Просмотр исходного кода

initial commit

- code copied from Teensyduino
- restructured into src/ and include/ dirs
main
John Robinson 3 лет назад
Сommit
043e0bd066
Не найден GPG ключ соответствующий данной подписи
43 измененных файлов: 6358 добавлений и 0 удалений
  1. +458
    -0
      LICENSE.txt
  2. +78
    -0
      changelog.md
  3. +22
    -0
      contributors.md
  4. +26
    -0
      examples/AiwaRCT501SendDemo/AiwaRCT501SendDemo.ino
  5. +183
    -0
      examples/IRrecord/IRrecord.ino
  6. +33
    -0
      examples/IRrecvDemo/IRrecvDemo.ino
  7. +95
    -0
      examples/IRrecvDump/IRrecvDump.ino
  8. +177
    -0
      examples/IRrecvDumpV2/IRrecvDumpV2.ino
  9. +85
    -0
      examples/IRrelay/IRrelay.ino
  10. +230
    -0
      examples/IRremoteInfo/IRremoteInfo.ino
  11. +24
    -0
      examples/IRsendDemo/IRsendDemo.ino
  12. +37
    -0
      examples/IRsendRawDemo/IRsendRawDemo.ino
  13. +190
    -0
      examples/IRtest/IRtest.ino
  14. +290
    -0
      examples/IRtest2/IRtest2.ino
  15. +29
    -0
      examples/JVCPanasonicSendDemo/JVCPanasonicSendDemo.ino
  16. +263
    -0
      examples/LGACSendDemo/LGACSendDemo.ino
  17. +93
    -0
      examples/LGACSendDemo/LGACSendDemo.md
  18. +22
    -0
      examples/LegoPowerFunctionsSendDemo/LegoPowerFunctionsSendDemo.ino
  19. +193
    -0
      examples/LegoPowerFunctionsTests/LegoPowerFunctionsTests.ino
  20. +344
    -0
      include/irr/IRremote.h
  21. +113
    -0
      include/irr/IRremoteInt.h
  22. +661
    -0
      include/irr/boarddefs.h
  23. +115
    -0
      include/irr/ir_Lego_PF_BitStreamEncoder.h
  24. +203
    -0
      src/IRremote.cpp
  25. +513
    -0
      src/irPronto.cpp
  26. +239
    -0
      src/irRecv.cpp
  27. +90
    -0
      src/irSend.cpp
  28. +105
    -0
      src/ir_Aiwa.cpp
  29. +94
    -0
      src/ir_Denon.cpp
  30. +54
    -0
      src/ir_Dish.cpp
  31. +101
    -0
      src/ir_JVC.cpp
  32. +80
    -0
      src/ir_LG.cpp
  33. +46
    -0
      src/ir_Lego_PF.cpp
  34. +85
    -0
      src/ir_Mitsubishi.cpp
  35. +98
    -0
      src/ir_NEC.cpp
  36. +78
    -0
      src/ir_Panasonic.cpp
  37. +207
    -0
      src/ir_RC5_RC6.cpp
  38. +92
    -0
      src/ir_Samsung.cpp
  39. +76
    -0
      src/ir_Sanyo.cpp
  40. +71
    -0
      src/ir_Sharp.cpp
  41. +95
    -0
      src/ir_Sony.cpp
  42. +179
    -0
      src/ir_Template.cpp
  43. +91
    -0
      src/ir_Whynter.cpp

+ 458
- 0
LICENSE.txt Просмотреть файл

@@ -0,0 +1,458 @@

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.


+ 78
- 0
changelog.md Просмотреть файл

@@ -0,0 +1,78 @@
## 2.3.3 - 2017/03/31
- Added ESP32 IR receive support [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/425)

## 2.2.3 - 2017/03/27
- Fix calculation of pause length in LEGO PF protocol [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/427)

## 2.2.2 - 2017/01/20
- Fixed naming bug [PR #398](https://github.com/z3t0/Arduino-IRremote/pull/398)

## 2.2.1 - 2016/07/27
- Added tests for Lego Power Functions Protocol [PR #336](https://github.com/z3t0/Arduino-IRremote/pull/336)

## 2.2.0 - 2016/06/28
- Added support for ATmega8535
- Added support for ATmega16
- Added support for ATmega32
- Added support for ATmega164
- Added support for ATmega324
- Added support for ATmega644
- Added support for ATmega1284
- Added support for ATmega64
- Added support for ATmega128

[PR](https://github.com/z3t0/Arduino-IRremote/pull/324)

## 2.1.1 - 2016/05/04
- Added Lego Power Functions Protocol [PR #309](https://github.com/z3t0/Arduino-IRremote/pull/309)

## 2.1.0 - 2016/02/20
- Improved Debugging [PR #258](https://github.com/z3t0/Arduino-IRremote/pull/258)
- Display TIME instead of TICKS [PR #258](https://github.com/z3t0/Arduino-IRremote/pull/258)

## 2.0.4 - 2016/02/20
- Add Panasonic and JVC to IRrecord example [PR](https://github.com/z3t0/Arduino-IRremote/pull/54)

## 2.0.3 - 2016/02/20
- Change IRSend Raw parameter to const [PR](https://github.com/z3t0/Arduino-IRremote/pull/227)

## 2.0.2 - 2015/12/02
- Added IRremoteInfo Sketch - [PR](https://github.com/z3t0/Arduino-IRremote/pull/241)
- Enforcing changelog.md

## 2.0.1 - 2015/07/26 - [Release](https://github.com/shirriff/Arduino-IRremote/releases/tag/BETA)
### Changes
- Updated README
- Updated Contributors
- Fixed #110 Mess
- Created Gitter Room
- Added Gitter Badge
- Standardised Code Base
- Clean Debug Output
- Optimized Send Loops
- Modularized Design
- Optimized and Updated Examples
- Improved Documentation
- Fixed and Improved many coding errors
- Fixed Aiwa RC-T501 Decoding
- Fixed Interrupt on ATmega8
- Switched to Stable Release of @PlatformIO

### Additions
- Added Aiwa RC-T501 Protocol
- Added Denon Protocol
- Added Pronto Support
- Added Library Properties
- Added Template For New Protocols
- Added this changelog
- Added Teensy LC Support
- Added ATtiny84 Support
- Added ATtiny85 Support
- Added isIdle method

### Deletions
- Removed (Fixed) #110
- Broke Teensy 3 / 3.1 Support

### Not Working
- Teensy 3 / 3.1 Support is in Development

+ 22
- 0
contributors.md Просмотреть файл

@@ -0,0 +1,22 @@
## Contributors
These are the active contributors of this project that you may contact if there is anything you need help with or if you have suggestions.

- [z3t0](https://github.com/z3t0) : Active Contributor and currently also the main contributor.
* Email: zetoslab@gmail.com
- [shirriff](https://github.com/shirriff) : An amazing person who worked to create this awesome library and provide unending support
- [AnalysIR](https:/github.com/AnalysIR): Active contributor and is amazing with providing support!
- [Informatic](https://github.com/Informatic) : Active contributor
- [fmeschia](https://github.com/fmeschia) : Active contributor
- [PaulStoffregen](https://github.com/paulstroffregen) : Active contributor
- [crash7](https://github.com/crash7) : Active contributor
- [Neco777](https://github.com/neco777) : Active contributor
- [Lauszus](https://github.com/lauszus) : Active contributor
- [csBlueChip](https://github.com/csbluechip) : Active contributor, who contributed major and vital changes to the code base.
- [Sebazzz](https://github.com/sebazz): Contributor
- [lumbric](https://github.com/lumbric): Contributor
- [ElectricRCAircraftGuy](https://github.com/electricrcaircraftguy): Active Contributor
- [philipphenkel](https://github.com/philipphenkel): Active Contributor
- [MCUdude](https://github.com/MCUdude): Contributor
- [marcmerlin](https://github.com/marcmerlin): Contributor (ESP32 port)

Note: This list is being updated constantly so please let [z3t0](https://github.com/z3t0) know if you have been missed.

+ 26
- 0
examples/AiwaRCT501SendDemo/AiwaRCT501SendDemo.ino Просмотреть файл

@@ -0,0 +1,26 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/

#include "IRremote.h"

#define POWER 0x7F80
#define AIWA_RC_T501

IRsend irsend;

void setup() {
Serial.begin(9600);
Serial.println("Arduino Ready");
}

void loop() {
if (Serial.read() != -1) {
irsend.sendAiwaRCT501(POWER);
delay(60); // Optional
}
}

+ 183
- 0
examples/IRrecord/IRrecord.ino Просмотреть файл

@@ -0,0 +1,183 @@
/*
* IRrecord: record and play back IR signals as a minimal
* An IR detector/demodulator must be connected to the input RECV_PIN.
* An IR LED must be connected to the output PWM pin 3.
* A button must be connected to the input BUTTON_PIN; this is the
* send button.
* A visible LED can be connected to STATUS_PIN to provide status.
*
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
*
* Version 0.11 September, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/

#include <IRremote.h>

int RECV_PIN = 11;
int BUTTON_PIN = 12;
int STATUS_PIN = 13;

IRrecv irrecv(RECV_PIN);
IRsend irsend;

decode_results results;

void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(BUTTON_PIN, INPUT);
pinMode(STATUS_PIN, OUTPUT);
}

// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state

// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
codeType = results->decode_type;
//int count = results->rawlen;
if (codeType == UNKNOWN) {
Serial.println("Received unknown code, saving as raw");
codeLen = results->rawlen - 1;
// To store raw codes:
// Drop first value (gap)
// Convert from ticks to microseconds
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
for (int i = 1; i <= codeLen; i++) {
if (i % 2) {
// Mark
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
Serial.print(" m");
}
else {
// Space
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
Serial.print(" s");
}
Serial.print(rawCodes[i - 1], DEC);
}
Serial.println("");
}
else {
if (codeType == NEC) {
Serial.print("Received NEC: ");
if (results->value == REPEAT) {
// Don't record a NEC repeat value as that's useless.
Serial.println("repeat; ignoring.");
return;
}
}
else if (codeType == SONY) {
Serial.print("Received SONY: ");
}
else if (codeType == PANASONIC) {
Serial.print("Received PANASONIC: ");
}
else if (codeType == JVC) {
Serial.print("Received JVC: ");
}
else if (codeType == RC5) {
Serial.print("Received RC5: ");
}
else if (codeType == RC6) {
Serial.print("Received RC6: ");
}
else {
Serial.print("Unexpected codeType ");
Serial.print(codeType, DEC);
Serial.println("");
}
Serial.println(results->value, HEX);
codeValue = results->value;
codeLen = results->bits;
}
}

void sendCode(int repeat) {
if (codeType == NEC) {
if (repeat) {
irsend.sendNEC(REPEAT, codeLen);
Serial.println("Sent NEC repeat");
}
else {
irsend.sendNEC(codeValue, codeLen);
Serial.print("Sent NEC ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == SONY) {
irsend.sendSony(codeValue, codeLen);
Serial.print("Sent Sony ");
Serial.println(codeValue, HEX);
}
else if (codeType == PANASONIC) {
irsend.sendPanasonic(codeValue, codeLen);
Serial.print("Sent Panasonic");
Serial.println(codeValue, HEX);
}
else if (codeType == JVC) {
irsend.sendJVC(codeValue, codeLen, false);
Serial.print("Sent JVC");
Serial.println(codeValue, HEX);
}
else if (codeType == RC5 || codeType == RC6) {
if (!repeat) {
// Flip the toggle bit for a new button press
toggle = 1 - toggle;
}
// Put the toggle bit into the code to send
codeValue = codeValue & ~(1 << (codeLen - 1));
codeValue = codeValue | (toggle << (codeLen - 1));
if (codeType == RC5) {
Serial.print("Sent RC5 ");
Serial.println(codeValue, HEX);
irsend.sendRC5(codeValue, codeLen);
}
else {
irsend.sendRC6(codeValue, codeLen);
Serial.print("Sent RC6 ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
irsend.sendRaw(rawCodes, codeLen, 38);
Serial.println("Sent raw");
}
}

int lastButtonState;

void loop() {
// If button pressed, send the code.
int buttonState = digitalRead(BUTTON_PIN);
if (lastButtonState == HIGH && buttonState == LOW) {
Serial.println("Released");
irrecv.enableIRIn(); // Re-enable receiver
}

if (buttonState) {
Serial.println("Pressed, sending");
digitalWrite(STATUS_PIN, HIGH);
sendCode(lastButtonState == buttonState);
digitalWrite(STATUS_PIN, LOW);
delay(50); // Wait a bit between retransmissions
}
else if (irrecv.decode(&results)) {
digitalWrite(STATUS_PIN, HIGH);
storeCode(&results);
irrecv.resume(); // resume receiver
digitalWrite(STATUS_PIN, LOW);
}
lastButtonState = buttonState;
}

+ 33
- 0
examples/IRrecvDemo/IRrecvDemo.ino Просмотреть файл

@@ -0,0 +1,33 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/

#include <IRremote.h>

int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()
{
Serial.begin(9600);
// In case the interrupt driver crashes on setup, give a clue
// to the user what's going on.
Serial.println("Enabling IRin");
irrecv.enableIRIn(); // Start the receiver
Serial.println("Enabled IRin");
}

void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // Receive the next value
}
delay(100);
}

+ 95
- 0
examples/IRrecvDump/IRrecvDump.ino Просмотреть файл

@@ -0,0 +1,95 @@
/*
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
*/

#include <IRremote.h>

/*
* Default is Arduino pin D11.
* You can change this to another available Arduino Pin.
* Your IR receiver should be connected to the pin defined here
*/
int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}


void dump(decode_results *results) {
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.print("Unknown encoding: ");
}
else if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");

}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
else if (results->decode_type == PANASONIC) {
Serial.print("Decoded PANASONIC - Address: ");
Serial.print(results->address, HEX);
Serial.print(" Value: ");
}
else if (results->decode_type == LG) {
Serial.print("Decoded LG: ");
}
else if (results->decode_type == JVC) {
Serial.print("Decoded JVC: ");
}
else if (results->decode_type == AIWA_RC_T501) {
Serial.print("Decoded AIWA RC T501: ");
}
else if (results->decode_type == WHYNTER) {
Serial.print("Decoded Whynter: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");

for (int i = 1; i < count; i++) {
if (i & 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.write('-');
Serial.print((unsigned long) results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println();
}

void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
dump(&results);
irrecv.resume(); // Receive the next value
}
}

+ 177
- 0
examples/IRrecvDumpV2/IRrecvDumpV2.ino Просмотреть файл

@@ -0,0 +1,177 @@
//------------------------------------------------------------------------------
// Include the IRremote library header
//
#include <IRremote.h>

//------------------------------------------------------------------------------
// Tell IRremote which Arduino pin is connected to the IR Receiver (TSOP4838)
//
int recvPin = 11;
IRrecv irrecv(recvPin);

//+=============================================================================
// Configure the Arduino
//
void setup ( )
{
Serial.begin(9600); // Status message will be sent to PC at 9600 baud
irrecv.enableIRIn(); // Start the receiver
}

//+=============================================================================
// Display IR code
//
void ircode (decode_results *results)
{
// Panasonic has an Address
if (results->decode_type == PANASONIC) {
Serial.print(results->address, HEX);
Serial.print(":");
}

// Print Code
Serial.print(results->value, HEX);
}

//+=============================================================================
// Display encoding type
//
void encoding (decode_results *results)
{
switch (results->decode_type) {
default:
case UNKNOWN: Serial.print("UNKNOWN"); break ;
case NEC: Serial.print("NEC"); break ;
case SONY: Serial.print("SONY"); break ;
case RC5: Serial.print("RC5"); break ;
case RC6: Serial.print("RC6"); break ;
case DISH: Serial.print("DISH"); break ;
case SHARP: Serial.print("SHARP"); break ;
case JVC: Serial.print("JVC"); break ;
case SANYO: Serial.print("SANYO"); break ;
case MITSUBISHI: Serial.print("MITSUBISHI"); break ;
case SAMSUNG: Serial.print("SAMSUNG"); break ;
case LG: Serial.print("LG"); break ;
case WHYNTER: Serial.print("WHYNTER"); break ;
case AIWA_RC_T501: Serial.print("AIWA_RC_T501"); break ;
case PANASONIC: Serial.print("PANASONIC"); break ;
case DENON: Serial.print("Denon"); break ;
}
}

//+=============================================================================
// Dump out the decode_results structure.
//
void dumpInfo (decode_results *results)
{
// Check if the buffer overflowed
if (results->overflow) {
Serial.println("IR code too long. Edit IRremoteInt.h and increase RAWBUF");
return;
}

// Show Encoding standard
Serial.print("Encoding : ");
encoding(results);
Serial.println("");

// Show Code & length
Serial.print("Code : ");
ircode(results);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}

//+=============================================================================
// Dump out the decode_results structure.
//
void dumpRaw (decode_results *results)
{
// Print Raw data
Serial.print("Timing[");
Serial.print(results->rawlen-1, DEC);
Serial.println("]: ");

for (int i = 1; i < results->rawlen; i++) {
unsigned long x = results->rawbuf[i] * USECPERTICK;
if (!(i & 1)) { // even
Serial.print("-");
if (x < 1000) Serial.print(" ") ;
if (x < 100) Serial.print(" ") ;
Serial.print(x, DEC);
} else { // odd
Serial.print(" ");
Serial.print("+");
if (x < 1000) Serial.print(" ") ;
if (x < 100) Serial.print(" ") ;
Serial.print(x, DEC);
if (i < results->rawlen-1) Serial.print(", "); //',' not needed for last one
}
if (!(i % 8)) Serial.println("");
}
Serial.println(""); // Newline
}

