rtc_compensate(int adjust) { }
-
- #endif
-
-
-
- #if 0
- // TODO: build system should define this
- // so RTC is automatically initialized to approx correct time
- // at least when the program begins running right after upload
- #ifndef TIME_T
- #define TIME_T 1350160272
- #endif
-
- void init_rtc(void)
- {
- serial_print("init_rtc\n");
- //SIM_SCGC6 |= SIM_SCGC6_RTC;
-
- // enable the RTC crystal oscillator, for approx 12pf crystal
- if (!(RTC_CR & RTC_CR_OSCE)) {
- serial_print("start RTC oscillator\n");
- RTC_SR = 0;
- RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
- }
- // should wait for crystal to stabilize.....
-
- serial_print("SR=");
- serial_phex32(RTC_SR);
- serial_print("\n");
- serial_print("CR=");
- serial_phex32(RTC_CR);
- serial_print("\n");
- serial_print("TSR=");
- serial_phex32(RTC_TSR);
- serial_print("\n");
- serial_print("TCR=");
- serial_phex32(RTC_TCR);
- serial_print("\n");
-
- if (RTC_SR & RTC_SR_TIF) {
- // enable the RTC
- RTC_SR = 0;
- RTC_TPR = 0;
- RTC_TSR = TIME_T;
- RTC_SR = RTC_SR_TCE;
- }
- }
- #endif
-
- extern void usb_init(void);
-
-
- // create a default PWM at the same 488.28 Hz as Arduino Uno
-
- #if defined(KINETISK)
- #define F_TIMER F_BUS
- #elif defined(KINETISL)
-
- #if F_CPU > 16000000
- #define F_TIMER (F_PLL/2)
- #else
- #define F_TIMER (F_PLL)
- #endif//Low Power
-
- #endif
-
- #if F_TIMER == 128000000
- #define DEFAULT_FTM_MOD (65536 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 120000000
- #define DEFAULT_FTM_MOD (61440 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 108000000
- #define DEFAULT_FTM_MOD (55296 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 96000000
- #define DEFAULT_FTM_MOD (49152 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 90000000
- #define DEFAULT_FTM_MOD (46080 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 80000000
- #define DEFAULT_FTM_MOD (40960 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 72000000
- #define DEFAULT_FTM_MOD (36864 - 1)
- #define DEFAULT_FTM_PRESCALE 2
- #elif F_TIMER == 64000000
- #define DEFAULT_FTM_MOD (65536 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 60000000
- #define DEFAULT_FTM_MOD (61440 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 56000000
- #define DEFAULT_FTM_MOD (57344 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 54000000
- #define DEFAULT_FTM_MOD (55296 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 48000000
- #define DEFAULT_FTM_MOD (49152 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 40000000
- #define DEFAULT_FTM_MOD (40960 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 36000000
- #define DEFAULT_FTM_MOD (36864 - 1)
- #define DEFAULT_FTM_PRESCALE 1
- #elif F_TIMER == 24000000
- #define DEFAULT_FTM_MOD (49152 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_TIMER == 16000000
- #define DEFAULT_FTM_MOD (32768 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_TIMER == 8000000
- #define DEFAULT_FTM_MOD (16384 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_TIMER == 4000000
- #define DEFAULT_FTM_MOD (8192 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #elif F_TIMER == 2000000
- #define DEFAULT_FTM_MOD (4096 - 1)
- #define DEFAULT_FTM_PRESCALE 0
- #endif
-
- //void init_pins(void)
- __attribute__((noinline))
- void _init_Teensyduino_internal_(void)
- {
- #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
- NVIC_ENABLE_IRQ(IRQ_PORTA);
- NVIC_ENABLE_IRQ(IRQ_PORTB);
- NVIC_ENABLE_IRQ(IRQ_PORTC);
- NVIC_ENABLE_IRQ(IRQ_PORTD);
- NVIC_ENABLE_IRQ(IRQ_PORTE);
- #elif defined(__MKL26Z64__)
- NVIC_ENABLE_IRQ(IRQ_PORTA);
- NVIC_ENABLE_IRQ(IRQ_PORTCD);
- #endif
- //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
- //SIM_SCGC6 |= SIM_SCGC6_FTM1;
- FTM0_CNT = 0;
- FTM0_MOD = DEFAULT_FTM_MOD;
- FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
