/* Arduino Sd2Card Library * Copyright (C) 2009 by William Greiman * * This file is part of the Arduino Sd2Card Library * * This Library is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This Library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Arduino Sd2Card Library. If not, see * . */ #include #include #include "Sd2Card.h" #ifdef SPI_HAS_TRANSACTION static SPISettings settings; #endif #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) #define USE_TEENSY3_SPI // Teensy 3.0 functions (copied from sdfatlib20130629) #include // Limit initial fifo to three entries to avoid fifo overrun #define SPI_INITIAL_FIFO_DEPTH 3 // define some symbols that are not in mk20dx128.h #ifndef SPI_SR_RXCTR #define SPI_SR_RXCTR 0XF0 #endif // SPI_SR_RXCTR #ifndef SPI_PUSHR_CONT #define SPI_PUSHR_CONT 0X80000000 #endif // SPI_PUSHR_CONT #ifndef SPI_PUSHR_CTAS #define SPI_PUSHR_CTAS(n) (((n) & 7) << 28) #endif // SPI_PUSHR_CTAS static void spiBegin() { SIM_SCGC6 |= SIM_SCGC6_SPI0; } static void spiInit(uint8_t spiRate) { switch (spiRate) { // the top 2 speeds are set to 24 MHz, for the SD library defaults case 0: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break; case 1: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break; case 2: settings = SPISettings(8000000, MSBFIRST, SPI_MODE0); break; case 3: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break; case 4: settings = SPISettings(3000000, MSBFIRST, SPI_MODE0); break; case 5: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break; default: settings = SPISettings(400000, MSBFIRST, SPI_MODE0); } SPI.begin(); } /** SPI receive a byte */ static uint8_t spiRec() { SPI0_MCR |= SPI_MCR_CLR_RXF; SPI0_SR = SPI_SR_TCF; SPI0_PUSHR = 0xFF; while (!(SPI0_SR & SPI_SR_TCF)) {} return SPI0_POPR; } /** SPI receive multiple bytes */ static uint8_t spiRec(uint8_t* buf, size_t len) { // clear any data in RX FIFO SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F); // use 16 bit frame to avoid TD delay between frames // get one byte if len is odd if (len & 1) { *buf++ = spiRec(); len--; } // initial number of words to push into TX FIFO int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH; for (int i = 0; i < nf; i++) { SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF; } uint8_t* limit = buf + len - 2*nf; while (buf < limit) { while (!(SPI0_SR & SPI_SR_RXCTR)) {} SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF; uint16_t w = SPI0_POPR; *buf++ = w >> 8; *buf++ = w & 0XFF; } // limit for rest of RX data limit += 2*nf; while (buf < limit) { while (!(SPI0_SR & SPI_SR_RXCTR)) {} uint16_t w = SPI0_POPR; *buf++ = w >> 8; *buf++ = w & 0XFF; } return 0; } static void spiRecIgnore(size_t len) { // clear any data in RX FIFO SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F); // use 16 bit frame to avoid TD delay between frames // get one byte if len is odd if (len & 1) { spiRec(); len--; } // initial number of words to push into TX FIFO int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH; for (int i = 0; i < nf; i++) { SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF; len -= 2; } //uint8_t* limit = buf + len - 2*nf; //while (buf < limit) { while (len > 0) { while (!(SPI0_SR & SPI_SR_RXCTR)) {} SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF; SPI0_POPR; len -= 2; } // limit for rest of RX data while (nf > 0) { while (!(SPI0_SR & SPI_SR_RXCTR)) {} SPI0_POPR; nf--; } } /** SPI send a byte */ static void spiSend(uint8_t b) { SPI0_MCR |= SPI_MCR_CLR_RXF; SPI0_SR = SPI_SR_TCF; SPI0_PUSHR = b; while (!(SPI0_SR & SPI_SR_TCF)) {} } /** SPI send multiple bytes */ #elif defined(__IMXRT1052__) || defined(__IMXRT1062__) #define USE_TEENSY4_SPI static void spiInit(uint8_t spiRate) { switch (spiRate) { // the top 2 speeds are set to 24 MHz, for the SD library defaults case 0: settings = SPISettings(25200000, MSBFIRST, SPI_MODE0); break; case 1: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break; case 2: settings = SPISettings(8000000, MSBFIRST, SPI_MODE0); break; case 3: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break; case 4: settings = SPISettings(3000000, MSBFIRST, SPI_MODE0); break; case 5: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break; default: settings = SPISettings(400000, MSBFIRST, SPI_MODE0); } SPI.begin(); } static void spiSend(uint8_t b) { SPI.transfer(b); } static uint8_t spiRec(void) { return SPI.transfer(0xff); } static void spiRec(uint8_t* buf, size_t len) { SPI.transfer(buf, len); } static void spiRecIgnore(size_t len) { for (size_t i=0; i < len; i++) SPI.transfer(0xff); } //------------------------------------------------------------------------------ #else // functions for hardware SPI /** Send a byte to the card */ static void spiSend(uint8_t b) { SPDR = b; while (!