//+=============================================================================
// Dump out the decode_results structure.
//
void dumpCode (decode_results *results)
{
// Start declaration
Serial.print("unsigned int "); // variable type
Serial.print("rawData["); // array name
Serial.print(results->rawlen - 1, DEC); // array size
Serial.print("] = {"); // Start declaration

// Dump data
for (int i = 1; i < results->rawlen; i++) {
Serial.print(results->rawbuf[i] * USECPERTICK, DEC);
if ( i < results->rawlen-1 ) Serial.print(","); // ',' not needed on last one
if (!(i & 1)) Serial.print(" ");
}

// End declaration
Serial.print("};"); //

// Comment
Serial.print(" // ");
encoding(results);
Serial.print(" ");
ircode(results);

// Newline
Serial.println("");

// Now dump "known" codes
if (results->decode_type != UNKNOWN) {

// Some protocols have an address
if (results->decode_type == PANASONIC) {
Serial.print("unsigned int addr = 0x");
Serial.print(results->address, HEX);
Serial.println(";");
}

// All protocols have data
Serial.print("unsigned int data = 0x");
Serial.print(results->value, HEX);
Serial.println(";");
}
}

//+=============================================================================
// The repeating section of the code
//
void loop ( )
{
decode_results results; // Somewhere to store the results

if (irrecv.decode(&results)) { // Grab an IR code
dumpInfo(&results); // Output the results
dumpRaw(&results); // Output the results in RAW format
dumpCode(&results); // Output the results as source code
Serial.println(""); // Blank line between entries
irrecv.resume(); // Prepare for the next value
}
}

+ 85
- 0
examples/IRrelay/IRrelay.ino Просмотреть файл

@@ -0,0 +1,85 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/

#include <IRremote.h>

int RECV_PIN = 11;
int RELAY_PIN = 4;

IRrecv irrecv(RECV_PIN);
decode_results results;

// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");

for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}

void setup()
{
pinMode(RELAY_PIN, OUTPUT);
pinMode(13, OUTPUT);
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}

int on = 0;
unsigned long last = millis();

void loop() {
if (irrecv.decode(&results)) {
// If it's been at least 1/4 second since the last
// IR received, toggle the relay
if (millis() - last > 250) {
on = !on;
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
digitalWrite(13, on ? HIGH : LOW);
dump(&results);
}
last = millis();
irrecv.resume(); // Receive the next value
}
}

+ 230
- 0
examples/IRremoteInfo/IRremoteInfo.ino Просмотреть файл

@@ -0,0 +1,230 @@
/*
* IRremote: IRremoteInfo - prints relevant config info & settings for IRremote over serial
* Intended to help identify & troubleshoot the various settings of IRremote
* For example, sometimes users are unsure of which pin is used for Tx or the RAWBUF values
* This example can be used to assist the user directly or with support.
* Intended to help identify & troubleshoot the various settings of IRremote
* Hopefully this utility will be a useful tool for support & troubleshooting for IRremote
* Check out the blog post describing the sketch via http://www.analysir.com/blog/2015/11/28/helper-utility-for-troubleshooting-irremote/
* Version 1.0 November 2015
* Original Author: AnalysIR - IR software & modules for Makers & Pros, visit http://www.AnalysIR.com
*/


#include <IRremote.h>

void setup()
{
Serial.begin(115200); //You may alter the BAUD rate here as needed
while (!Serial); //wait until Serial is established - required on some Platforms

//Runs only once per restart of the Arduino.
dumpHeader();
dumpRAWBUF();
dumpTIMER();
dumpTimerPin();
dumpClock();
dumpPlatform();
dumpPulseParams();
dumpSignalParams();
dumpArduinoIDE();
dumpDebugMode();
dumpProtocols();
dumpFooter();
}

void loop() {
//nothing to do!
}

void dumpRAWBUF() {
Serial.print(F("RAWBUF: "));
Serial.println(RAWBUF);
}

void dumpTIMER() {
boolean flag = false;
#ifdef IR_USE_TIMER1
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer1")); flag = true;
#endif
#ifdef IR_USE_TIMER2
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer2")); flag = true;
#endif
#ifdef IR_USE_TIMER3
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer3")); flag = true;
#endif
#ifdef IR_USE_TIMER4
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer4")); flag = true;
#endif
#ifdef IR_USE_TIMER5
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer5")); flag = true;
#endif
#ifdef IR_USE_TIMER4_HS
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer4_HS")); flag = true;
#endif
#ifdef IR_USE_TIMER_CMT
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_CMT")); flag = true;
#endif
#ifdef IR_USE_TIMER_TPM1
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_TPM1")); flag = true;
#endif
#ifdef IR_USE_TIMER_TINY0
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_TINY0")); flag = true;
#endif

if (!flag) {
Serial.print(F("Timer Error: ")); Serial.println(F("not defined"));
}
}

void dumpTimerPin() {
Serial.print(F("IR Tx Pin: "));
Serial.println(TIMER_PWM_PIN);
}

void dumpClock() {
Serial.print(F("MCU Clock: "));
Serial.println(F_CPU);
}

void dumpPlatform() {
Serial.print(F("MCU Platform: "));

#if defined(__AVR_ATmega1280__)
Serial.println(F("Arduino Mega1280"));
#elif defined(__AVR_ATmega2560__)
Serial.println(F("Arduino Mega2560"));
#elif defined(__AVR_AT90USB162__)
Serial.println(F("Teensy 1.0 / AT90USB162"));
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
Serial.println(F("Arduino Leonardo / Yun / Teensy 1.0 / ATmega32U4"));
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
Serial.println(F("Teensy 3.0 / Teensy 3.1 / MK20DX128 / MK20DX256"));
#elif defined(__MKL26Z64__)
Serial.println(F("Teensy-LC / MKL26Z64"));
#elif defined(__AVR_AT90USB646__)
Serial.println(F("Teensy++ 1.0 / AT90USB646"));
#elif defined(__AVR_AT90USB1286__)
Serial.println(F("Teensy++ 2.0 / AT90USB1286"));
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
Serial.println(F("ATmega1284"));
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__)
Serial.println(F("ATmega644"));
#elif defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) || defined(__AVR_ATmega324PA__)
Serial.println(F("ATmega324"));
#elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164P__)
Serial.println(F("ATmega164"));
#elif defined(__AVR_ATmega128__)
Serial.println(F("ATmega128"));
#elif defined(__AVR_ATmega88__) || defined(__AVR_ATmega88P__)
Serial.println(F("ATmega88"));
#elif defined(__AVR_ATmega64__)
Serial.println(F("ATmega64"));
#elif defined(__AVR_ATmega48__) || defined(__AVR_ATmega48P__)
Serial.println(F("ATmega48"));
#elif defined(__AVR_ATmega32__)
Serial.println(F("ATmega32"));
#elif defined(__AVR_ATmega16__)
Serial.println(F("ATmega16"));
#elif defined(__AVR_ATmega8535__)
Serial.println(F("ATmega8535"));
#elif defined(__AVR_ATmega8__)
Serial.println(F("Atmega8"));
#elif defined(__AVR_ATtiny84__)
Serial.println(F("ATtiny84"));
#elif defined(__AVR_ATtiny85__)
Serial.println(F("ATtiny85"));
#else
Serial.println(F("ATmega328(P) / (Duemilanove, Diecimila, LilyPad, Mini, Micro, Fio, Nano, etc)"));
#endif
}

void dumpPulseParams() {
Serial.print(F("Mark Excess: ")); Serial.print(MARK_EXCESS);; Serial.println(F(" uSecs"));
Serial.print(F("Microseconds per tick: ")); Serial.print(USECPERTICK);; Serial.println(F(" uSecs"));
Serial.print(F("Measurement tolerance: ")); Serial.print(TOLERANCE); Serial.println(F("%"));
}

void dumpSignalParams() {
Serial.print(F("Minimum Gap between IR Signals: ")); Serial.print(_GAP); Serial.println(F(" uSecs"));
}

void dumpDebugMode() {
Serial.print(F("Debug Mode: "));
#if DEBUG
Serial.println(F("ON"));
#else
Serial.println(F("OFF (Normal)"));
#endif

}

void dumpArduinoIDE() {
Serial.print(F("Arduino IDE version: "));
Serial.print(ARDUINO / 10000);
Serial.write('.');
Serial.print((ARDUINO % 10000) / 100);
Serial.write('.');
Serial.println(ARDUINO % 100);
}

void dumpProtocols() {

Serial.println(); Serial.print(F("IR PROTOCOLS ")); Serial.print(F("SEND ")); Serial.println(F("DECODE"));
Serial.print(F("============= ")); Serial.print(F("======== ")); Serial.println(F("========"));
Serial.print(F("RC5: ")); printSendEnabled(SEND_RC5); printDecodeEnabled(DECODE_RC6);
Serial.print(F("RC6: ")); printSendEnabled(SEND_RC6); printDecodeEnabled(DECODE_RC5);
Serial.print(F("NEC: ")); printSendEnabled(SEND_NEC); printDecodeEnabled(DECODE_NEC);
Serial.print(F("SONY: ")); printSendEnabled(SEND_SONY); printDecodeEnabled(DECODE_SONY);
Serial.print(F("PANASONIC: ")); printSendEnabled(SEND_PANASONIC); printDecodeEnabled(DECODE_PANASONIC);
Serial.print(F("JVC: ")); printSendEnabled(SEND_JVC); printDecodeEnabled(DECODE_JVC);
Serial.print(F("SAMSUNG: ")); printSendEnabled(SEND_SAMSUNG); printDecodeEnabled(DECODE_SAMSUNG);
Serial.print(F("WHYNTER: ")); printSendEnabled(SEND_WHYNTER); printDecodeEnabled(DECODE_WHYNTER);
Serial.print(F("AIWA_RC_T501: ")); printSendEnabled(SEND_AIWA_RC_T501); printDecodeEnabled(DECODE_AIWA_RC_T501);
Serial.print(F("LG: ")); printSendEnabled(SEND_LG); printDecodeEnabled(DECODE_LG);
Serial.print(F("SANYO: ")); printSendEnabled(SEND_SANYO); printDecodeEnabled(DECODE_SANYO);
Serial.print(F("MITSUBISHI: ")); printSendEnabled(SEND_MITSUBISHI); printDecodeEnabled(DECODE_MITSUBISHI);
Serial.print(F("DISH: ")); printSendEnabled(SEND_DISH); printDecodeEnabled(DECODE_DISH);
Serial.print(F("SHARP: ")); printSendEnabled(SEND_SHARP); printDecodeEnabled(DECODE_SHARP);
Serial.print(F("DENON: ")); printSendEnabled(SEND_DENON); printDecodeEnabled(DECODE_DENON);
Serial.print(F("PRONTO: ")); printSendEnabled(SEND_PRONTO); Serial.println(F("(Not Applicable)"));
}

void printSendEnabled(int flag) {
if (flag) {
Serial.print(F("Enabled "));
}
else {
Serial.print(F("Disabled "));
}
}

void printDecodeEnabled(int flag) {
if (flag) {
Serial.println(F("Enabled"));
}
else {
Serial.println(F("Disabled"));
}
}

void dumpHeader() {
Serial.println(F("IRremoteInfo - by AnalysIR (http://www.AnalysIR.com/)"));
Serial.println(F(" - A helper sketch to assist in troubleshooting issues with the library by reviewing the settings within the IRremote library"));
Serial.println(F(" - Prints out the important settings within the library, which can be configured to suit the many supported platforms"));
Serial.println(F(" - When seeking on-line support, please post or upload the output of this sketch, where appropriate"));
Serial.println();
Serial.println(F("IRremote Library Settings"));
Serial.println(F("========================="));
}

void dumpFooter() {
Serial.println();
Serial.println(F("Notes: "));
Serial.println(F(" - Most of the seetings above can be configured in the following files included as part of the library"));
Serial.println(F(" - IRremteInt.h"));
Serial.println(F(" - IRremote.h"));
Serial.println(F(" - You can save SRAM by disabling the Decode or Send features for any protocol (Near the top of IRremoteInt.h)"));
Serial.println(F(" - Some Timer conflicts, with other libraries, can be easily resolved by configuring a differnt Timer for your platform"));
}

+ 24
- 0
examples/IRsendDemo/IRsendDemo.ino Просмотреть файл

@@ -0,0 +1,24 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/


#include <IRremote.h>

IRsend irsend;

void setup()
{
}

void loop() {
for (int i = 0; i < 3; i++) {
irsend.sendSony(0xa90, 12);
delay(40);
}
delay(5000); //5 second delay between each signal burst
}

+ 37
- 0
examples/IRsendRawDemo/IRsendRawDemo.ino Просмотреть файл

@@ -0,0 +1,37 @@
/*
* IRremote: IRsendRawDemo - demonstrates sending IR codes with sendRaw
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* IRsendRawDemo - added by AnalysIR (via www.AnalysIR.com), 24 August 2015
*
* This example shows how to send a RAW signal using the IRremote library.
* The example signal is actually a 32 bit NEC signal.
* Remote Control button: LGTV Power On/Off.
* Hex Value: 0x20DF10EF, 32 bits
*
* It is more efficient to use the sendNEC function to send NEC signals.
* Use of sendRaw here, serves only as an example of using the function.
*
*/


#include <IRremote.h>

IRsend irsend;

void setup()
{

}

void loop() {
int khz = 38; // 38kHz carrier frequency for the NEC protocol
unsigned int irSignal[] = {9000, 4500, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 39416, 9000, 2210, 560}; //AnalysIR Batch Export (IRremote) - RAW
irsend.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), khz); //Note the approach used to automatically calculate the size of the array.

delay(5000); //In this example, the signal will be repeated every 5 seconds, approximately.
}

+ 190
- 0
examples/IRtest/IRtest.ino Просмотреть файл

@@ -0,0 +1,190 @@
/*
* IRremote: IRtest unittest
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
* You must then recompile the library by removing IRremote.o and restarting
* the arduino IDE.
*/

#include <IRremote.h>
#include <IRremoteInt.h>

// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");

for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}

IRrecv irrecv(0);
decode_results results;

class IRsendDummy :
public IRsend
{
public:
// For testing, just log the marks/spaces
#define SENDLOG_LEN 128
int sendlog[SENDLOG_LEN];
int sendlogcnt;
IRsendDummy() :
IRsend() {
}
void reset() {
sendlogcnt = 0;
}
void mark(int time) {
sendlog[sendlogcnt] = time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
void space(int time) {
sendlog[sendlogcnt] = -time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
// Copies the dummy buf into the interrupt buf
void useDummyBuf() {
int last = SPACE;
irparams.rcvstate = STATE_STOP;
irparams.rawlen = 1; // Skip the gap
for (int i = 0 ; i < sendlogcnt; i++) {
if (sendlog[i] < 0) {
if (last == MARK) {
// New space
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
last = SPACE;
}
else {
// More space
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
}
}
else if (sendlog[i] > 0) {
if (last == SPACE) {
// New mark
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
last = MARK;
}
else {
// More mark
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
}
}
}
if (irparams.rawlen % 2) {
irparams.rawlen--; // Remove trailing space
}
}
};

IRsendDummy irsenddummy;

void verify(unsigned long val, int bits, int type) {
irsenddummy.useDummyBuf();
irrecv.decode(&results);
Serial.print("Testing ");
Serial.print(val, HEX);
if (results.value == val && results.bits == bits && results.decode_type == type) {
Serial.println(": OK");
}
else {
Serial.println(": Error");
dump(&results);
}
}

void testNEC(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendNEC(val, bits);
verify(val, bits, NEC);
}
void testSony(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendSony(val, bits);
verify(val, bits, SONY);
}
void testRC5(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC5(val, bits);
verify(val, bits, RC5);
}
void testRC6(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC6(val, bits);
verify(val, bits, RC6);
}

void test() {
Serial.println("NEC tests");
testNEC(0x00000000, 32);
testNEC(0xffffffff, 32);
testNEC(0xaaaaaaaa, 32);
testNEC(0x55555555, 32);
testNEC(0x12345678, 32);
Serial.println("Sony tests");
testSony(0xfff, 12);
testSony(0x000, 12);
testSony(0xaaa, 12);
testSony(0x555, 12);
testSony(0x123, 12);
Serial.println("RC5 tests");
testRC5(0xfff, 12);
testRC5(0x000, 12);
testRC5(0xaaa, 12);
testRC5(0x555, 12);
testRC5(0x123, 12);
Serial.println("RC6 tests");
testRC6(0xfffff, 20);
testRC6(0x00000, 20);
testRC6(0xaaaaa, 20);
testRC6(0x55555, 20);
testRC6(0x12345, 20);
}

void setup()
{
Serial.begin(9600);
test();
}

void loop() {
}

+ 290
- 0
examples/IRtest2/IRtest2.ino Просмотреть файл

@@ -0,0 +1,290 @@
/*
* Test send/receive functions of IRremote, using a pair of Arduinos.
*
* Arduino #1 should have an IR LED connected to the send pin (3).
* Arduino #2 should have an IR detector/demodulator connected to the
* receive pin (11) and a visible LED connected to pin 3.
*
* The cycle:
* Arduino #1 will wait 2 seconds, then run through the tests.
* It repeats this forever.
* Arduino #2 will wait for at least one second of no signal
* (to synchronize with #1). It will then wait for the same test
* signals. It will log all the status to the serial port. It will
* also indicate status through the LED, which will flash each time a test
* is completed. If there is an error, it will light up for 5 seconds.
*
* The test passes if the LED flashes 19 times, pauses, and then repeats.
* The test fails if the LED lights for 5 seconds.
*
* The test software automatically decides which board is the sender and which is
* the receiver by looking for an input on the send pin, which will indicate
* the sender. You should hook the serial port to the receiver for debugging.
*
* Copyright 2010 Ken Shirriff
* http://arcfn.com
*/