- FTM0_C1SC = 0x28;
- FTM0_C2SC = 0x28;
- FTM0_C3SC = 0x28;
- FTM0_C4SC = 0x28;
- FTM0_C5SC = 0x28;
- #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
- FTM0_C6SC = 0x28;
- FTM0_C7SC = 0x28;
- #endif
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- FTM3_C0SC = 0x28;
- FTM3_C1SC = 0x28;
- FTM3_C2SC = 0x28;
- FTM3_C3SC = 0x28;
- FTM3_C4SC = 0x28;
- FTM3_C5SC = 0x28;
- FTM3_C6SC = 0x28;
- FTM3_C7SC = 0x28;
- #endif
- FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- FTM1_CNT = 0;
- FTM1_MOD = DEFAULT_FTM_MOD;
- FTM1_C0SC = 0x28;
- FTM1_C1SC = 0x28;
- FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
- FTM2_CNT = 0;
- FTM2_MOD = DEFAULT_FTM_MOD;
- FTM2_C0SC = 0x28;
- FTM2_C1SC = 0x28;
- FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- #endif
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- FTM3_CNT = 0;
- FTM3_MOD = DEFAULT_FTM_MOD;
- FTM3_C0SC = 0x28;
- FTM3_C1SC = 0x28;
- FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
- #endif
- #if defined(__MK66FX1M0__)
- SIM_SCGC2 |= SIM_SCGC2_TPM1;
- SIM_SOPT2 |= SIM_SOPT2_TPMSRC(2);
- TPM1_CNT = 0;
- TPM1_MOD = 32767;
- TPM1_C0SC = 0x28;
- TPM1_C1SC = 0x28;
- TPM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0);
- #endif
- analog_init();
- // for background about this startup delay, please see these conversations
- // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
- // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
- #if TEENSYDUINO >= 142
- delay(25);
- usb_init();
- delay(275);
- #else
- delay(50);
- usb_init();
- delay(350);
- #endif
- }
-
-
- #if defined(__MK20DX128__)
- #define FTM0_CH0_PIN 22
- #define FTM0_CH1_PIN 23
- #define FTM0_CH2_PIN 9
- #define FTM0_CH3_PIN 10
- #define FTM0_CH4_PIN 6
- #define FTM0_CH5_PIN 20
- #define FTM0_CH6_PIN 21
- #define FTM0_CH7_PIN 5
- #define FTM1_CH0_PIN 3
- #define FTM1_CH1_PIN 4
- #elif defined(__MK20DX256__)
- #define FTM0_CH0_PIN 22
- #define FTM0_CH1_PIN 23
- #define FTM0_CH2_PIN 9
- #define FTM0_CH3_PIN 10
- #define FTM0_CH4_PIN 6
- #define FTM0_CH5_PIN 20
- #define FTM0_CH6_PIN 21
- #define FTM0_CH7_PIN 5
- #define FTM1_CH0_PIN 3
- #define FTM1_CH1_PIN 4
- #define FTM2_CH0_PIN 32
- #define FTM2_CH1_PIN 25
- #elif defined(__MKL26Z64__)
- #define FTM0_CH0_PIN 22
- #define FTM0_CH1_PIN 23
- #define FTM0_CH2_PIN 9
- #define FTM0_CH3_PIN 10
- #define FTM0_CH4_PIN 6
- #define FTM0_CH5_PIN 20
- #define FTM1_CH0_PIN 16
- #define FTM1_CH1_PIN 17
- #define FTM2_CH0_PIN 3
- #define FTM2_CH1_PIN 4
- #elif defined(__MK64FX512__)
- #define FTM0_CH0_PIN 22
- #define FTM0_CH1_PIN 23
- #define FTM0_CH2_PIN 9
- #define FTM0_CH3_PIN 10
- #define FTM0_CH4_PIN 6
- #define FTM0_CH5_PIN 20
- #define FTM0_CH6_PIN 21
- #define FTM0_CH7_PIN 5
- #define FTM1_CH0_PIN 3
- #define FTM1_CH1_PIN 4
- #define FTM2_CH0_PIN 29
- #define FTM2_CH1_PIN 30
- #define FTM3_CH0_PIN 2
- #define FTM3_CH1_PIN 14
- #define FTM3_CH2_PIN 7
- #define FTM3_CH3_PIN 8
- #define FTM3_CH4_PIN 35
- #define FTM3_CH5_PIN 36
- #define FTM3_CH6_PIN 37
- #define FTM3_CH7_PIN 38
- #elif defined(__MK66FX1M0__)
- #define FTM0_CH0_PIN 22
- #define FTM0_CH1_PIN 23
- #define FTM0_CH2_PIN 9
- #define FTM0_CH3_PIN 10
- #define FTM0_CH4_PIN 6
- #define FTM0_CH5_PIN 20
- #define FTM0_CH6_PIN 21
- #define FTM0_CH7_PIN 5
- #define FTM1_CH0_PIN 3
- #define FTM1_CH1_PIN 4
- #define FTM2_CH0_PIN 29
- #define FTM2_CH1_PIN 30
- #define FTM3_CH0_PIN 2
- #define FTM3_CH1_PIN 14
- #define FTM3_CH2_PIN 7
- #define FTM3_CH3_PIN 8
- #define FTM3_CH4_PIN 35
- #define FTM3_CH5_PIN 36
- #define FTM3_CH6_PIN 37
- #define FTM3_CH7_PIN 38
- #define TPM1_CH0_PIN 16
- #define TPM1_CH1_PIN 17
- #endif
- #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
- #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
-
- static uint8_t analog_write_res = 8;
-
- // SOPT4 is SIM select clocks?
- // FTM is clocked by the bus clock, either 24 or 48 MHz
- // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
- // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
-
- void analogWrite(uint8_t pin, int val)
- {
- uint32_t cval, max;
-
- #if defined(__MK20DX256__)
- if (pin == A14) {
- uint8_t res = analog_write_res;
- if (res < 12) {
- val <<= 12 - res;
- } else if (res > 12) {
- val >>= res - 12;
- }
- analogWriteDAC0(val);
- return;
- }
- #elif defined(__MKL26Z64__)
- if (pin == A12) {
- uint8_t res = analog_write_res;
- if (res < 12) {
- val <<= 12 - res;
- } else if (res > 12) {
- val >>= res - 12;
- }
- analogWriteDAC0(val);
- return;
- }
- #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
- if (pin == A21 || pin == A22) {
- uint8_t res = analog_write_res;
- if (res < 12) {
- val <<= 12 - res;
- } else if (res > 12) {
- val >>= res - 12;
- }
- if (pin == A21) analogWriteDAC0(val);
- else analogWriteDAC1(val);
- return;
- }
- #endif
-
- max = 1 << analog_write_res;
- if (val <= 0) {
- digitalWrite(pin, LOW);
- pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
- return;
- } else if (val >= max) {
- digitalWrite(pin, HIGH);
- pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
- return;
- }
-
- //serial_print("analogWrite\n");
- //serial_print("val = ");
- //serial_phex32(val);
- //serial_print("\n");
- //serial_print("analog_write_res = ");
- //serial_phex(analog_write_res);
- //serial_print("\n");
- if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
- cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
- #if defined(FTM2_CH0_PIN)
- } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
- cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
- #endif
- #if defined(FTM3_CH0_PIN)
- } else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN || pin == FTM3_CH2_PIN
- || pin == FTM3_CH3_PIN || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
- || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
- cval = ((uint32_t)val * (uint32_t)(FTM3_MOD + 1)) >> analog_write_res;
- #endif
- #if defined(TPM1_CH0_PIN)
- } else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
- cval = ((uint32_t)val * (uint32_t)(TPM1_MOD + 1)) >> analog_write_res;
- #endif
- } else {
- cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
- }
- //serial_print("cval = ");
- //serial_phex32(cval);
- //serial_print("\n");
- switch (pin) {
- #ifdef FTM0_CH0_PIN
- case FTM0_CH0_PIN: // PTC1, FTM0_CH0
- FTM0_C0V = cval;
- FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH1_PIN
- case FTM0_CH1_PIN: // PTC2, FTM0_CH1
- FTM0_C1V = cval;
- FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH2_PIN
- case FTM0_CH2_PIN: // PTC3, FTM0_CH2
- FTM0_C2V = cval;
- FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH3_PIN
- case FTM0_CH3_PIN: // PTC4, FTM0_CH3
- FTM0_C3V = cval;
- FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH4_PIN
- case FTM0_CH4_PIN: // PTD4, FTM0_CH4
- FTM0_C4V = cval;
- FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH5_PIN
- case FTM0_CH5_PIN: // PTD5, FTM0_CH5
- FTM0_C5V = cval;
- FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH6_PIN
- case FTM0_CH6_PIN: // PTD6, FTM0_CH6
- FTM0_C6V = cval;
- FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM0_CH7_PIN
- case FTM0_CH7_PIN: // PTD7, FTM0_CH7
- FTM0_C7V = cval;
- FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM1_CH0_PIN
- case FTM1_CH0_PIN: // PTA12, FTM1_CH0
- FTM1_C0V = cval;
- FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM1_CH1_PIN
- case FTM1_CH1_PIN: // PTA13, FTM1_CH1
- FTM1_C1V = cval;
- FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM2_CH0_PIN
- case FTM2_CH0_PIN: // PTB18, FTM2_CH0
- FTM2_C0V = cval;
- FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM2_CH1_PIN
- case FTM2_CH1_PIN: // PTB19, FTM1_CH1
- FTM2_C1V = cval;
- FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH0_PIN
- case FTM3_CH0_PIN:
- FTM3_C0V = cval;
- FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH1_PIN