#include <IRremote.h>

int RECV_PIN = 11;
int LED_PIN = 3;

IRrecv irrecv(RECV_PIN);
IRsend irsend;

decode_results results;

#define RECEIVER 1
#define SENDER 2
#define ERROR 3

int mode;

void setup()
{
Serial.begin(9600);
// Check RECV_PIN to decide if we're RECEIVER or SENDER
if (digitalRead(RECV_PIN) == HIGH) {
mode = RECEIVER;
irrecv.enableIRIn();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.println("Receiver mode");
}
else {
mode = SENDER;
Serial.println("Sender mode");
}
}

// Wait for the gap between tests, to synchronize with
// the sender.
// Specifically, wait for a signal followed by a gap of at last gap ms.
void waitForGap(unsigned long gap) {
Serial.println("Waiting for gap");
while (1) {
while (digitalRead(RECV_PIN) == LOW) {
}
unsigned long time = millis();
while (digitalRead(RECV_PIN) == HIGH) {
if (millis() - time > gap) {
return;
}
}
}
}

// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");

for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}


// Test send or receive.
// If mode is SENDER, send a code of the specified type, value, and bits
// If mode is RECEIVER, receive a code and verify that it is of the
// specified type, value, and bits. For success, the LED is flashed;
// for failure, the mode is set to ERROR.
// The motivation behind this method is that the sender and the receiver
// can do the same test calls, and the mode variable indicates whether
// to send or receive.
void test(const char *label, int type, unsigned long value, int bits) {
if (mode == SENDER) {
Serial.println(label);
if (type == NEC) {
irsend.sendNEC(value, bits);
}
else if (type == SONY) {
irsend.sendSony(value, bits);
}
else if (type == RC5) {
irsend.sendRC5(value, bits);
}
else if (type == RC6) {
irsend.sendRC6(value, bits);
}
else {
Serial.print(label);
Serial.println("Bad type!");
}
delay(200);
}
else if (mode == RECEIVER) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);

// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
if (type == results.decode_type && value == results.value && bits == results.bits) {
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
else {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
}
}
}

// Test raw send or receive. This is similar to the test method,
// except it send/receives raw data.
void testRaw(const char *label, unsigned int *rawbuf, int rawlen) {
if (mode == SENDER) {
Serial.println(label);
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
delay(200);
}
else if (mode == RECEIVER ) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);

// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}

// Received length has extra first element for gap
if (rawlen != results.rawlen - 1) {
Serial.print("Bad raw length ");
Serial.println(results.rawlen, DEC);
mode = ERROR;
return;
}
for (int i = 0; i < rawlen; i++) {
long got = results.rawbuf[i+1] * USECPERTICK;
// Adjust for extra duration of marks
if (i % 2 == 0) {
got -= MARK_EXCESS;
}
else {
got += MARK_EXCESS;
}
// See if close enough, within 25%
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
return;
}

}
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
}

// This is the raw data corresponding to NEC 0x12345678
unsigned int sendbuf[] = { /* NEC format */
9000, 4500,
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
560};

void loop() {
if (mode == SENDER) {
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
}
else if (mode == RECEIVER) {
waitForGap(1000);
}
else if (mode == ERROR) {
// Light up for 5 seconds for error
digitalWrite(LED_PIN, HIGH);
delay(5000);
digitalWrite(LED_PIN, LOW);
mode = RECEIVER; // Try again
return;
}

// The test suite.
test("SONY1", SONY, 0x123, 12);
test("SONY2", SONY, 0x000, 12);
test("SONY3", SONY, 0xfff, 12);
test("SONY4", SONY, 0x12345, 20);
test("SONY5", SONY, 0x00000, 20);
test("SONY6", SONY, 0xfffff, 20);
test("NEC1", NEC, 0x12345678, 32);
test("NEC2", NEC, 0x00000000, 32);
test("NEC3", NEC, 0xffffffff, 32);
test("NEC4", NEC, REPEAT, 32);
test("RC51", RC5, 0x12345678, 32);
test("RC52", RC5, 0x0, 32);
test("RC53", RC5, 0xffffffff, 32);
test("RC61", RC6, 0x12345678, 32);
test("RC62", RC6, 0x0, 32);
test("RC63", RC6, 0xffffffff, 32);

// Tests of raw sending and receiving.
// First test sending raw and receiving raw.
// Then test sending raw and receiving decoded NEC
// Then test sending NEC and receiving raw
testRaw("RAW1", sendbuf, 67);
if (mode == SENDER) {
testRaw("RAW2", sendbuf, 67);
test("RAW3", NEC, 0x12345678, 32);
}
else {
test("RAW2", NEC, 0x12345678, 32);
testRaw("RAW3", sendbuf, 67);
}
}

+ 29
- 0
examples/JVCPanasonicSendDemo/JVCPanasonicSendDemo.ino Просмотреть файл

@@ -0,0 +1,29 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
#define PanasonicPower 0x100BCBD // Panasonic Power button

#define JVCPower 0xC5E8

IRsend irsend;

void setup()
{
}

void loop() {
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
delayMicroseconds(50);
}

+ 263
- 0
examples/LGACSendDemo/LGACSendDemo.ino Просмотреть файл

@@ -0,0 +1,263 @@
#include <IRremote.h>
#include <Wire.h>


IRsend irsend;
// not used
int RECV_PIN = 11;
IRrecv irrecv (RECV_PIN);

const int AC_TYPE = 0;
// 0 : TOWER
// 1 : WALL
//

int AC_HEAT = 0;
// 0 : cooling
// 1 : heating

int AC_POWER_ON = 0;
// 0 : off
// 1 : on

int AC_AIR_ACLEAN = 0;
// 0 : off
// 1 : on --> power on

int AC_TEMPERATURE = 27;
// temperature : 18 ~ 30

int AC_FLOW = 1;
// 0 : low
// 1 : mid
// 2 : high
// if AC_TYPE =1, 3 : change
//


const int AC_FLOW_TOWER[3] = {0, 4, 6};
const int AC_FLOW_WALL[4] = {0, 2, 4, 5};

unsigned long AC_CODE_TO_SEND;

int r = LOW;
int o_r = LOW;

byte a, b;

void ac_send_code(unsigned long code)
{
Serial.print("code to send : ");
Serial.print(code, BIN);
Serial.print(" : ");
Serial.println(code, HEX);

irsend.sendLG(code, 28);
}

void ac_activate(int temperature, int air_flow)
{

int AC_MSBITS1 = 8;
int AC_MSBITS2 = 8;
int AC_MSBITS3 = 0;
int AC_MSBITS4 ;
if ( AC_HEAT == 1 ) {
// heating
AC_MSBITS4 = 4;
} else {
// cooling
AC_MSBITS4 = 0;
}
int AC_MSBITS5 = temperature - 15;
int AC_MSBITS6 ;

if ( AC_TYPE == 0) {
AC_MSBITS6 = AC_FLOW_TOWER[air_flow];
} else {
AC_MSBITS6 = AC_FLOW_WALL[air_flow];
}

int AC_MSBITS7 = (AC_MSBITS3 + AC_MSBITS4 + AC_MSBITS5 + AC_MSBITS6) & B00001111;

AC_CODE_TO_SEND = AC_MSBITS1 << 4 ;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS2) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS3) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS4) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS5) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS6) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS7);

ac_send_code(AC_CODE_TO_SEND);

AC_POWER_ON = 1;
AC_TEMPERATURE = temperature;
AC_FLOW = air_flow;
}

void ac_change_air_swing(int air_swing)
{
if ( AC_TYPE == 0) {
if ( air_swing == 1) {
AC_CODE_TO_SEND = 0x881316B;
} else {
AC_CODE_TO_SEND = 0x881317C;
}
} else {
if ( air_swing == 1) {
AC_CODE_TO_SEND = 0x8813149;
} else {
AC_CODE_TO_SEND = 0x881315A;
}
}

ac_send_code(AC_CODE_TO_SEND);
}

void ac_power_down()
{
AC_CODE_TO_SEND = 0x88C0051;

ac_send_code(AC_CODE_TO_SEND);

AC_POWER_ON = 0;
}

void ac_air_clean(int air_clean)
{
if ( air_clean == 1) {
AC_CODE_TO_SEND = 0x88C000C;
} else {
AC_CODE_TO_SEND = 0x88C0084;
}

ac_send_code(AC_CODE_TO_SEND);

AC_AIR_ACLEAN = air_clean;
}

void setup()
{
Serial.begin(38400);
delay(1000);
Wire.begin(7);
Wire.onReceive(receiveEvent);

Serial.println(" - - - T E S T - - - ");

/* test
ac_activate(25, 1);
delay(5000);
ac_activate(27, 2);
delay(5000);

*/
}

void loop()
{


ac_activate(25, 1);
delay(5000);
ac_activate(27, 0);
delay(5000);


if ( r != o_r) {

/*
# a : mode or temp b : air_flow, temp, swing, clean, cooling/heating
# 18 ~ 30 : temp 0 ~ 2 : flow // on
# 0 : off 0
# 1 : on 0
# 2 : air_swing 0 or 1
# 3 : air_clean 0 or 1
# 4 : air_flow 0 ~ 2 : flow
# 5 : temp 18 ~ 30
# + : temp + 1
# - : temp - 1
# m : change cooling to air clean, air clean to cooling
*/
Serial.print("a : ");
Serial.print(a);
Serial.print(" b : ");
Serial.println(b);

switch (a) {
case 0: // off
ac_power_down();
break;
case 1: // on
ac_activate(AC_TEMPERATURE, AC_FLOW);
break;
case 2:
if ( b == 0 || b == 1 ) {
ac_change_air_swing(b);
}
break;
case 3: // 1 : clean on, power on
if ( b == 0 || b == 1 ) {
ac_air_clean(b);
}
break;
case 4:
if ( 0 <= b && b <= 2 ) {
ac_activate(AC_TEMPERATURE, b);
}
break;
case 5:
if (18 <= b && b <= 30 ) {
ac_activate(b, AC_FLOW);
}
break;
case '+':
if ( 18 <= AC_TEMPERATURE && AC_TEMPERATURE <= 29 ) {
ac_activate((AC_TEMPERATURE + 1), AC_FLOW);
}
break;
case '-':
if ( 19 <= AC_TEMPERATURE && AC_TEMPERATURE <= 30 ) {
ac_activate((AC_TEMPERATURE - 1), AC_FLOW);
}
break;
case 'm':
/*
if ac is on, 1) turn off, 2) turn on ac_air_clean(1)
if ac is off, 1) turn on, 2) turn off ac_air_clean(0)
*/
if ( AC_POWER_ON == 1 ) {
ac_power_down();
delay(100);
ac_air_clean(1);
} else {
if ( AC_AIR_ACLEAN == 1) {
ac_air_clean(0);
delay(100);
}
ac_activate(AC_TEMPERATURE, AC_FLOW);
}
break;
default:
if ( 18 <= a && a <= 30 ) {
if ( 0 <= b && b <= 2 ) {
ac_activate(a, b);
}
}
}

o_r = r ;
}
delay(100);
}



void receiveEvent(int howMany)
{
a = Wire.read();
b = Wire.read();
r = !r ;
}



+ 93
- 0
examples/LGACSendDemo/LGACSendDemo.md Просмотреть файл

@@ -0,0 +1,93 @@
=== decoding for LG A/C ====
- 1) remote of LG AC has two type of HDR mark/space, 8000/4000 and 3100/10000
- 2) HDR 8000/4000 is decoded using decodeLG(IRrecvDumpV2) without problem
- 3) for HDR 3100/10000, use AnalysIR's code : http://www.analysir.com/blog/2014/03/19/air-conditioners-problems-recording-long-infrared-remote-control-signals-arduino/
- 4) for bin output based on AnalysIR's code : https://gist.github.com/chaeplin/a3a4b4b6b887c663bfe8
- 5) remove first two byte(11)
- 6) sample rawcode with bin output : https://gist.github.com/chaeplin/134d232e0b8cfb898860


=== *** ===
- 1) Sample raw code : https://gist.github.com/chaeplin/ab2a7ad1533c41260f0d
- 2) send raw code : https://gist.github.com/chaeplin/7c800d3166463bb51be4


=== *** ===
- (0) : Cooling or Heating
- (1) : fixed
- (2) : fixed
- (3) : special(power, swing, air clean)
- (4) : change air flow, temperature, cooling(0)/heating(4)
- (5) : temperature ( 15 + (5) = )
- (6) : air flow
- (7) : crc ( 3 + 4 + 5 + 6 ) & B00001111


°F = °C × 1.8 + 32
°C = (°F − 32) / 1.8


=== *** ===
* remote / Korea / without heating

| status |(0)| (1)| (2)| (3)| (4)| (5)| (6)| (7)
|----------------|---|----|----|----|----|----|----|----
| on / 25 / mid | C |1000|1000|0000|0000|1010|0010|1100
| on / 26 / mid | C |1000|1000|0000|0000|1011|0010|1101
| on / 27 / mid | C |1000|1000|0000|0000|1100|0010|1110
| on / 28 / mid | C |1000|1000|0000|0000|1101|0010|1111
| on / 25 / high | C |1000|1000|0000|0000|1010|0100|1110
| on / 26 / high | C |1000|1000|0000|0000|1011|0100|1111
| on / 27 / high | C |1000|1000|0000|0000|1100|0100|0000
| on / 28 / high | C |1000|1000|0000|0000|1101|0100|0001
|----------------|---|----|----|----|----|----|----|----
| 1 up | C |1000|1000|0000|1000|1101|0100|1001
|----------------|---|----|----|----|----|----|----|----
| Cool power | C |1000|1000|0001|0000|0000|1100|1101
| energy saving | C |1000|1000|0001|0000|0000|0100|0101
| power | C |1000|1000|0001|0000|0000|1000|1001
| flow/up/down | C |1000|1000|0001|0011|0001|0100|1001
| up/down off | C |1000|1000|0001|0011|0001|0101|1010
| flow/left/right| C |1000|1000|0001|0011|0001|0110|1011
| left/right off | C |1000|1000|0001|0011|0001|0111|1100
|----------------|---|----|----|----|----|----|----|----
| Air clean | C |1000|1000|1100|0000|0000|0000|1100
|----------------|---|----|----|----|----|----|----|----
| off | C |1000|1000|1100|0000|0000|0101|0001



* remote / with heating
* converted using raw code at https://github.com/chaeplin/RaspAC/blob/master/lircd.conf

| status |(0)| (1)| (2)| (3)| (4)| (5)| (6)| (7)
|----------------|---|----|----|----|----|----|----|----
| on | C |1000|1000|0000|0000|1011|0010|1101
|----------------|---|----|----|----|----|----|----|----
| off | C |1000|1000|1100|0000|0000|0101|0001
|----------------|---|----|----|----|----|----|----|----
| 64 / 18 | C |1000|1000|0000|0000|0011|0100|0111
| 66 / 19 | C |1000|1000|0000|0000|0100|0100|1000
| 68 / 20 | C |1000|1000|0000|0000|0101|0100|1001
| 70 / 21 | C |1000|1000|0000|0000|0110|0100|1010
| 72 / 22 | C |1000|1000|0000|0000|0111|0100|1011
| 74 / 23 | C |1000|1000|0000|0000|1000|0100|1100
| 76 / 25 | C |1000|1000|0000|0000|1010|0100|1110
| 78 / 26 | C |1000|1000|0000|0000|1011|0100|1111
| 80 / 27 | C |1000|1000|0000|0000|1100|0100|0000
| 82 / 28 | C |1000|1000|0000|0000|1101|0100|0001
| 84 / 29 | C |1000|1000|0000|0000|1110|0100|0010
| 86 / 30 | C |1000|1000|0000|0000|1111|0100|0011
|----------------|---|----|----|----|----|----|----|----
| heat64 | H |1000|1000|0000|0100|0011|0100|1011
| heat66 | H |1000|1000|0000|0100|0100|0100|1100
| heat68 | H |1000|1000|0000|0100|0101|0100|1101
| heat70 | H |1000|1000|0000|0100|0110|0100|1110
| heat72 | H |1000|1000|0000|0100|0111|0100|1111
| heat74 | H |1000|1000|0000|0100|1000|0100|0000
| heat76 | H |1000|1000|0000|0100|1001|0100|0001
| heat78 | H |1000|1000|0000|0100|1011|0100|0011
| heat80 | H |1000|1000|0000|0100|1100|0100|0100
| heat82 | H |1000|1000|0000|0100|1101|0100|0101
| heat84 | H |1000|1000|0000|0100|1110|0100|0110
| heat86 | H |1000|1000|0000|0100|1111|0100|0111

+ 22
- 0
examples/LegoPowerFunctionsSendDemo/LegoPowerFunctionsSendDemo.ino Просмотреть файл

@@ -0,0 +1,22 @@
/*
* LegoPowerFunctionsSendDemo: LEGO Power Functions
* Copyright (c) 2016 Philipp Henkel
*/

#include <IRremote.h>
#include <IRremoteInt.h>

IRsend irsend;

void setup() {
}

void loop() {
// Send repeated command "channel 1, blue forward, red backward"
irsend.sendLegoPowerFunctions(0x197);
delay(2000);

// Send single command "channel 1, blue forward, red backward"
irsend.sendLegoPowerFunctions(0x197, false);
delay(2000);
}