- case FTM3_CH1_PIN:
- FTM3_C1V = cval;
- FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH2_PIN
- case FTM3_CH2_PIN:
- FTM3_C2V = cval;
- FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH3_PIN
- case FTM3_CH3_PIN:
- FTM3_C3V = cval;
- FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH4_PIN
- case FTM3_CH4_PIN:
- FTM3_C4V = cval;
- FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH5_PIN
- case FTM3_CH5_PIN:
- FTM3_C5V = cval;
- FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH6_PIN
- case FTM3_CH6_PIN:
- FTM3_C6V = cval;
- FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef FTM3_CH7_PIN
- case FTM3_CH7_PIN:
- FTM3_C7V = cval;
- FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef TPM1_CH0_PIN
- case TPM1_CH0_PIN:
- TPM1_C0V = cval;
- FTM_PINCFG(TPM1_CH0_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- #ifdef TPM1_CH1_PIN
- case TPM1_CH1_PIN:
- TPM1_C1V = cval;
- FTM_PINCFG(TPM1_CH1_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
- break;
- #endif
- default:
- digitalWrite(pin, (val > 127) ? HIGH : LOW);
- pinMode(pin, OUTPUT);
- }
- }
-
-
- uint32_t analogWriteRes(uint32_t bits)
- {
- uint32_t prior_res;
- if (bits < 1) {
- bits = 1;
- } else if (bits > 16) {
- bits = 16;
- }
- prior_res = analog_write_res;
- analog_write_res = bits;
- return prior_res;
- }
-
-
- void analogWriteFrequency(uint8_t pin, float frequency)
- {
- uint32_t prescale, mod, ftmClock, ftmClockSource;
- float minfreq;
-
- //serial_print("analogWriteFrequency: pin = ");
- //serial_phex(pin);
- //serial_print(", freq = ");
- //serial_phex32((uint32_t)frequency);
- //serial_print("\n");
-
- #ifdef TPM1_CH0_PIN
- if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
- ftmClockSource = 1;
- ftmClock = 16000000;
- } else
- #endif
- #if defined(__MKL26Z64__)
- // Teensy LC does not support slow clock source (ftmClockSource = 2)
- ftmClockSource = 1; // Use default F_TIMER clock source
- ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
- #else
- if (frequency < (float)(F_TIMER >> 7) / 65536.0f) {
- // frequency is too low for working with F_TIMER:
- ftmClockSource = 2; // Use alternative 31250Hz clock source
- ftmClock = 31250; // Set variable for the actual timer clock frequency
- } else {
- ftmClockSource = 1; // Use default F_TIMER clock source
- ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
- }
- #endif
-
-
- for (prescale = 0; prescale < 7; prescale++) {
- minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
- if (frequency >= minfreq) break;
- }
- //serial_print("F_TIMER/ftm_Clock = ");
- //serial_phex32(ftmClock >> prescale);
- //serial_print("\n");
- //serial_print("prescale = ");
- //serial_phex(prescale);
- //serial_print("\n");
- mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
- if (mod > 65535) mod = 65535;
- //serial_print("mod = ");
- //serial_phex32(mod);
- //serial_print("\n");
- if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
- FTM1_SC = 0;
- FTM1_CNT = 0;
- FTM1_MOD = mod;
- FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
- } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
- || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
- || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
- #ifdef FTM0_CH6_PIN
- || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
- #endif
- ) {
- FTM0_SC = 0;
- FTM0_CNT = 0;
- FTM0_MOD = mod;
- FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
- }
- #ifdef FTM2_CH0_PIN
- else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
- FTM2_SC = 0;
- FTM2_CNT = 0;
- FTM2_MOD = mod;
- FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
- }
- #endif
- #ifdef FTM3_CH0_PIN
- else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
- || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
- || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
- || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
- FTM3_SC = 0;
- FTM3_CNT = 0;
- FTM3_MOD = mod;
- FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
- }
- #endif
- #ifdef TPM1_CH0_PIN
- else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
- TPM1_SC = 0;
- TPM1_CNT = 0;
- TPM1_MOD = mod;
- TPM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale);
- }
- #endif
- }
-
-
-
- // TODO: startup code needs to initialize all pins to GPIO mode, input by default
-
- void digitalWrite(uint8_t pin, uint8_t val)
- {
- if (pin >= CORE_NUM_DIGITAL) return;
- #ifdef KINETISK
- if (*portModeRegister(pin)) {
- if (val) {
- *portSetRegister(pin) = 1;
- } else {
- *portClearRegister(pin) = 1;
- }
- #else
- if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
- if (val) {
- *portSetRegister(pin) = digitalPinToBitMask(pin);
- } else {
- *portClearRegister(pin) = digitalPinToBitMask(pin);
- }
- #endif
- } else {
- volatile uint32_t *config = portConfigRegister(pin);
- if (val) {
- // TODO use bitband for atomic read-mod-write
- *config |= (PORT_PCR_PE | PORT_PCR_PS);
- //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
- } else {
- // TODO use bitband for atomic read-mod-write
- *config &= ~(PORT_PCR_PE);
- //*config = PORT_PCR_MUX(1);
- }
- }
-
- }
-
- uint8_t digitalRead(uint8_t pin)
- {
- if (pin >= CORE_NUM_DIGITAL) return 0;
- #ifdef KINETISK
- return *portInputRegister(pin);
- #else
- return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
- #endif
- }
-
-
-
- void pinMode(uint8_t pin, uint8_t mode)
- {
- volatile uint32_t *config;
-
- if (pin >= CORE_NUM_DIGITAL) return;
- config = portConfigRegister(pin);
-
- if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
- #ifdef KINETISK
- *portModeRegister(pin) = 1;
- #else
- *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
- #endif
- *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
- if (mode == OUTPUT_OPENDRAIN) {
- *config |= PORT_PCR_ODE;
- } else {
- *config &= ~PORT_PCR_ODE;
- }
- } else {
- #ifdef KINETISK
- *portModeRegister(pin) = 0;
- #else
- *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
- #endif
- if (mode == INPUT) {
- *config = PORT_PCR_MUX(1);
- } else if (mode == INPUT_PULLUP) {
- *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
- } else if (mode == INPUT_PULLDOWN) {
- *config = PORT_PCR_MUX(1) | PORT_PCR_PE;
- } else { // INPUT_DISABLE
- *config = 0;
- }
- }
- }
-
-
- void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
- {
- if (bitOrder == LSBFIRST) {
- shiftOut_lsbFirst(dataPin, clockPin, value);
- } else {
- shiftOut_msbFirst(dataPin, clockPin, value);
- }
- }
-
- void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
- {
- uint8_t mask;
- for (mask=0x01; mask; mask <<= 1) {
- digitalWrite(dataPin, value & mask);
- digitalWrite(clockPin, HIGH);
- digitalWrite(clockPin, LOW);
- }
- }
-
- void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
- {
- uint8_t mask;
- for (mask=0x80; mask; mask >>= 1) {
- digitalWrite(dataPin, value & mask);
- digitalWrite(clockPin, HIGH);
- digitalWrite(clockPin, LOW);
- }
- }
-
- uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
- {
- if (bitOrder == LSBFIRST) {
- return shiftIn_lsbFirst(dataPin, clockPin);
- } else {
- return shiftIn_msbFirst(dataPin, clockPin);
- }
- }
-
- uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
- {
- uint8_t mask, value=0;
- for (mask=0x01; mask; mask <<= 1) {
- digitalWrite(clockPin, HIGH);
- if (digitalRead(dataPin)) value |= mask;
- digitalWrite(clockPin, LOW);
- }
- return value;
- }
-
- uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
- {
- uint8_t mask, value=0;
- for (mask=0x80; mask; mask >>= 1) {
- digitalWrite(clockPin, HIGH);
- if (digitalRead(dataPin)) value |= mask;
- digitalWrite(clockPin, LOW);
- }
- return value;
- }
-
-
-
- // the systick interrupt is supposed to increment this at 1 kHz rate
- volatile uint32_t systick_millis_count = 0;
-
- //uint32_t systick_current, systick_count, systick_istatus; // testing only
-
- uint32_t micros(void)
- {
- uint32_t count, current, istatus;
-
- __disable_irq();