+ 193
- 0
examples/LegoPowerFunctionsTests/LegoPowerFunctionsTests.ino Просмотреть файл

@@ -0,0 +1,193 @@
/*
* LegoPowerFunctionsTest: LEGO Power Functions Tests
* Copyright (c) 2016, 2017 Philipp Henkel
*/

#include <ir_Lego_PF_BitStreamEncoder.h>

void setup() {
Serial.begin(9600);
delay(1000); // wait for reset triggered by serial connection
runBitStreamEncoderTests();
}

void loop() {
}

void runBitStreamEncoderTests() {
Serial.println();
Serial.println("BitStreamEncoder Tests");
static LegoPfBitStreamEncoder bitStreamEncoder;
testStartBit(bitStreamEncoder);
testLowBit(bitStreamEncoder);
testHighBit(bitStreamEncoder);
testMessageBitCount(bitStreamEncoder);
testMessageBitCountRepeat(bitStreamEncoder);
testMessage407(bitStreamEncoder);
testMessage407Repeated(bitStreamEncoder);
testGetChannelId1(bitStreamEncoder);
testGetChannelId2(bitStreamEncoder);
testGetChannelId3(bitStreamEncoder);
testGetChannelId4(bitStreamEncoder);
testGetMessageLengthAllHigh(bitStreamEncoder);
testGetMessageLengthAllLow(bitStreamEncoder);
}

void logTestResult(bool testPassed) {
if (testPassed) {
Serial.println("OK");
}
else {
Serial.println("FAIL ############");
}
}

void testStartBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testStartBit ");
bitStreamEncoder.reset(0, false);
int startMark = bitStreamEncoder.getMarkDuration();
int startPause = bitStreamEncoder.getPauseDuration();
logTestResult(startMark == 158 && startPause == 1184-158);
}

void testLowBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testLowBit ");
bitStreamEncoder.reset(0, false);
bitStreamEncoder.next();
int lowMark = bitStreamEncoder.getMarkDuration();
int lowPause = bitStreamEncoder.getPauseDuration();
logTestResult(lowMark == 158 && lowPause == 421-158);
}

void testHighBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testHighBit ");
bitStreamEncoder.reset(0xFFFF, false);
bitStreamEncoder.next();
int highMark = bitStreamEncoder.getMarkDuration();
int highPause = bitStreamEncoder.getPauseDuration();
logTestResult(highMark == 158 && highPause == 711-158);
}

void testMessageBitCount(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessageBitCount ");
bitStreamEncoder.reset(0xFFFF, false);
int bitCount = 1;
while (bitStreamEncoder.next()) {
bitCount++;
}
logTestResult(bitCount == 18);
}

boolean check(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = true;
result = result && bitStreamEncoder.getMarkDuration() == markDuration;
result = result && bitStreamEncoder.getPauseDuration() == pauseDuration;
return result;
}

boolean checkNext(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = bitStreamEncoder.next();
result = result && check(bitStreamEncoder, markDuration, pauseDuration);
return result;
}

boolean checkDataBitsOfMessage407(LegoPfBitStreamEncoder& bitStreamEncoder) {
bool result = true;
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
return result;
}

void testMessage407(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessage407 ");
bitStreamEncoder.reset(407, false);
bool result = true;
result = result && check(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && !bitStreamEncoder.next();
logTestResult(result);
}

void testMessage407Repeated(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessage407Repeated ");
bitStreamEncoder.reset(407, true);
bool result = true;
result = result && check(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && !bitStreamEncoder.next();
logTestResult(result);
}

void testMessageBitCountRepeat(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessageBitCountRepeat ");
bitStreamEncoder.reset(0xFFFF, true);
int bitCount = 1;
while (bitStreamEncoder.next()) {
bitCount++;
}
logTestResult(bitCount == 5*18);
}

void testGetChannelId1(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId1 ");
bitStreamEncoder.reset(407, false);
logTestResult(bitStreamEncoder.getChannelId() == 1);
}

void testGetChannelId2(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId2 ");
bitStreamEncoder.reset(4502, false);
logTestResult(bitStreamEncoder.getChannelId() == 2);
}

void testGetChannelId3(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId3 ");
bitStreamEncoder.reset(8597, false);
logTestResult(bitStreamEncoder.getChannelId() == 3);
}

void testGetChannelId4(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId4 ");
bitStreamEncoder.reset(12692, false);
logTestResult(bitStreamEncoder.getChannelId() == 4);
}

void testGetMessageLengthAllHigh(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetMessageLengthAllHigh ");
bitStreamEncoder.reset(0xFFFF, false);
logTestResult(bitStreamEncoder.getMessageLength() == 13744);
}

void testGetMessageLengthAllLow(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetMessageLengthAllLow ");
bitStreamEncoder.reset(0x0, false);
logTestResult(bitStreamEncoder.getMessageLength() == 9104);
}

+ 344
- 0
include/irr/IRremote.h Просмотреть файл

@@ -0,0 +1,344 @@

//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
// Edited by Mitra to add new controller SANYO
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// LG added by Darryl Smith (based on the JVC protocol)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************

#ifndef IRremote_h
#define IRremote_h

//------------------------------------------------------------------------------
// The ISR header contains several useful macros the user may wish to use
//
#include "./IRremoteInt.h"

//------------------------------------------------------------------------------
// Supported IR protocols
// Each protocol you include costs memory and, during decode, costs time
// Disable (set to 0) all the protocols you do not need/want!
//
#define DECODE_RC5 1
#define SEND_RC5 1

#define DECODE_RC6 1
#define SEND_RC6 1

#define DECODE_NEC 1
#define SEND_NEC 1

#define DECODE_SONY 1
#define SEND_SONY 1

#define DECODE_PANASONIC 1
#define SEND_PANASONIC 1

#define DECODE_JVC 1
#define SEND_JVC 1

#define DECODE_SAMSUNG 1
#define SEND_SAMSUNG 1

#define DECODE_WHYNTER 1
#define SEND_WHYNTER 1

#define DECODE_AIWA_RC_T501 1
#define SEND_AIWA_RC_T501 1

#define DECODE_LG 1
#define SEND_LG 1

#define DECODE_SANYO 1
#define SEND_SANYO 0 // NOT WRITTEN

#define DECODE_MITSUBISHI 1
#define SEND_MITSUBISHI 0 // NOT WRITTEN

#define DECODE_DISH 0 // NOT WRITTEN
#define SEND_DISH 1

#define DECODE_SHARP 0 // NOT WRITTEN
#define SEND_SHARP 1

#define DECODE_DENON 1
#define SEND_DENON 1

#define DECODE_PRONTO 0 // This function doe not logically make sense
#define SEND_PRONTO 1

#define DECODE_LEGO_PF 0 // NOT WRITTEN
#define SEND_LEGO_PF 1

//------------------------------------------------------------------------------
// When sending a Pronto code we request to send either the "once" code
// or the "repeat" code
// If the code requested does not exist we can request to fallback on the
// other code (the one we did not explicitly request)
//
// I would suggest that "fallback" will be the standard calling method
// The last paragraph on this page discusses the rationale of this idea:
// http://www.remotecentral.com/features/irdisp2.htm
//
#define PRONTO_ONCE false
#define PRONTO_REPEAT true
#define PRONTO_FALLBACK true
#define PRONTO_NOFALLBACK false

//------------------------------------------------------------------------------
// An enumerated list of all supported formats
// You do NOT need to remove entries from this list when disabling protocols!
//
typedef
enum {
UNKNOWN = -1,
UNUSED = 0,
RC5,
RC6,
NEC,
SONY,
PANASONIC,
JVC,
SAMSUNG,
WHYNTER,
AIWA_RC_T501,
LG,
SANYO,
MITSUBISHI,
DISH,
SHARP,
DENON,
PRONTO,
LEGO_PF,
}
decode_type_t;

//------------------------------------------------------------------------------
// Set DEBUG to 1 for lots of lovely debug output
//
#define DEBUG 0

//------------------------------------------------------------------------------
// Debug directives
//
#if DEBUG
# define DBG_PRINT(...) Serial.print(__VA_ARGS__)
# define DBG_PRINTLN(...) Serial.println(__VA_ARGS__)
#else
# define DBG_PRINT(...)
# define DBG_PRINTLN(...)
#endif

//------------------------------------------------------------------------------
// Mark & Space matching functions
//
int MATCH (int measured, int desired) ;
int MATCH_MARK (int measured_ticks, int desired_us) ;
int MATCH_SPACE (int measured_ticks, int desired_us) ;

//------------------------------------------------------------------------------
// Results returned from the decoder
//
class decode_results
{
public:
decode_type_t decode_type; // UNKNOWN, NEC, SONY, RC5, ...
unsigned int address; // Used by Panasonic & Sharp [16-bits]
unsigned long value; // Decoded value [max 32-bits]
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in 50uS ticks
int rawlen; // Number of records in rawbuf
int overflow; // true iff IR raw code too long
};

//------------------------------------------------------------------------------
// Decoded value for NEC when a repeat code is received
//
#define REPEAT 0xFFFFFFFF

//------------------------------------------------------------------------------
// Main class for receiving IR
//
class IRrecv
{
public:
IRrecv (int recvpin) ;
IRrecv (int recvpin, int blinkpin);

void blink13 (int blinkflag) ;
int decode (decode_results *results) ;
void enableIRIn ( ) ;
bool isIdle ( ) ;
void resume ( ) ;

private:
long decodeHash (decode_results *results) ;
int compare (unsigned int oldval, unsigned int newval) ;

//......................................................................
# if (DECODE_RC5 || DECODE_RC6)
// This helper function is shared by RC5 and RC6
int getRClevel (decode_results *results, int *offset, int *used, int t1) ;
# endif
# if DECODE_RC5
bool decodeRC5 (decode_results *results) ;
# endif
# if DECODE_RC6
bool decodeRC6 (decode_results *results) ;
# endif
//......................................................................
# if DECODE_NEC
bool decodeNEC (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SONY
bool decodeSony (decode_results *results) ;
# endif
//......................................................................
# if DECODE_PANASONIC
bool decodePanasonic (decode_results *results) ;
# endif
//......................................................................
# if DECODE_JVC
bool decodeJVC (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SAMSUNG
bool decodeSAMSUNG (decode_results *results) ;
# endif
//......................................................................
# if DECODE_WHYNTER
bool decodeWhynter (decode_results *results) ;
# endif
//......................................................................
# if DECODE_AIWA_RC_T501
bool decodeAiwaRCT501 (decode_results *results) ;
# endif
//......................................................................
# if DECODE_LG
bool decodeLG (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SANYO
bool decodeSanyo (decode_results *results) ;
# endif
//......................................................................
# if DECODE_MITSUBISHI
bool decodeMitsubishi (decode_results *results) ;
# endif
//......................................................................
# if DECODE_DISH
bool decodeDish (decode_results *results) ; // NOT WRITTEN
# endif
//......................................................................
# if DECODE_SHARP
bool decodeSharp (decode_results *results) ; // NOT WRITTEN
# endif
//......................................................................
# if DECODE_DENON
bool decodeDenon (decode_results *results) ;
# endif
//......................................................................
# if DECODE_LEGO_PF
bool decodeLegoPowerFunctions (decode_results *results) ;
# endif
} ;

//------------------------------------------------------------------------------
// Main class for sending IR
//
class IRsend
{
public:
IRsend () { }

void custom_delay_usec (unsigned long uSecs);
void enableIROut (int khz) ;
void mark (unsigned int usec) ;
void space (unsigned int usec) ;
void sendRaw (const unsigned int buf[], unsigned int len, unsigned int hz) ;

//......................................................................
# if SEND_RC5
void sendRC5 (unsigned long data, int nbits) ;
# endif
# if SEND_RC6
void sendRC6 (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_NEC
void sendNEC (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SONY
void sendSony (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_PANASONIC
void sendPanasonic (unsigned int address, unsigned long data) ;
# endif
//......................................................................
# if SEND_JVC
// JVC does NOT repeat by sending a separate code (like NEC does).
// The JVC protocol repeats by skipping the header.
// To send a JVC repeat signal, send the original code value
// and set 'repeat' to true
void sendJVC (unsigned long data, int nbits, bool repeat) ;
# endif
//......................................................................
# if SEND_SAMSUNG
void sendSAMSUNG (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_WHYNTER
void sendWhynter (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_AIWA_RC_T501
void sendAiwaRCT501 (int code) ;
# endif
//......................................................................
# if SEND_LG
void sendLG (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SANYO
void sendSanyo ( ) ; // NOT WRITTEN
# endif
//......................................................................
# if SEND_MISUBISHI
void sendMitsubishi ( ) ; // NOT WRITTEN
# endif
//......................................................................
# if SEND_DISH
void sendDISH (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SHARP
void sendSharpRaw (unsigned long data, int nbits) ;
void sendSharp (unsigned int address, unsigned int command) ;
# endif
//......................................................................
# if SEND_DENON
void sendDenon (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_PRONTO
void sendPronto (char* code, bool repeat, bool fallback) ;
# endif
//......................................................................
# if SEND_LEGO_PF
void sendLegoPowerFunctions (uint16_t data, bool repeat = true) ;
# endif
} ;

#endif

+ 113
- 0
include/irr/IRremoteInt.h Просмотреть файл

@@ -0,0 +1,113 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
//
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************

#ifndef IRremoteint_h
#define IRremoteint_h

//------------------------------------------------------------------------------
// Include the right Arduino header
//
#if defined(ARDUINO) && (ARDUINO >= 100)
# include <core/Arduino.h>
#else
# if !defined(IRPRONTO)
# include <WProgram.h>
# endif
#endif

//------------------------------------------------------------------------------
// This handles definition and access to global variables
//
#ifdef IR_GLOBAL
# define EXTERN
#else
# define EXTERN extern
#endif

//------------------------------------------------------------------------------
// Information for the Interrupt Service Routine
//
#define RAWBUF 101 // Maximum length of raw duration buffer

typedef
struct {
// The fields are ordered to reduce memory over caused by struct-padding
uint8_t rcvstate; // State Machine state
uint8_t recvpin; // Pin connected to IR data from detector
uint8_t blinkpin;
uint8_t blinkflag; // true -> enable blinking of pin on IR processing
uint8_t rawlen; // counter of entries in rawbuf
unsigned int timer; // State timer, counts 50uS ticks.
unsigned int rawbuf[RAWBUF]; // raw data
uint8_t overflow; // Raw buffer overflow occurred
}
irparams_t;

// ISR State-Machine : Receiver States
#define STATE_IDLE 2
#define STATE_MARK 3
#define STATE_SPACE 4
#define STATE_STOP 5
#define STATE_OVERFLOW 6

// Allow all parts of the code access to the ISR data
// NB. The data can be changed by the ISR at any time, even mid-function
// Therefore we declare it as "volatile" to stop the compiler/CPU caching it
EXTERN volatile irparams_t irparams;

//------------------------------------------------------------------------------
// Defines for setting and clearing register bits
//
#ifndef cbi
# define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif

#ifndef sbi
# define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

//------------------------------------------------------------------------------
// Pulse parms are ((X*50)-100) for the Mark and ((X*50)+100) for the Space.
// First MARK is the one after the long gap
// Pulse parameters in uSec
//

// Due to sensor lag, when received, Marks tend to be 100us too long and
// Spaces tend to be 100us too short
#define MARK_EXCESS 100

// Upper and Lower percentage tolerances in measurements
#define TOLERANCE 25
#define LTOL (1.0 - (TOLERANCE/100.))
#define UTOL (1.0 + (TOLERANCE/100.))