- current = SYST_CVR;
- count = systick_millis_count;
- istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
- __enable_irq();
- //systick_current = current;
- //systick_count = count;
- //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
- if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
- current = ((F_CPU / 1000) - 1) - current;
- #if defined(KINETISL) && F_CPU == 48000000
- return count * 1000 + ((current * (uint32_t)87381) >> 22);
- #elif defined(KINETISL) && F_CPU == 24000000
- return count * 1000 + ((current * (uint32_t)174763) >> 22);
- #endif
- return count * 1000 + current / (F_CPU / 1000000);
- }
-
- void delay(uint32_t ms)
- {
- uint32_t start = micros();
-
- if (ms > 0) {
- while (1) {
- while ((micros() - start) >= 1000) {
- ms--;
- if (ms == 0) return;
- start += 1000;
- }
- yield();
- }
- }
- }
-
- // TODO: verify these result in correct timeouts...
- #if F_CPU == 256000000
- #define PULSEIN_LOOPS_PER_USEC 34
- #elif F_CPU == 240000000
- #define PULSEIN_LOOPS_PER_USEC 33
- #elif F_CPU == 216000000
- #define PULSEIN_LOOPS_PER_USEC 31
- #elif F_CPU == 192000000
- #define PULSEIN_LOOPS_PER_USEC 29
- #elif F_CPU == 180000000
- #define PULSEIN_LOOPS_PER_USEC 27
- #elif F_CPU == 168000000
- #define PULSEIN_LOOPS_PER_USEC 25
- #elif F_CPU == 144000000
- #define PULSEIN_LOOPS_PER_USEC 21
- #elif F_CPU == 120000000
- #define PULSEIN_LOOPS_PER_USEC 18
- #elif F_CPU == 96000000
- #define PULSEIN_LOOPS_PER_USEC 14
- #elif F_CPU == 72000000
- #define PULSEIN_LOOPS_PER_USEC 10
- #elif F_CPU == 48000000
- #define PULSEIN_LOOPS_PER_USEC 7
- #elif F_CPU == 24000000
- #define PULSEIN_LOOPS_PER_USEC 4
- #elif F_CPU == 16000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 8000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 4000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #elif F_CPU == 2000000
- #define PULSEIN_LOOPS_PER_USEC 1
- #endif
-
- #if defined(KINETISK)
- uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
-
- // wait for any previous pulse to end
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- // wait for the pulse to start
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
-
- // wait for any previous pulse to end
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- // wait for the pulse to start
- while (*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (!*reg) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- // TODO: an inline version should handle the common case where state is const
- uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
- {
- if (pin >= CORE_NUM_DIGITAL) return 0;
- if (state) return pulseIn_high(portInputRegister(pin), timeout);
- return pulseIn_low(portInputRegister(pin), timeout);;
- }
-
- #elif defined(KINETISL)
- // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
- uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
- // wait for any previous pulse to end
- while (*reg & mask) {
- if (--timeout_count == 0) return -1;
- }
- // wait for the pulse to start
- while (!(*reg & mask)) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (*reg & mask) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
- {
- uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
- uint32_t usec_start, usec_stop;
-
- // wait for any previous pulse to end
- while (!(*reg & mask)) {
- if (--timeout_count == 0) return 0;
- }
- // wait for the pulse to start
- while (*reg & mask) {
- if (--timeout_count == 0) return 0;
- }
- usec_start = micros();
- // wait for the pulse to stop
- while (!(*reg & mask)) {
- if (--timeout_count == 0) return 0;
- }
- usec_stop = micros();
- return usec_stop - usec_start;
- }
-
- // TODO: an inline version should handle the common case where state is const
- uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
- {
- if (pin >= CORE_NUM_DIGITAL) return 0;
- if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
- return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
- }
- #endif
|