// Minimum gap between IR transmissions
#define _GAP 5000
#define GAP_TICKS (_GAP/USECPERTICK)

#define TICKS_LOW(us) ((int)(((us)*LTOL/USECPERTICK)))
#define TICKS_HIGH(us) ((int)(((us)*UTOL/USECPERTICK + 1)))

//------------------------------------------------------------------------------
// IR detector output is active low
//
#define MARK 0
#define SPACE 1

// All board specific stuff has been moved to its own file, included here.
#include "./boarddefs.h"

#endif

+ 661
- 0
include/irr/boarddefs.h Просмотреть файл

@@ -0,0 +1,661 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html

// This file contains all board specific information. It was previously contained within
// IRremoteInt.h

// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// Whynter A/C ARC-110WD added by Francesco Meschia

// Sparkfun Pro Micro support by Alastair McCormack
//******************************************************************************

#ifndef boarddefs_h
#define boarddefs_h

//------------------------------------------------------------------------------
// Defines for blinking the LED
//

#if defined(CORE_LED0_PIN)
# define BLINKLED CORE_LED0_PIN
# define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
# define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B10000000)
# define BLINKLED_OFF() (PORTB &= B01111111)

#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
# define BLINKLED 0
# define BLINKLED_ON() (PORTD |= B00000001)
# define BLINKLED_OFF() (PORTD &= B11111110)

// No system LED on ESP32, disable blinking
#elif defined(ESP32)
# define BLINKLED 255
# define BLINKLED_ON() 1
# define BLINKLED_OFF() 1
#else
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B00100000)
# define BLINKLED_OFF() (PORTB &= B11011111)
#endif

//------------------------------------------------------------------------------
// CPU Frequency
//
#ifdef F_CPU
# define SYSCLOCK F_CPU // main Arduino clock
#else
# define SYSCLOCK 16000000 // main Arduino clock
#endif

// microseconds per clock interrupt tick
#define USECPERTICK 50

//------------------------------------------------------------------------------
// Define which timer to use
//
// Uncomment the timer you wish to use on your board.
// If you are using another library which uses timer2, you have options to
// switch IRremote to use a different timer.
//

// Sparkfun Pro Micro
#if defined(ARDUINO_AVR_PROMICRO)
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4_HS // tx = pin 5

// Arduino Mega
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46

// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17

// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 9
#define IR_USE_TIMER4_HS // tx = pin 10

// Teensy 3.0 / Teensy 3.1
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define IR_USE_TIMER_CMT // tx = pin 5

// Teensy-LC
#elif defined(__MKL26Z64__)
#define IR_USE_TIMER_TPM1 // tx = pin 16

// Teensy 4
#elif defined(__IMXRT1062__)
#define IR_USE_TIMER_FLEXPWM1 // tx = pin 8

// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16

// MightyCore - ATmega1284
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 6

// MightyCore - ATmega164, ATmega324, ATmega644
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//MegaCore - ATmega64, ATmega128
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
#define IR_USE_TIMER1 // tx = pin 13

// MightyCore - ATmega8535, ATmega16, ATmega32
#elif defined(__AVR_ATmega8535__) || defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__)
#define IR_USE_TIMER1 // tx = pin 13

// Atmega8
#elif defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9

// ATtiny84
#elif defined(__AVR_ATtiny84__)
#define IR_USE_TIMER1 // tx = pin 6

//ATtiny85
#elif defined(__AVR_ATtiny85__)
#define IR_USE_TIMER_TINY0 // tx = pin 1

#elif defined(ESP32)
#define IR_TIMER_USE_ESP32
#else
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, Nano, etc
// ATmega48, ATmega88, ATmega168, ATmega328
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3

#endif

//------------------------------------------------------------------------------
// Defines for Timer

//---------------------------------------------------------
// Timer2 (8 bits)
//
#if defined(IR_USE_TIMER2)

#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect

#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})

#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)

//-----------------
#if (TIMER_COUNT_TOP < 256)
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif

//-----------------
#if defined(CORE_OC2B_PIN)
# define TIMER_PWM_PIN CORE_OC2B_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 9 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
# define TIMER_PWM_PIN 14 // MightyCore
#else
# define TIMER_PWM_PIN 3 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328

//---------------------------------------------------------
// Timer1 (16 bits)
//
#elif defined(IR_USE_TIMER1)

#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))

//-----------------
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega8535__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK &= ~_BV(OCIE1A))
#else
# define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif

//-----------------
#define TIMER_INTR_NAME TIMER1_COMPA_vect

#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})

#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})

//-----------------
#if defined(CORE_OC1A_PIN)
# define TIMER_PWM_PIN CORE_OC1A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 11 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega8535__) \
|| defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_PWM_PIN 13 // MightyCore, MegaCore
#elif defined(__AVR_ATtiny84__)
# define TIMER_PWM_PIN 6
#else
# define TIMER_PWM_PIN 9 // Arduino Duemilanove, Diecimila, LilyPad, Sparkfun Pro Micro etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328

//---------------------------------------------------------
// Timer3 (16 bits)
//
#elif defined(IR_USE_TIMER3)

#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect

#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})

#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})

//-----------------
#if defined(CORE_OC3A_PIN)
# define TIMER_PWM_PIN CORE_OC3A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(ARDUINO_AVR_PROMICRO)
# define TIMER_PWM_PIN 5 // Arduino Mega, Sparkfun Pro Micro
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
# define TIMER_PWM_PIN 6 // MightyCore
#else
# error "Please add OC3A pin number here\n"
#endif

//---------------------------------------------------------
// Timer4 (10 bits, high speed option)
//
#elif defined(IR_USE_TIMER4_HS)

#define TIMER_RESET

#if defined(ARDUINO_AVR_PROMICRO) // Sparkfun Pro Micro
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A0)) // Use complimentary O̅C̅4̅A̅ output on pin 5
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A0))) // (Pro Micro does not map PC7 (32/ICP3/CLK0/OC4A)
// of ATmega32U4 )
#else
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#endif

#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect


#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})

#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})

//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN // Teensy
#elif defined(ARDUINO_AVR_PROMICRO)
# define TIMER_PWM_PIN 5 // Sparkfun Pro Micro
#elif defined(__AVR_ATmega32U4__)
# define TIMER_PWM_PIN 13 // Leonardo
#else
# error "Please add OC4A pin number here\n"
#endif

//---------------------------------------------------------
// Timer4 (16 bits)
//
#elif defined(IR_USE_TIMER4)

#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect

#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})

#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})

//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 6 // Arduino Mega
#else
# error "Please add OC4A pin number here\n"
#endif

//---------------------------------------------------------
// Timer5 (16 bits)
//
#elif defined(IR_USE_TIMER5)

#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect

#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})

#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})

//-----------------
#if defined(CORE_OC5A_PIN)
# define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 46 // Arduino Mega
#else
# error "Please add OC5A pin number here\n"
#endif

//---------------------------------------------------------
// Special carrier modulator timer
//
#elif defined(IR_USE_TIMER_CMT)

#define TIMER_RESET ({ \
uint8_t tmp __attribute__((unused)) = CMT_MSC; \
CMT_CMD2 = 30; \
})

#define TIMER_ENABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(2) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)

#define TIMER_DISABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)

#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
#define TIMER_INTR_NAME cmt_isr

//-----------------
#ifdef ISR
# undef ISR
#endif
#define ISR(f) void f(void)

//-----------------
#define CMT_PPS_DIV ((F_BUS + 7999999) / 8000000)
#if F_BUS < 8000000
#error IRremote requires at least 8 MHz on Teensy 3.x
#endif

//-----------------
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = ((F_BUS / CMT_PPS_DIV / 3000) + ((val)/2)) / (val); \
CMT_CGL1 = ((F_BUS / CMT_PPS_DIV / 1500) + ((val)/2)) / (val); \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 0; \
CMT_OC = 0x60; \
CMT_MSC = 0x01; \
})

#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = 1; \
CMT_CGL1 = 1; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = (F_BUS / 160000 + CMT_PPS_DIV / 2) / CMT_PPS_DIV - 31; \
CMT_OC = 0; \
CMT_MSC = 0x03; \
})

#define TIMER_PWM_PIN 5

// defines for TPM1 timer on Teensy-LC
#elif defined(IR_USE_TIMER_TPM1)
#define TIMER_RESET FTM1_SC |= FTM_SC_TOF;
#define TIMER_ENABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(3)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_DISABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_FTM1)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_FTM1)
#define TIMER_INTR_NAME ftm1_isr
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/2000) / val - 1; \
FTM1_C0V = (F_PLL/6000) / val - 1; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/40000) - 1; \
FTM1_C0V = 0; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0) | FTM_SC_TOF | FTM_SC_TOIE; \
})
#define TIMER_PWM_PIN 16

// defines for FlexPWM1 timer on Teensy 4
#elif defined(IR_USE_TIMER_FLEXPWM1)
#define TIMER_RESET FLEXPWM1_SM3STS = FLEXPWM_SMSTS_RF;
#define TIMER_ENABLE_PWM FLEXPWM1_OUTEN |= FLEXPWM_OUTEN_PWMA_EN(8), \
IOMUXC_SW_MUX_CTL_PAD_GPIO_B1_00 = 6
#define TIMER_DISABLE_PWM IOMUXC_SW_MUX_CTL_PAD_GPIO_B1_00 = 5, \
FLEXPWM1_OUTEN &= ~FLEXPWM_OUTEN_PWMA_EN(8)
#define TIMER_ENABLE_INTR attachInterruptVector(IRQ_FLEXPWM1_3, pwm1_3_isr),\
FLEXPWM1_SM3STS = FLEXPWM_SMSTS_RF, \
FLEXPWM1_SM3INTEN = FLEXPWM_SMINTEN_RIE, \
NVIC_ENABLE_IRQ(IRQ_FLEXPWM1_3)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_FLEXPWM1_3)
#define TIMER_INTR_NAME pwm1_3_isr
#define TIMER_INT_DECLARE void pwm1_3_isr(void);
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#define TIMER_CONFIG_KHZ(val) ({ \
uint32_t period = (float)F_BUS_ACTUAL / (float)((val) * 2000); \
uint32_t prescale = 0; \
while (period > 32767) { \
period = period >> 1; \
if (prescale < 7) prescale++; \
} \
FLEXPWM1_FCTRL0 |= FLEXPWM_FCTRL0_FLVL(8); \
FLEXPWM1_FSTS0 = 0x0008; \
FLEXPWM1_MCTRL |= FLEXPWM_MCTRL_CLDOK(8); \
FLEXPWM1_SM3CTRL2 = FLEXPWM_SMCTRL2_INDEP; \
FLEXPWM1_SM3CTRL = FLEXPWM_SMCTRL_HALF | FLEXPWM_SMCTRL_PRSC(prescale); \
FLEXPWM1_SM3INIT = -period; \
FLEXPWM1_SM3VAL0 = 0; \
FLEXPWM1_SM3VAL1 = period; \
FLEXPWM1_SM3VAL2 = -(period / 3); \
FLEXPWM1_SM3VAL3 = period / 3; \
FLEXPWM1_SM3VAL4 = 0; \
FLEXPWM1_SM3VAL5 = 0; \
FLEXPWM1_MCTRL |= FLEXPWM_MCTRL_LDOK(8) | FLEXPWM_MCTRL_RUN(8); \
})
#define TIMER_CONFIG_NORMAL() ({ \
uint32_t period = (float)F_BUS_ACTUAL * (float)USECPERTICK * 0.0000005f; \
uint32_t prescale = 0; \
while (period > 32767) { \
period = period >> 1; \
if (prescale < 7) prescale++; \
} \
FLEXPWM1_FCTRL0 |= FLEXPWM_FCTRL0_FLVL(8); \
FLEXPWM1_FSTS0 = 0x0008; \
FLEXPWM1_MCTRL |= FLEXPWM_MCTRL_CLDOK(8); \
FLEXPWM1_SM3CTRL2 = FLEXPWM_SMCTRL2_INDEP; \
FLEXPWM1_SM3CTRL = FLEXPWM_SMCTRL_HALF | FLEXPWM_SMCTRL_PRSC(prescale); \
FLEXPWM1_SM3INIT = -period; \
FLEXPWM1_SM3VAL0 = 0; \
FLEXPWM1_SM3VAL1 = period; \
FLEXPWM1_SM3VAL2 = 0; \
FLEXPWM1_SM3VAL3 = 0; \
FLEXPWM1_SM3VAL4 = 0; \
FLEXPWM1_SM3VAL5 = 0; \
FLEXPWM1_MCTRL |= FLEXPWM_MCTRL_LDOK(8) | FLEXPWM_MCTRL_RUN(8); \
})
#define TIMER_PWM_PIN 7

// defines for timer_tiny0 (8 bits)
#elif defined(IR_USE_TIMER_TINY0)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR0A |= _BV(COM0B1))
#define TIMER_DISABLE_PWM (TCCR0A &= ~(_BV(COM0B1)))
#define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE0A))
#define TIMER_DISABLE_INTR (TIMSK &= ~(_BV(OCIE0A)))
#define TIMER_INTR_NAME TIMER0_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR0A = _BV(WGM00); \
TCCR0B = _BV(WGM02) | _BV(CS00); \
OCR0A = pwmval; \
OCR0B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS00); \
OCR0A = TIMER_COUNT_TOP; \
TCNT0 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS01); \
OCR0A = TIMER_COUNT_TOP / 8; \
TCNT0 = 0; \
})
#endif

#define TIMER_PWM_PIN 1 /* ATtiny85 */

//---------------------------------------------------------
// ESP32 (ESP8266 should likely be added here too)
//

// ESP32 has it own timer API and does not use these macros, but to avoid ifdef'ing
// them out in the common code, they are defined to no-op. This allows the code to compile
// (which it wouldn't otherwise) but irsend will not work until ESP32 specific code is written
// for that -- merlin
// As a warning, sending timing specific code from an ESP32 can be challenging if you need 100%
// reliability because the arduino code may be interrupted and cause your sent waveform to be the
// wrong length. This is specifically an issue for neopixels which require 800Khz resolution.
// IR may just work as is with the common code since it's lower frequency, but if not, the other
// way to do this on ESP32 is using the RMT built in driver like in this incomplete library below
// https://github.com/ExploreEmbedded/ESP32_RMT
#elif defined(IR_TIMER_USE_ESP32)
#define TIMER_RESET
#define TIMER_ENABLE_PWM
#define TIMER_DISABLE_PWM Serial.println("IRsend not implemented for ESP32 yet");
#define TIMER_ENABLE_INTR
#define TIMER_DISABLE_INTR
#define TIMER_INTR_NAME

//---------------------------------------------------------
// Unknown Timer
//
#else
# error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif

#endif // ! boarddefs_h

+ 115
- 0
include/irr/ir_Lego_PF_BitStreamEncoder.h Просмотреть файл

@@ -0,0 +1,115 @@
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016, 2017 Philipp Henkel
//==============================================================================
//+=============================================================================
//
class LegoPfBitStreamEncoder {
private:
uint16_t data;
bool repeatMessage;
uint8_t messageBitIdx;
uint8_t repeatCount;
uint16_t messageLength;
public:
// HIGH data bit = IR mark + high pause
// LOW data bit = IR mark + low pause
static const uint16_t LOW_BIT_DURATION = 421;
static const uint16_t HIGH_BIT_DURATION = 711;
static const uint16_t START_BIT_DURATION = 1184;
static const uint16_t STOP_BIT_DURATION = 1184;
static const uint8_t IR_MARK_DURATION = 158;
static const uint16_t HIGH_PAUSE_DURATION = HIGH_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t LOW_PAUSE_DURATION = LOW_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t START_PAUSE_DURATION = START_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t STOP_PAUSE_DURATION = STOP_BIT_DURATION - IR_MARK_DURATION;
static const uint8_t MESSAGE_BITS = 18;
static const uint16_t MAX_MESSAGE_LENGTH = 16000;
void reset(uint16_t data, bool repeatMessage) {
this->data = data;
this->repeatMessage = repeatMessage;
messageBitIdx = 0;
repeatCount = 0;
messageLength = getMessageLength();
}
int getChannelId() const { return 1 + ((data >> 12) & 0x3); }
uint16_t getMessageLength() const {
// Sum up all marks
uint16_t length = MESSAGE_BITS * IR_MARK_DURATION;
// Sum up all pauses
length += START_PAUSE_DURATION;
for (unsigned long mask = 1UL << 15; mask; mask >>= 1) {
if (data & mask) {
length += HIGH_PAUSE_DURATION;
} else {
length += LOW_PAUSE_DURATION;
}
}
length += STOP_PAUSE_DURATION;
return length;
}
boolean next() {
messageBitIdx++;
if (messageBitIdx >= MESSAGE_BITS) {
repeatCount++;
messageBitIdx = 0;
}
if (repeatCount >= 1 && !repeatMessage) {
return false;
} else if (repeatCount >= 5) {
return false;
} else {
return true;
}
}
uint8_t getMarkDuration() const { return IR_MARK_DURATION; }
uint32_t getPauseDuration() const {
if (messageBitIdx == 0)
return START_PAUSE_DURATION;
else if (messageBitIdx < MESSAGE_BITS - 1) {
return getDataBitPause();
} else {
return getStopPause();
}
}
private:
uint16_t getDataBitPause() const {
const int pos = MESSAGE_BITS - 2 - messageBitIdx;
const bool isHigh = data & (1 << pos);
return isHigh ? HIGH_PAUSE_DURATION : LOW_PAUSE_DURATION;
}
uint32_t getStopPause() const {
if (repeatMessage) {
return getRepeatStopPause();
} else {
return STOP_PAUSE_DURATION;
}
}
uint32_t getRepeatStopPause() const {
if (repeatCount == 0 || repeatCount == 1) {
return STOP_PAUSE_DURATION + (uint32_t)5 * MAX_MESSAGE_LENGTH - messageLength;
} else if (repeatCount == 2 || repeatCount == 3) {
return STOP_PAUSE_DURATION
+ (uint32_t)(6 + 2 * getChannelId()) * MAX_MESSAGE_LENGTH - messageLength;
} else {
return STOP_PAUSE_DURATION;
}
}
};

+ 203
- 0
src/IRremote.cpp Просмотреть файл

@@ -0,0 +1,203 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
//
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
// Modified by Mitra Ardron <mitra@mitra.biz>
// Added Sanyo and Mitsubishi controllers
// Modified Sony to spot the repeat codes that some Sony's send
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// LG added by Darryl Smith (based on the JVC protocol)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************

// Defining IR_GLOBAL here allows us to declare the instantiation of global variables
#define IR_GLOBAL
# include "irr/IRremote.h"
# include "irr/IRremoteInt.h"
#undef IR_GLOBAL

#ifndef IR_TIMER_USE_ESP32
#include <core/avr/interrupt.h>
#endif


//+=============================================================================
// The match functions were (apparently) originally MACROs to improve code speed
// (although this would have bloated the code) hence the names being CAPS
// A later release implemented debug output and so they needed to be converted
// to functions.
// I tried to implement a dual-compile mode (DEBUG/non-DEBUG) but for some
// reason, no matter what I did I could not get them to function as macros again.
// I have found a *lot* of bugs in the Arduino compiler over the last few weeks,
// and I am currently assuming that one of these bugs is my problem.
// I may revisit this code at a later date and look at the assembler produced
// in a hope of finding out what is going on, but for now they will remain as
// functions even in non-DEBUG mode
//
int MATCH (int measured, int desired)
{
DBG_PRINT(F("Testing: "));
DBG_PRINT(TICKS_LOW(desired), DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired), DEC);

bool passed = ((measured >= TICKS_LOW(desired)) && (measured <= TICKS_HIGH(desired)));
if (passed) {
DBG_PRINTLN(F("?; passed"));
} else {
DBG_PRINTLN(F("?; FAILED"));
}
return passed;
}

//+========================================================
// Due to sensor lag, when received, Marks tend to be 100us too long
//
int MATCH_MARK (int measured_ticks, int desired_us)
{
DBG_PRINT(F("Testing mark (actual vs desired): "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F("us vs "));
DBG_PRINT(desired_us, DEC);
DBG_PRINT("us");
DBG_PRINT(": ");
DBG_PRINT(TICKS_LOW(desired_us + MARK_EXCESS) * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired_us + MARK_EXCESS) * USECPERTICK, DEC);

bool passed = ((measured_ticks >= TICKS_LOW (desired_us + MARK_EXCESS))
&& (measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS)));
if (passed) {
DBG_PRINTLN(F("?; passed"));
} else {
DBG_PRINTLN(F("?; FAILED"));
}
return passed;
}

//+========================================================
// Due to sensor lag, when received, Spaces tend to be 100us too short
//
int MATCH_SPACE (int measured_ticks, int desired_us)
{
DBG_PRINT(F("Testing space (actual vs desired): "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F("us vs "));
DBG_PRINT(desired_us, DEC);
DBG_PRINT("us");
DBG_PRINT(": ");
DBG_PRINT(TICKS_LOW(desired_us - MARK_EXCESS) * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired_us - MARK_EXCESS) * USECPERTICK, DEC);

bool passed = ((measured_ticks >= TICKS_LOW (desired_us - MARK_EXCESS))
&& (measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS)));
if (passed) {
DBG_PRINTLN(F("?; passed"));
} else {
DBG_PRINTLN(F("?; FAILED"));
}
return passed;
}

//+=============================================================================
// Interrupt Service Routine - Fires every 50uS
// TIMER2 interrupt code to collect raw data.
// Widths of alternating SPACE, MARK are recorded in rawbuf.
// Recorded in ticks of 50uS [microseconds, 0.000050 seconds]
// 'rawlen' counts the number of entries recorded so far.
// First entry is the SPACE between transmissions.
// As soon as a the first [SPACE] entry gets long:
// Ready is set; State switches to IDLE; Timing of SPACE continues.
// As soon as first MARK arrives:
// Gap width is recorded; Ready is cleared; New logging starts
//
#ifdef IR_TIMER_USE_ESP32
void IRTimer()
#else
ISR (TIMER_INTR_NAME)
#endif
{
TIMER_RESET;

// Read if IR Receiver -> SPACE [xmt LED off] or a MARK [xmt LED on]
// digitalRead() is very slow. Optimisation is possible, but makes the code unportable
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);

irparams.timer++; // One more 50uS tick
if (irparams.rawlen >= RAWBUF) irparams.rcvstate = STATE_OVERFLOW ; // Buffer overflow

switch(irparams.rcvstate) {
//......................................................................
case STATE_IDLE: // In the middle of a gap
if (irdata == MARK) {
if (irparams.timer < GAP_TICKS) { // Not big enough to be a gap.
irparams.timer = 0;

} else {
// Gap just ended; Record duration; Start recording transmission
irparams.overflow = false;
irparams.rawlen = 0;
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
}
break;
//......................................................................
case STATE_MARK: // Timing Mark
if (irdata == SPACE) { // Mark ended; Record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_SPACE;
}
break;
//......................................................................
case STATE_SPACE: // Timing Space
if (irdata == MARK) { // Space just ended; Record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;

} else if (irparams.timer > GAP_TICKS) { // Space
// A long Space, indicates gap between codes
// Flag the current code as ready for processing
// Switch to STOP
// Don't reset timer; keep counting Space width
irparams.rcvstate = STATE_STOP;
}
break;
//......................................................................
case STATE_STOP: // Waiting; Measuring Gap
if (irdata == MARK) irparams.timer = 0 ; // Reset gap timer
break;
//......................................................................
case STATE_OVERFLOW: // Flag up a read overflow; Stop the State Machine
irparams.overflow = true;
irparams.rcvstate = STATE_STOP;
break;
}

// If requested, flash LED while receiving IR data
if (irparams.blinkflag) {
if (irdata == MARK)
if (irparams.blinkpin) digitalWrite(irparams.blinkpin, HIGH); // Turn user defined pin LED on
else BLINKLED_ON() ; // if no user defined LED pin, turn default LED pin for the hardware on
else if (irparams.blinkpin) digitalWrite(irparams.blinkpin, LOW); // Turn user defined pin LED on
else BLINKLED_OFF() ; // if no user defined LED pin, turn default LED pin for the hardware on
}
}

+ 513
- 0
src/irPronto.cpp Просмотреть файл

@@ -0,0 +1,513 @@
#define TEST 0
#if TEST
# define SEND_PRONTO 1
# define PRONTO_ONCE false
# define PRONTO_REPEAT true
# define PRONTO_FALLBACK true
# define PRONTO_NOFALLBACK false
#endif
#if SEND_PRONTO
//******************************************************************************
#if TEST
# include <stdio.h>
void enableIROut (int freq) { printf("\nFreq = %d KHz\n", freq); }
void mark (int t) { printf("+%d," , t); }
void space (int t) { printf("-%d, ", t); }
#else
# include "irr/IRremote.h"
#endif // TEST
//+=============================================================================
// Check for a valid hex digit
//
bool ishex (char ch)
{
return ( ((ch >= '0') && (ch <= '9')) ||
((ch >= 'A') && (ch <= 'F')) ||
((ch >= 'a') && (ch <= 'f')) ) ? true : false ;
}
//+=============================================================================
// Check for a valid "blank" ... '\0' is a valid "blank"
//
bool isblank (char ch)
{
return ((ch == ' ') || (ch == '\t') || (ch == '\0')) ? true : false ;
}
//+=============================================================================
// Bypass spaces
//
bool byp (char** pcp)
{
while (isblank(**pcp)) (*pcp)++ ;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
//
bool sendPronto (char* s, bool repeat, bool fallback)
{
int i;
int len;
int skip;
char* cp;
uint16_t freq; // Frequency in KHz
uint8_t usec; // pronto uSec/tick
uint8_t once;
uint8_t rpt;
// Validate the string
for (cp = s; *cp; cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
// We will use cp to traverse the string
cp = s;
// Check mode = Oscillated/Learned
byp(&cp);
if (htow(cp) != 0000) return false;
cp += 4;
// Extract & set frequency
byp(&cp);
freq = (int)(1000000 / (htow(cp) * 0.241246)); // Rounding errors will occur, tolerance is +/- 10%
usec = (int)(((1.0 / freq) * 1000000) + 0.5); // Another rounding error, thank Cod for analogue electronics
freq /= 1000; // This will introduce a(nother) rounding error which we do not want in the usec calcualtion
cp += 4;
// Get length of "once" code
byp(&cp);
once = htow(cp);
cp += 4;
// Get length of "repeat" code
byp(&cp);
rpt = htow(cp);
cp += 4;
// Which code are we sending?
if (fallback) { // fallback on the "other" code if "this" code is not present
if (!repeat) { // requested 'once'
if (once) len = once * 2, skip = 0 ; // if once exists send it
else len = rpt * 2, skip = 0 ; // else send repeat code
} else { // requested 'repeat'
if (rpt) len = rpt * 2, skip = 0 ; // if rpt exists send it
else len = once * 2, skip = 0 ; // else send once code
}
} else { // Send what we asked for, do not fallback if the code is empty!
if (!repeat) len = once * 2, skip = 0 ; // 'once' starts at 0
else len = rpt * 2, skip = once ; // 'repeat' starts where 'once' ends
}
// Skip to start of code
for (i = 0; i < skip; i++, cp += 4) byp(&cp) ;
// Send code
enableIROut(freq);
for (i = 0; i < len; i++) {
byp(&cp);
if (i & 1) space(htow(cp) * usec);
else mark (htow(cp) * usec);
cp += 4;
}
}
//+=============================================================================
#if TEST
int main ( )
{
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_FALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_FALLBACK); // repeat code
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_NOFALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_NOFALLBACK); // repeat code
return 0;
}
#endif // TEST
#endif // SEND_PRONTO
#if 0
//******************************************************************************
// Sources:
// http://www.remotecentral.com/features/irdisp2.htm
// http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
//******************************************************************************
#include <stdint.h>
#include <stdio.h>
#define IRPRONTO
#include "irr/IRremoteInt.h" // The Arduino IRremote library defines USECPERTICK
//------------------------------------------------------------------------------
// Source: https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
//
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
//------------------------------------------------------------------------------
// This is the longest code we can support
#define CODEMAX 200
//------------------------------------------------------------------------------
// This is the data we pull out of the pronto code
typedef
struct {
int freq; // Carrier frequency (in Hz)
int usec; // uSec per tick (based on freq)
int codeLen; // Length of code
uint16_t code[CODEMAX]; // Code in hex
int onceLen; // Length of "once" transmit
uint16_t* once; // Pointer to start within 'code'
int rptLen; // Length of "repeat" transmit
uint16_t* rpt; // Pointer to start within 'code'
}
pronto_t;
//------------------------------------------------------------------------------
// From what I have seen, the only time we go over 8-bits is the 'space'
// on the end which creates the lead-out/inter-code gap. Assuming I'm right,
// we can code this up as a special case and otherwise halve the size of our
// data!
// Ignoring the first four values (the config data) and the last value
// (the lead-out), if you find a protocol that uses values greater than 00fe
// we are going to have to revisit this code!
//
//
// So, the 0th byte will be the carrier frequency in Khz (NOT Hz)
// " 1st " " " " length of the "once" code
// " 2nd " " " " length of the "repeat" code
//
// Thereafter, odd bytes will be Mark lengths as a multiple of USECPERTICK uS
// even " " " Space " " " " " " "
//
// Any occurence of "FF" in either a Mark or a Space will indicate
// "Use the 16-bit FF value" which will also be a multiple of USECPERTICK uS
//
//
// As a point of comparison, the test code (prontoTest[]) is 520 bytes
// (yes, more than 0.5KB of our Arduino's precious 32KB) ... after conversion
// to pronto hex that goes down to ((520/5)*2) = 208 bytes ... once converted to
// our format we are down to ((208/2) -1 -1 +2) = 104 bytes
//
// In fariness this is still very memory-hungry
// ...As a rough guide:
// 10 codes cost 1K of memory (this will vary depending on the protocol).
//
// So if you're building a complex remote control, you will probably need to
// keep the codes on an external memory device (not in the Arduino sketch) and
// load them as you need them. Hmmm.
//
// This dictates that "Oscillated Pronto Codes" are probably NOT the way forward
//
// For example, prontoTest[] happens to be: A 48-bit IR code in Denon format
// So we know it starts with 80/40 (Denon header)
// and ends with 10/aa6 (Denon leadout)
// and all (48) bits in between are either 10/10 (Denon 0)
// or 10/30 (Denon 1)
// So we could easily store this data in 1-byte ("Denon")
// + 1-byte (Length=48)
// + 6-bytes (IR code)
// At 8-bytes per code, we can store 128 codes in 1KB or memory - that's a lot
// better than the 2 (two) we started off with!
//
// And serendipitously, by reducing the amount of data, our program will run
// a LOT faster!
//
// Again, I repeat, even after you have spent time converting the "Oscillated
// Pronto Codes" in to IRremote format, it will be a LOT more memory-hungry
// than using sendDenon() (or whichever) ...BUT these codes are easily
// available on the internet, so we'll support them!
//
typedef
struct {
uint16_t FF;
uint8_t code[CODEMAX];
}
irCode_t;
//------------------------------------------------------------------------------
#define DEBUGF(...) printf(__VA_ARGS__)
//+=============================================================================
// String must be block of 4 hex digits separated with blanks
//
bool validate (char* cp, int* len)
{
for (*len = 0; *cp; (*len)++, cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
return true;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
// Convert the pronto string in to data
//
bool decode (char* s, pronto_t* p, irCode_t* ir)
{
int i, len;
char* cp;
// Validate the Pronto string
if (!validate(s, &p->codeLen)) {
DEBUGF("Invalid pronto string\n");
return false ;
}
DEBUGF("Found %d hex codes\n", p->codeLen);
// Allocate memory to store the decoded string
//if (!(p->code = malloc(p->len))) {
// DEBUGF("Memory allocation failed\n");
// return false ;
//}
// Check in case our code is too long
if (p->codeLen > CODEMAX) {
DEBUGF("Code too long, edit CODEMAX and recompile\n");
return false ;
}
// Decode the string
cp = s;
for (i = 0; i < p->codeLen; i++, cp += 4) {
byp(&cp);
p->code[i] = htow(cp);
}
// Announce our findings
DEBUGF("Input: |%s|\n", s);
DEBUGF("Found: |");
for (i = 0; i < p->codeLen; i++) DEBUGF("%04x ", p->code[i]) ;
DEBUGF("|\n");
DEBUGF("Form [%04X] : ", p->code[0]);
if (p->code[0] == 0x0000) DEBUGF("Oscillated (Learned)\n");
else if (p->code[0] == 0x0100) DEBUGF("Unmodulated\n");
else DEBUGF("Unknown\n");
if (p->code[0] != 0x0000) return false ; // Can only handle Oscillated
// Calculate the carrier frequency (+/- 10%) & uSecs per pulse
// Pronto uses a crystal which generates a timeabse of 0.241246
p->freq = (int)(1000000 / (p->code[1] * 0.241246));
p->usec = (int)(((1.0 / p->freq) * 1000000) + 0.5);
ir->code[0] = p->freq / 1000;
DEBUGF("Freq [%04X] : %d Hz (%d uS/pluse) -> %d KHz\n",
p->code[1], p->freq, p->usec, ir->code[0]);
// Set the length & start pointer for the "once" code
p->onceLen = p->code[2];
p->once = &p->code[4];
ir->code[1] = p->onceLen;
DEBUGF("Once [%04X] : %d\n", p->code[2], p->onceLen);
// Set the length & start pointer for the "repeat" code
p->rptLen = p->code[3];
p->rpt = &p->code[4 + p->onceLen];
ir->code[2] = p->rptLen;
DEBUGF("Rpt [%04X] : %d\n", p->code[3], p->rptLen);
// Check everything tallies
if (1 + 1 + 1 + 1 + (p->onceLen * 2) + (p->rptLen * 2) != p->codeLen) {
DEBUGF("Bad code length\n");
return false;
}
// Convert the IR data to our new format
ir->FF = p->code[p->codeLen - 1];
len = (p->onceLen * 2) + (p->rptLen * 2);
DEBUGF("Encoded: |");
for (i = 0; i < len; i++) {
if (p->code[i+4] == ir->FF) {
ir->code[i+3] = 0xFF;
} else if (p->code[i+4] > 0xFE) {
DEBUGF("\n%04X : Mark/Space overflow\n", p->code[i+4]);
return false;
} else {
ir->code[i+3] = (p->code[i+4] * p->usec) / USECPERTICK;
}
DEBUGF("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
DEBUGF("|\n");
ir->FF = (ir->FF * p->usec) / USECPERTICK;
DEBUGF("FF -> %d\n", ir->FF);
return true;
}
//+=============================================================================
//
void irDump (irCode_t* ir)
{
int i, len;
printf("uint8_t buttonName[%d] = {", len);
printf("%d,%d, ", (ir->FF >> 8), ir->FF & 0xFF);
printf("%d,%d,%d, ", ir->code[0], ir->code[1], ir->code[2]);
len = (ir->code[1] * 2) + (ir->code[2] * 2);
for (i = 0; i < len; i++) {
printf("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
printf("};\n");
}
//+=============================================================================
//
int main ( )
{
pronto_t pCode;
irCode_t irCode;
decode(prontoTest, &pCode, &irCode);
irDump(&irCode);
return 0;
}
#endif //0

+ 239
- 0
src/irRecv.cpp Просмотреть файл

@@ -0,0 +1,239 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"

#ifdef TIMER_INT_DECLARE
TIMER_INT_DECLARE
#endif

#ifdef IR_TIMER_USE_ESP32
hw_timer_t *timer;
void IRTimer(); // defined in IRremote.cpp
#endif
//+=============================================================================
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
//
int IRrecv::decode (decode_results *results)
{
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
results->overflow = irparams.overflow;
if (irparams.rcvstate != STATE_STOP) return false ;
#if DECODE_NEC
DBG_PRINTLN("Attempting NEC decode");
if (decodeNEC(results)) return true ;
#endif
#if DECODE_SONY
DBG_PRINTLN("Attempting Sony decode");
if (decodeSony(results)) return true ;
#endif
#if DECODE_SANYO
DBG_PRINTLN("Attempting Sanyo decode");
if (decodeSanyo(results)) return true ;
#endif
#if DECODE_MITSUBISHI
DBG_PRINTLN("Attempting Mitsubishi decode");
if (decodeMitsubishi(results)) return true ;
#endif
#if DECODE_RC5
DBG_PRINTLN("Attempting RC5 decode");
if (decodeRC5(results)) return true ;
#endif
#if DECODE_RC6
DBG_PRINTLN("Attempting RC6 decode");
if (decodeRC6(results)) return true ;
#endif
#if DECODE_PANASONIC
DBG_PRINTLN("Attempting Panasonic decode");
if (decodePanasonic(results)) return true ;
#endif
#if DECODE_LG
DBG_PRINTLN("Attempting LG decode");
if (decodeLG(results)) return true ;
#endif
#if DECODE_JVC
DBG_PRINTLN("Attempting JVC decode");
if (decodeJVC(results)) return true ;
#endif
#if DECODE_SAMSUNG
DBG_PRINTLN("Attempting SAMSUNG decode");
if (decodeSAMSUNG(results)) return true ;
#endif
#if DECODE_WHYNTER
DBG_PRINTLN("Attempting Whynter decode");
if (decodeWhynter(results)) return true ;
#endif
#if DECODE_AIWA_RC_T501
DBG_PRINTLN("Attempting Aiwa RC-T501 decode");
if (decodeAiwaRCT501(results)) return true ;
#endif
#if DECODE_DENON
DBG_PRINTLN("Attempting Denon decode");
if (decodeDenon(results)) return true ;
#endif
#if DECODE_LEGO_PF
DBG_PRINTLN("Attempting Lego Power Functions");
if (decodeLegoPowerFunctions(results)) return true ;
#endif
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) return true ;
// Throw away and start over
resume();
return false;
}
//+=============================================================================
IRrecv::IRrecv (int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
IRrecv::IRrecv (int recvpin, int blinkpin)
{
irparams.recvpin = recvpin;
irparams.blinkpin = blinkpin;
pinMode(blinkpin, OUTPUT);
irparams.blinkflag = 0;
}
//+=============================================================================
// initialization
//
void IRrecv::enableIRIn ( )
{
// Interrupt Service Routine - Fires every 50uS
#ifdef ESP32
// ESP32 has a proper API to setup timers, no weird chip macros needed
// simply call the readable API versions :)
// 3 timers, choose #1, 80 divider nanosecond precision, 1 to count up
timer = timerBegin(1, 80, 1);
timerAttachInterrupt(timer, &IRTimer, 1);
// every 50ns, autoreload = true
timerAlarmWrite(timer, 50, true);
timerAlarmEnable(timer);
#else
cli();
// Setup pulse clock timer interrupt
// Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// Depending on the reset value (255 to 0)
TIMER_CONFIG_NORMAL();
// Timer2 Overflow Interrupt Enable
TIMER_ENABLE_INTR;
TIMER_RESET;
sei(); // enable interrupts
#endif
// Initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// Set pin modes
pinMode(irparams.recvpin, INPUT);
}
//+=============================================================================
// Enable/disable blinking of pin 13 on IR processing
//
void IRrecv::blink13 (int blinkflag)
{
irparams.blinkflag = blinkflag;
if (blinkflag) pinMode(BLINKLED, OUTPUT) ;
}
//+=============================================================================
// Return if receiving new IR signals
//
bool IRrecv::isIdle ( )
{
return (irparams.rcvstate == STATE_IDLE || irparams.rcvstate == STATE_STOP) ? true : false;
}
//+=============================================================================
// Restart the ISR state machine
//
void IRrecv::resume ( )
{
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
//+=============================================================================
// hashdecode - decode an arbitrary IR code.
// Instead of decoding using a standard encoding scheme
// (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
//
// The algorithm: look at the sequence of MARK signals, and see if each one
// is shorter (0), the same length (1), or longer (2) than the previous.
// Do the same with the SPACE signals. Hash the resulting sequence of 0's,
// 1's, and 2's to a 32-bit value. This will give a unique value for each
// different code (probably), for most code systems.
//
// http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
//
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
//
int IRrecv::compare (unsigned int oldval, unsigned int newval)
{
if (newval < oldval * .8) return 0 ;
else if (oldval < newval * .8) return 2 ;
else return 1 ;
}
//+=============================================================================
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
// Converts the raw code values into a 32-bit hash code.
// Hopefully this code is unique for each button.
// This isn't a "real" decoding, just an arbitrary value.
//
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
long IRrecv::decodeHash (decode_results *results)
{
long hash = FNV_BASIS_32;
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) return false ;
for (int i = 1; (i + 2) < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return true;
}

+ 90
- 0
src/irSend.cpp Просмотреть файл

@@ -0,0 +1,90 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"

//+=============================================================================
void IRsend::sendRaw (const unsigned int buf[], unsigned int len, unsigned int hz)
{
// Set IR carrier frequency
enableIROut(hz);

for (unsigned int i = 0; i < len; i++) {
if (i & 1) space(buf[i]) ;
else mark (buf[i]) ;
}

space(0); // Always end with the LED off
}

//+=============================================================================
// Sends an IR mark for the specified number of microseconds.
// The mark output is modulated at the PWM frequency.
//
void IRsend::mark (unsigned int time)
{
TIMER_ENABLE_PWM; // Enable pin 3 PWM output
if (time > 0) custom_delay_usec(time);
}

//+=============================================================================
// Leave pin off for time (given in microseconds)
// Sends an IR space for the specified number of microseconds.
// A space is no output, so the PWM output is disabled.
//
void IRsend::space (unsigned int time)
{
TIMER_DISABLE_PWM; // Disable pin 3 PWM output
if (time > 0) IRsend::custom_delay_usec(time);
}





//+=============================================================================
// Enables IR output. The khz value controls the modulation frequency in kilohertz.
// The IR output will be on pin 3 (OC2B).
// This routine is designed for 36-40KHz; if you use it for other values, it's up to you
// to make sure it gives reasonable results. (Watch out for overflow / underflow / rounding.)
// TIMER2 is used in phase-correct PWM mode, with OCR2A controlling the frequency and OCR2B
// controlling the duty cycle.
// There is no prescaling, so the output frequency is 16MHz / (2 * OCR2A)
// To turn the output on and off, we leave the PWM running, but connect and disconnect the output pin.
// A few hours staring at the ATmega documentation and this will all make sense.
// See my Secrets of Arduino PWM at http://arcfn.com/2009/07/secrets-of-arduino-pwm.html for details.
//
void IRsend::enableIROut (int khz)
{
// FIXME: implement ESP32 support, see IR_TIMER_USE_ESP32 in boarddefs.h
#ifndef ESP32
// Disable the Timer2 Interrupt (which is used for receiving IR)
TIMER_DISABLE_INTR; //Timer2 Overflow Interrupt

pinMode(TIMER_PWM_PIN, OUTPUT);
digitalWrite(TIMER_PWM_PIN, LOW); // When not sending PWM, we want it low

// COM2A = 00: disconnect OC2A
// COM2B = 00: disconnect OC2B; to send signal set to 10: OC2B non-inverted
// WGM2 = 101: phase-correct PWM with OCRA as top
// CS2 = 000: no prescaling
// The top value for the timer. The modulation frequency will be SYSCLOCK / 2 / OCR2A.
TIMER_CONFIG_KHZ(khz);
#endif
}

//+=============================================================================
// Custom delay function that circumvents Arduino's delayMicroseconds limit

void IRsend::custom_delay_usec(unsigned long uSecs) {
if (uSecs > 4) {
unsigned long start = micros();
unsigned long endMicros = start + uSecs - 4;
if (endMicros < start) { // Check if overflow
while ( micros() > start ) {} // wait until overflow
}
while ( micros() < endMicros ) {} // normal wait
}
//else {
// __asm__("nop\n\t"); // must have or compiler optimizes out
//}
}


+ 105
- 0
src/ir_Aiwa.cpp Просмотреть файл

@@ -0,0 +1,105 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// AAA IIIII W W AAA
// A A I W W A A
// AAAAA I W W W AAAAA
// A A I W W W A A
// A A IIIII WWW A A
//==============================================================================
// Based off the RC-T501 RCU
// Lirc file http://lirc.sourceforge.net/remotes/aiwa/RC-T501
#define AIWA_RC_T501_HZ 38
#define AIWA_RC_T501_BITS 15
#define AIWA_RC_T501_PRE_BITS 26
#define AIWA_RC_T501_POST_BITS 1
#define AIWA_RC_T501_SUM_BITS (AIWA_RC_T501_PRE_BITS + AIWA_RC_T501_BITS + AIWA_RC_T501_POST_BITS)
#define AIWA_RC_T501_HDR_MARK 8800
#define AIWA_RC_T501_HDR_SPACE 4500
#define AIWA_RC_T501_BIT_MARK 500
#define AIWA_RC_T501_ONE_SPACE 600
#define AIWA_RC_T501_ZERO_SPACE 1700
//+=============================================================================
#if SEND_AIWA_RC_T501
void IRsend::sendAiwaRCT501 (int code)
{
unsigned long pre = 0x0227EEC0; // 26-bits
// Set IR carrier frequency
enableIROut(AIWA_RC_T501_HZ);
// Header
mark(AIWA_RC_T501_HDR_MARK);
space(AIWA_RC_T501_HDR_SPACE);
// Send "pre" data
for (unsigned long mask = 1UL << (26 - 1); mask; mask >>= 1) {
mark(AIWA_RC_T501_BIT_MARK);
if (pre & mask) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
}
//-v- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// it only send 15bits and ignores the top bit
// then uses TOPBIT which is 0x80000000 to check the bit code
// I suspect TOPBIT should be changed to 0x00008000
// Skip first code bit
code <<= 1;
// Send code
for (int i = 0; i < 15; i++) {
mark(AIWA_RC_T501_BIT_MARK);
if (code & 0x80000000) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
code <<= 1;
}
//-^- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// POST-DATA, 1 bit, 0x0
mark(AIWA_RC_T501_BIT_MARK);
space(AIWA_RC_T501_ZERO_SPACE);
mark(AIWA_RC_T501_BIT_MARK);
space(0);
}
#endif
//+=============================================================================
#if DECODE_AIWA_RC_T501
bool IRrecv::decodeAiwaRCT501 (decode_results *results)
{
int data = 0;
int offset = 1;
// Check SIZE
if (irparams.rawlen < 2 * (AIWA_RC_T501_SUM_BITS) + 4) return false ;
// Check HDR Mark/Space
if (!MATCH_MARK (results->rawbuf[offset++], AIWA_RC_T501_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], AIWA_RC_T501_HDR_SPACE)) return false ;
offset += 26; // skip pre-data - optional
while(offset < irparams.rawlen - 4) {
if (MATCH_MARK(results->rawbuf[offset], AIWA_RC_T501_BIT_MARK)) offset++ ;
else return false ;
// ONE & ZERO
if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ZERO_SPACE)) data = (data << 1) | 0 ;
else break ; // End of one & zero detected
offset++;
}
results->bits = (offset - 1) / 2;
if (results->bits < 42) return false ;
results->value = data;
results->decode_type = AIWA_RC_T501;
return true;
}
#endif

+ 94
- 0
src/ir_Denon.cpp Просмотреть файл

@@ -0,0 +1,94 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
// Reverse Engineered by looking at RAW dumps generated by IRremote
// I have since discovered that Denon publish all their IR codes:
// https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
// Having looked at the official Denon Pronto sheet and reverse engineered
// the timing values from it, it is obvious that Denon have a range of
// different timings and protocols ...the values here work for my AVR-3801 Amp!
//==============================================================================
// DDDD EEEEE N N OOO N N
// D D E NN N O O NN N
// D D EEE N N N O O N N N
// D D E N NN O O N NN
// DDDD EEEEE N N OOO N N
//==============================================================================
#define BITS 14 // The number of bits in the command
#define HDR_MARK 300 // The length of the Header:Mark
#define HDR_SPACE 750 // The lenght of the Header:Space
#define BIT_MARK 300 // The length of a Bit:Mark
#define ONE_SPACE 1800 // The length of a Bit:Space for 1's
#define ZERO_SPACE 750 // The length of a Bit:Space for 0's
//+=============================================================================
//
#if SEND_DENON
void IRsend::sendDenon (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_DENON
bool IRrecv::decodeDenon (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = DENON;
return true;
}
#endif

+ 54
- 0
src/ir_Dish.cpp Просмотреть файл

@@ -0,0 +1,54 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// DDDD IIIII SSSS H H
// D D I S H H
// D D I SSS HHHHH
// D D I S H H
// DDDD IIIII SSSS H H
//==============================================================================
// Sharp and DISH support by Todd Treece ( http://unionbridge.org/design/ircommand )
//
// The sned function needs to be repeated 4 times
//
// Only send the last for characters of the hex.
// I.E. Use 0x1C10 instead of 0x0000000000001C10 as listed in the LIRC file.
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// DISH NETWORK (echostar 301):
// http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
#define DISH_BITS 16
#define DISH_HDR_MARK 400
#define DISH_HDR_SPACE 6100
#define DISH_BIT_MARK 400
#define DISH_ONE_SPACE 1700
#define DISH_ZERO_SPACE 2800
#define DISH_RPT_SPACE 6200
//+=============================================================================
#if SEND_DISH
void IRsend::sendDISH (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(56);
mark(DISH_HDR_MARK);
space(DISH_HDR_SPACE);
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(DISH_BIT_MARK);
space(DISH_ONE_SPACE);
} else {
mark(DISH_BIT_MARK);
space(DISH_ZERO_SPACE);
}
}
mark(DISH_HDR_MARK); //added 26th March 2016, by AnalysIR ( https://www.AnalysIR.com )
}
#endif

+ 101
- 0
src/ir_JVC.cpp Просмотреть файл

@@ -0,0 +1,101 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// JJJJJ V V CCCC
// J V V C
// J V V C
// J J V V C
// J V CCCC
//==============================================================================
#define JVC_BITS 16
#define JVC_HDR_MARK 8000
#define JVC_HDR_SPACE 4000
#define JVC_BIT_MARK 600
#define JVC_ONE_SPACE 1600
#define JVC_ZERO_SPACE 550
#define JVC_RPT_LENGTH 60000
//+=============================================================================
// JVC does NOT repeat by sending a separate code (like NEC does).
// The JVC protocol repeats by skipping the header.
// To send a JVC repeat signal, send the original code value
// and set 'repeat' to true
//
#if SEND_JVC
void IRsend::sendJVC (unsigned long data, int nbits, bool repeat)
{
// Set IR carrier frequency
enableIROut(38);
// Only send the Header if this is NOT a repeat command
if (!repeat){
mark(JVC_HDR_MARK);
space(JVC_HDR_SPACE);
}
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(JVC_BIT_MARK);
space(JVC_ONE_SPACE);
} else {
mark(JVC_BIT_MARK);
space(JVC_ZERO_SPACE);
}
}
// Footer
mark(JVC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_JVC
bool IRrecv::decodeJVC (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check for repeat
if ( (irparams.rawlen - 1 == 33)
&& MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)
&& MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = JVC;
return true;
}
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], JVC_HDR_MARK)) return false ;
if (irparams.rawlen < (2 * JVC_BITS) + 1 ) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], JVC_HDR_SPACE)) return false ;
for (int i = 0; i < JVC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], JVC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) return false ;
// Success
results->bits = JVC_BITS;
results->value = data;
results->decode_type = JVC;
return true;
}
#endif

+ 80
- 0
src/ir_LG.cpp Просмотреть файл

@@ -0,0 +1,80 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// L GGGG
// L G
// L G GG
// L G G
// LLLLL GGG
//==============================================================================
#define LG_BITS 28
#define LG_HDR_MARK 8000
#define LG_HDR_SPACE 4000
#define LG_BIT_MARK 600
#define LG_ONE_SPACE 1600
#define LG_ZERO_SPACE 550
#define LG_RPT_LENGTH 60000
//+=============================================================================
#if DECODE_LG
bool IRrecv::decodeLG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check we have the right amount of data
if (irparams.rawlen < (2 * LG_BITS) + 1 ) return false ;
// Initial mark/space
if (!MATCH_MARK(results->rawbuf[offset++], LG_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], LG_HDR_SPACE)) return false ;
for (int i = 0; i < LG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], LG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], LG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], LG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], LG_BIT_MARK)) return false ;
// Success
results->bits = LG_BITS;
results->value = data;
results->decode_type = LG;
return true;
}
#endif
//+=============================================================================
#if SEND_LG
void IRsend::sendLG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(LG_HDR_MARK);
space(LG_HDR_SPACE);
mark(LG_BIT_MARK);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(LG_ONE_SPACE);
mark(LG_BIT_MARK);
} else {
space(LG_ZERO_SPACE);
mark(LG_BIT_MARK);
}
}
space(0); // Always end with the LED off
}
#endif

+ 46
- 0
src/ir_Lego_PF.cpp Просмотреть файл

@@ -0,0 +1,46 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
#include "irr/ir_Lego_PF_BitStreamEncoder.h"
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016 Philipp Henkel
//==============================================================================
// Supported Devices
// LEGO® Power Functions IR Receiver 8884
//+=============================================================================
//
#if SEND_LEGO_PF
#if DEBUG
namespace {
void logFunctionParameters(uint16_t data, bool repeat) {
DBG_PRINT("sendLegoPowerFunctions(data=");
DBG_PRINT(data);
DBG_PRINT(", repeat=");
DBG_PRINTLN(repeat?"true)" : "false)");
}
} // anonymous namespace
#endif // DEBUG
void IRsend::sendLegoPowerFunctions(uint16_t data, bool repeat)
{
#if DEBUG
::logFunctionParameters(data, repeat);
#endif // DEBUG
enableIROut(38);
static LegoPfBitStreamEncoder bitStreamEncoder;
bitStreamEncoder.reset(data, repeat);
do {
mark(bitStreamEncoder.getMarkDuration());
space(bitStreamEncoder.getPauseDuration());
} while (bitStreamEncoder.next());
}
#endif // SEND_LEGO_PF

+ 85
- 0
src/ir_Mitsubishi.cpp Просмотреть файл

@@ -0,0 +1,85 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// MMMMM IIIII TTTTT SSSS U U BBBB IIIII SSSS H H IIIII
// M M M I T S U U B B I S H H I
// M M M I T SSS U U BBBB I SSS HHHHH I
// M M I T S U U B B I S H H I
// M M IIIII T SSSS UUU BBBBB IIIII SSSS H H IIIII
//==============================================================================
// Looks like Sony except for timings, 48 chars of data and time/space different
#define MITSUBISHI_BITS 16
// Mitsubishi RM 75501
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_MITSUBISHI
bool IRrecv::decodeMitsubishi (decode_results *results)
{
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
long data = 0;
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) return false ;
int offset = 0; // Skip first space
// Initial space
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
#if 0
// Not seeing double keys from Mitsubishi
if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = MITSUBISHI;
return true;
}
#endif
offset++;
// Typical
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// Initial Space
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) return false ;
offset++;
while (offset + 1 < irparams.rawlen) {
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) data <<= 1 ;
else return false ;
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) break ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < MITSUBISHI_BITS) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = MITSUBISHI;
return true;
}
#endif

+ 98
- 0
src/ir_NEC.cpp Просмотреть файл

@@ -0,0 +1,98 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// N N EEEEE CCCC
// NN N E C
// N N N EEE C
// N NN E C
// N N EEEEE CCCC
//==============================================================================
#define NEC_BITS 32
#define NEC_HDR_MARK 9000
#define NEC_HDR_SPACE 4500
#define NEC_BIT_MARK 560
#define NEC_ONE_SPACE 1690
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
//+=============================================================================
#if SEND_NEC
void IRsend::sendNEC (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(NEC_BIT_MARK);
space(NEC_ONE_SPACE);
} else {
mark(NEC_BIT_MARK);
space(NEC_ZERO_SPACE);
}
}
// Footer
mark(NEC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// NECs have a repeat only 4 items long
//
#if DECODE_NEC
bool IRrecv::decodeNEC (decode_results *results)
{
long data = 0; // We decode in to here; Start with nothing
int offset = 1; // Index in to results; Skip first entry!?
// Check header "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset ], NEC_RPT_SPACE)
&& MATCH_MARK (results->rawbuf[offset+1], NEC_BIT_MARK )
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return true;
}
// Check we have enough data
if (irparams.rawlen < (2 * NEC_BITS) + 4) return false ;
// Check header "space"
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) return false ;
offset++;
// Build the data
for (int i = 0; i < NEC_BITS; i++) {
// Check data "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) return false ;
offset++;
// Suppend this bit
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return true;
}
#endif

+ 78
- 0
src/ir_Panasonic.cpp Просмотреть файл

@@ -0,0 +1,78 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// PPPP AAA N N AAA SSSS OOO N N IIIII CCCC
// P P A A NN N A A S O O NN N I C
// PPPP AAAAA N N N AAAAA SSS O O N N N I C
// P A A N NN A A S O O N NN I C
// P A A N N A A SSSS OOO N N IIIII CCCC
//==============================================================================
#define PANASONIC_BITS 48
#define PANASONIC_HDR_MARK 3502
#define PANASONIC_HDR_SPACE 1750
#define PANASONIC_BIT_MARK 502
#define PANASONIC_ONE_SPACE 1244
#define PANASONIC_ZERO_SPACE 400
//+=============================================================================
#if SEND_PANASONIC
void IRsend::sendPanasonic (unsigned int address, unsigned long data)
{
// Set IR carrier frequency
enableIROut(35);
// Header
mark(PANASONIC_HDR_MARK);
space(PANASONIC_HDR_SPACE);
// Address
for (unsigned long mask = 1UL << (16 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (address & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Data
for (unsigned long mask = 1UL << (32 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (data & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Footer
mark(PANASONIC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_PANASONIC
bool IRrecv::decodePanasonic (decode_results *results)
{
unsigned long long data = 0;
int offset = 1;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_MARK )) return false ;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_SPACE)) return false ;
// decode address
for (int i = 0; i < PANASONIC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
results->value = (unsigned long)data;
results->address = (unsigned int)(data >> 32);
results->decode_type = PANASONIC;
results->bits = PANASONIC_BITS;
return true;
}
#endif

+ 207
- 0
src/ir_RC5_RC6.cpp Просмотреть файл

@@ -0,0 +1,207 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//+=============================================================================
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
//
#if (DECODE_RC5 || DECODE_RC6)
int IRrecv::getRClevel (decode_results *results, int *offset, int *used, int t1)
{
int width;
int val;
int correction;
int avail;
if (*offset >= results->rawlen) return SPACE ; // After end of recorded buffer, assume SPACE.
width = results->rawbuf[*offset];
val = ((*offset) % 2) ? MARK : SPACE;
correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
if (MATCH(width, ( t1) + correction)) avail = 1 ;
else if (MATCH(width, (2*t1) + correction)) avail = 2 ;
else if (MATCH(width, (3*t1) + correction)) avail = 3 ;
else return -1 ;
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
DBG_PRINTLN( (val == MARK) ? "MARK" : "SPACE" );
return val;
}
#endif
//==============================================================================
// RRRR CCCC 55555
// R R C 5
// RRRR C 5555
// R R C 5
// R R CCCC 5555
//
// NB: First bit must be a one (start bit)
//
#define MIN_RC5_SAMPLES 11
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
//+=============================================================================
#if SEND_RC5
void IRsend::sendRC5 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Start
mark(RC5_T1);
space(RC5_T1);
mark(RC5_T1);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC5
bool IRrecv::decodeRC5 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip gap space
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) return false ;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 1 ;
else if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 0 ;
else return false ;
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return true;
}
#endif
//+=============================================================================
// RRRR CCCC 6666
// R R C 6
// RRRR C 6666
// R R C 6 6
// R R CCCC 666
//
// NB : Caller needs to take care of flipping the toggle bit
//
#define MIN_RC6_SAMPLES 1
#define RC6_HDR_MARK 2666
#define RC6_HDR_SPACE 889
#define RC6_T1 444
#define RC6_RPT_LENGTH 46000
#if SEND_RC6
void IRsend::sendRC6 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Header
mark(RC6_HDR_MARK);
space(RC6_HDR_SPACE);
// Start bit
mark(RC6_T1);
space(RC6_T1);
// Data
for (unsigned long i = 1, mask = 1UL << (nbits - 1); mask; i++, mask >>= 1) {
// The fourth bit we send is a "double width trailer bit"
int t = (i == 4) ? (RC6_T1 * 2) : (RC6_T1) ;
if (data & mask) {
mark(t);
space(t);
} else {
space(t);
mark(t);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC6
bool IRrecv::decodeRC6 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip first space
if (results->rawlen < MIN_RC6_SAMPLES) return false ;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], RC6_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], RC6_HDR_SPACE)) return false ;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return false ;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 1 ; // inverted compared to RC5
else if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 0 ; // ...
else return false ; // Error
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return true;
}
#endif

+ 92
- 0
src/ir_Samsung.cpp Просмотреть файл

@@ -0,0 +1,92 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// SSSS AAA MMM SSSS U U N N GGGG
// S A A M M M S U U NN N G
// SSS AAAAA M M M SSS U U N N N G GG
// S A A M M S U U N NN G G
// SSSS A A M M SSSS UUU N N GGG
//==============================================================================
#define SAMSUNG_BITS 32
#define SAMSUNG_HDR_MARK 5000
#define SAMSUNG_HDR_SPACE 5000
#define SAMSUNG_BIT_MARK 560
#define SAMSUNG_ONE_SPACE 1600
#define SAMSUNG_ZERO_SPACE 560
#define SAMSUNG_RPT_SPACE 2250
//+=============================================================================
#if SEND_SAMSUNG
void IRsend::sendSAMSUNG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(SAMSUNG_HDR_MARK);
space(SAMSUNG_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ONE_SPACE);
} else {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ZERO_SPACE);
}
}
// Footer
mark(SAMSUNG_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// SAMSUNGs have a repeat only 4 items long
//
#if DECODE_SAMSUNG
bool IRrecv::decodeSAMSUNG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SAMSUNG_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset], SAMSUNG_RPT_SPACE)
&& MATCH_MARK(results->rawbuf[offset+1], SAMSUNG_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = SAMSUNG;
return true;
}
if (irparams.rawlen < (2 * SAMSUNG_BITS) + 4) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], SAMSUNG_HDR_SPACE)) return false ;
for (int i = 0; i < SAMSUNG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], SAMSUNG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = SAMSUNG_BITS;
results->value = data;
results->decode_type = SAMSUNG;
return true;
}
#endif

+ 76
- 0
src/ir_Sanyo.cpp Просмотреть файл

@@ -0,0 +1,76 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// SSSS AAA N N Y Y OOO
// S A A NN N Y Y O O
// SSS AAAAA N N N Y O O
// S A A N NN Y O O
// SSSS A A N N Y OOO
//==============================================================================
// I think this is a Sanyo decoder: Serial = SA 8650B
// Looks like Sony except for timings, 48 chars of data and time/space different
#define SANYO_BITS 12
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_SANYO
bool IRrecv::decodeSanyo (decode_results *results)
{
long data = 0;
int offset = 0; // Skip first space <-- CHECK THIS!
if (irparams.rawlen < (2 * SANYO_BITS) + 2) return false ;
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
// Initial space
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
//Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
// Skip Second Mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SANYO_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SANYO;
return true;
}
#endif

+ 71
- 0
src/ir_Sharp.cpp Просмотреть файл

@@ -0,0 +1,71 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// SSSS H H AAA RRRR PPPP
// S H H A A R R P P
// SSS HHHHH AAAAA RRRR PPPP
// S H H A A R R P
// SSSS H H A A R R P
//==============================================================================
// Sharp and DISH support by Todd Treece: http://unionbridge.org/design/ircommand
//
// The send function has the necessary repeat built in because of the need to
// invert the signal.
//
// Sharp protocol documentation:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// Sharp LCD TV:
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
#define SHARP_BITS 15
#define SHARP_BIT_MARK 245
#define SHARP_ONE_SPACE 1805
#define SHARP_ZERO_SPACE 795
#define SHARP_GAP 600000
#define SHARP_RPT_SPACE 3000
#define SHARP_TOGGLE_MASK 0x3FF
//+=============================================================================
#if SEND_SHARP
void IRsend::sendSharpRaw (unsigned long data, int nbits)
{
enableIROut(38);
// Sending codes in bursts of 3 (normal, inverted, normal) makes transmission
// much more reliable. That's the exact behaviour of CD-S6470 remote control.
for (int n = 0; n < 3; n++) {
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SHARP_BIT_MARK);
space(SHARP_ONE_SPACE);
} else {
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
}
}
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
delay(40);
data = data ^ SHARP_TOGGLE_MASK;
}
}
#endif
//+=============================================================================
// Sharp send compatible with data obtained through decodeSharp()
// ^^^^^^^^^^^^^ FUNCTION MISSING!
//
#if SEND_SHARP
void IRsend::sendSharp (unsigned int address, unsigned int command)
{
sendSharpRaw((address << 10) | (command << 2) | 2, SHARP_BITS);
}
#endif

+ 95
- 0
src/ir_Sony.cpp Просмотреть файл

@@ -0,0 +1,95 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// SSSS OOO N N Y Y
// S O O NN N Y Y
// SSS O O N N N Y
// S O O N NN Y
// SSSS OOO N N Y
//==============================================================================
#define SONY_BITS 12
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
//+=============================================================================
#if SEND_SONY
void IRsend::sendSony (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(40);
// Header
mark(SONY_HDR_MARK);
space(SONY_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SONY_ONE_MARK);
space(SONY_HDR_SPACE);
} else {
mark(SONY_ZERO_MARK);
space(SONY_HDR_SPACE);
}
}
// We will have ended with LED off
}
#endif
//+=============================================================================
#if DECODE_SONY
bool IRrecv::decodeSony (decode_results *results)
{
long data = 0;
int offset = 0; // Dont skip first space, check its size
if (irparams.rawlen < (2 * SONY_BITS) + 2) return false ;
// Some Sony's deliver repeats fast after first
// unfortunately can't spot difference from of repeat from two fast clicks
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
# ifdef DECODE_SANYO
results->decode_type = SANYO;
# else
results->decode_type = UNKNOWN;
# endif
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SONY_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SONY_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SONY;
return true;
}
#endif

+ 179
- 0
src/ir_Template.cpp Просмотреть файл

@@ -0,0 +1,179 @@
/*
Assuming the protocol we are adding is for the (imaginary) manufacturer: Shuzu
Our fantasy protocol is a standard protocol, so we can use this standard
template without too much work. Some protocols are quite unique and will require
considerably more work in this file! It is way beyond the scope of this text to
explain how to reverse engineer "unusual" IR protocols. But, unless you own an
oscilloscope, the starting point is probably to use the rawDump.ino sketch and
try to spot the pattern!
Before you start, make sure the IR library is working OK:
# Open up the Arduino IDE
# Load up the rawDump.ino example sketch
# Run it
Now we can start to add our new protocol...
1. Copy this file to : ir_Shuzu.cpp
2. Replace all occurrences of "Shuzu" with the name of your protocol.
3. Tweak the #defines to suit your protocol.
4. If you're lucky, tweaking the #defines will make the default send() function
work.
5. Again, if you're lucky, tweaking the #defines will have made the default
decode() function work.
You have written the code to support your new protocol!
Now you must do a few things to add it to the IRremote system:
1. Open IRremote.h and make the following changes:
REMEMEBER to change occurences of "SHUZU" with the name of your protocol
A. At the top, in the section "Supported Protocols", add:
#define DECODE_SHUZU 1
#define SEND_SHUZU 1
B. In the section "enumerated list of all supported formats", add:
SHUZU,
to the end of the list (notice there is a comma after the protocol name)
C. Further down in "Main class for receiving IR", add:
//......................................................................
#if DECODE_SHUZU
bool decodeShuzu (decode_results *results) ;
#endif
D. Further down in "Main class for sending IR", add:
//......................................................................
#if SEND_SHUZU
void sendShuzu (unsigned long data, int nbits) ;
#endif
E. Save your changes and close the file
2. Now open irRecv.cpp and make the following change:
A. In the function IRrecv::decode(), add:
#ifdef DECODE_NEC
DBG_PRINTLN("Attempting Shuzu decode");
if (decodeShuzu(results)) return true ;
#endif
B. Save your changes and close the file
You will probably want to add your new protocol to the example sketch
3. Open MyDocuments\Arduino\libraries\IRremote\examples\IRrecvDumpV2.ino
A. In the encoding() function, add:
case SHUZU: Serial.print("SHUZU"); break ;
Now open the Arduino IDE, load up the rawDump.ino sketch, and run it.
Hopefully it will compile and upload.
If it doesn't, you've done something wrong. Check your work.
If you can't get it to work - seek help from somewhere.
If you get this far, I will assume you have successfully added your new protocol
There is one last thing to do.
1. Delete this giant instructional comment.
2. Send a copy of your work to us so we can include it in the library and
others may benefit from your hard work and maybe even write a song about how
great you are for helping them! :)
Regards,
BlueChip
*/
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
//
//
// S H U Z U
//
//
//==============================================================================
#define BITS 32 // The number of bits in the command
#define HDR_MARK 1000 // The length of the Header:Mark
#define HDR_SPACE 2000 // The lenght of the Header:Space
#define BIT_MARK 3000 // The length of a Bit:Mark
#define ONE_SPACE 4000 // The length of a Bit:Space for 1's
#define ZERO_SPACE 5000 // The length of a Bit:Space for 0's
#define OTHER 1234 // Other things you may need to define
//+=============================================================================
//
#if SEND_SHUZU
void IRsend::sendShuzu (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_SHUZU
bool IRrecv::decodeShuzu (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < SHUZU_BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = SHUZU;
return true;
}
#endif

+ 91
- 0
src/ir_Whynter.cpp Просмотреть файл

@@ -0,0 +1,91 @@
#include "irr/IRremote.h"
#include "irr/IRremoteInt.h"
//==============================================================================
// W W H H Y Y N N TTTTT EEEEE RRRRR
// W W H H Y Y NN N T E R R
// W W W HHHHH Y N N N T EEE RRRR
// W W W H H Y N NN T E R R
// WWW H H Y N N T EEEEE R R
//==============================================================================
#define WHYNTER_BITS 32
#define WHYNTER_HDR_MARK 2850
#define WHYNTER_HDR_SPACE 2850
#define WHYNTER_BIT_MARK 750
#define WHYNTER_ONE_MARK 750
#define WHYNTER_ONE_SPACE 2150
#define WHYNTER_ZERO_MARK 750
#define WHYNTER_ZERO_SPACE 750
//+=============================================================================
#if SEND_WHYNTER
void IRsend::sendWhynter (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Start
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
// Header
mark(WHYNTER_HDR_MARK);
space(WHYNTER_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(WHYNTER_ONE_MARK);
space(WHYNTER_ONE_SPACE);
} else {
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
}
}
// Footer
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_WHYNTER
bool IRrecv::decodeWhynter (decode_results *results)
{
long data = 0;
int offset = 1; // skip initial space
// Check we have the right amount of data
if (irparams.rawlen < (2 * WHYNTER_BITS) + 6) return false ;
// Sequence begins with a bit mark and a zero space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_BIT_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_ZERO_SPACE)) return false ;
// header mark and space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_HDR_SPACE)) return false ;
// data bits
for (int i = 0; i < WHYNTER_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], WHYNTER_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// trailing mark
if (!MATCH_MARK(results->rawbuf[offset], WHYNTER_BIT_MARK)) return false ;
// Success
results->bits = WHYNTER_BITS;
results->value = data;
results->decode_type = WHYNTER;
return true;
}
#endif

Загрузка…
Отмена
Сохранить