(SPSR & (1 << SPIF))); } /** Receive a byte from the card */ static uint8_t spiRec(void) { spiSend(0XFF); return SPDR; } #endif //------------------------------------------------------------------------------ // send command and return error code. Return zero for OK uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) { // wait up to 300 ms if busy waitNotBusy(300); // send command spiSend(cmd | 0x40); // send argument for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s); // send CRC uint8_t crc = 0XFF; if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0 if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA spiSend(crc); // wait for response for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++); return status_; } //------------------------------------------------------------------------------ #ifdef SPI_HAS_TRANSACTION static uint8_t chip_select_asserted = 0; #endif void Sd2Card::chipSelectHigh(void) { digitalWrite(chipSelectPin_, HIGH); #ifdef SPI_HAS_TRANSACTION if (chip_select_asserted) { chip_select_asserted = 0; SPI.endTransaction(); } #endif } //------------------------------------------------------------------------------ void Sd2Card::chipSelectLow(void) { #ifdef SPI_HAS_TRANSACTION if (!chip_select_asserted) { chip_select_asserted = 1; SPI.beginTransaction(settings); } #endif digitalWrite(chipSelectPin_, LOW); } //------------------------------------------------------------------------------ /** * Initialize an SD flash memory card. * * \param[in] sckRateID SPI clock rate selector. See setSckRate(). * \param[in] chipSelectPin SD chip select pin number. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::SD_init(uint8_t sckRateID, uint8_t chipSelectPin) { type_ = 0; chipSelectPin_ = chipSelectPin; // 16-bit init start time allows over a minute unsigned int t0 = millis(); uint32_t arg; digitalWrite(chipSelectPin_, HIGH); pinMode(chipSelectPin_, OUTPUT); digitalWrite(chipSelectPin_, HIGH); #if defined(USE_TEENSY3_SPI) spiBegin(); spiInit(6); #elif defined(USE_TEENSY4_SPI) spiInit(6); pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin #else // set pin modes pinMode(SPI_MISO_PIN, INPUT); pinMode(SPI_MOSI_PIN, OUTPUT); pinMode(SPI_SCK_PIN, OUTPUT); // SS must be in output mode even it is not chip select pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin // Enable SPI, Master, clock rate f_osc/128 SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0); // clear double speed SPSR &= ~(1 << SPI2X); #ifdef SPI_HAS_TRANSACTION settings = SPISettings(250000, MSBFIRST, SPI_MODE0); #endif #endif // not USE_TEENSY3_SPI // must supply min of 74 clock cycles with CS high. #ifdef SPI_HAS_TRANSACTION SPI.beginTransaction(settings); #endif for (uint8_t i = 0; i < 10; i++) spiSend(0XFF); #ifdef SPI_HAS_TRANSACTION SPI.endTransaction(); #endif chipSelectLow(); // command to go idle in SPI mode while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) { unsigned int d = millis() - t0; if (d > SD_INIT_TIMEOUT) { goto fail; // SD_CARD_ERROR_CMD0 } } // check SD version if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) { type_ = SD_CARD_TYPE_SD1; } else { // only need last byte of r7 response for (uint8_t i = 0; i < 4; i++) status_ = spiRec(); if (status_ != 0XAA) { goto fail; // SD_CARD_ERROR_CMD8 } type_ = SD_CARD_TYPE_SD2; } // initialize card and send host supports SDHC if SD2 arg = (type_ == SD_CARD_TYPE_SD2) ? 0X40000000 : 0; while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) { // check for timeout unsigned int d = millis() - t0; if (d > SD_INIT_TIMEOUT) { goto fail; // SD_CARD_ERROR_ACMD41 } } // if SD2 read OCR register to check for SDHC card if (type_ == SD_CARD_TYPE_SD2) { if (cardCommand(CMD58, 0)) { goto fail; // SD_CARD_ERROR_CMD58 } if ((spiRec() & 0XC0) == 0XC0) type_ = SD_CARD_TYPE_SDHC; // discard rest of ocr - contains allowed voltage range for (uint8_t i = 0; i < 3; i++) spiRec(); } chipSelectHigh(); return setSckRate(sckRateID); fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Read a 512 byte block from an SD card device. * * \param[in] block Logical block to be read. * \param[out] dst Pointer to the location that will receive the data. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::SD_readBlock(uint32_t block, uint8_t* dst) { // use address if not SDHC card if (type_ != SD_CARD_TYPE_SDHC) block <<= 9; chipSelectLow(); if (cardCommand(CMD17, block)) { goto fail; // SD_CARD_ERROR_CMD17 } if (!waitStartBlock()) { goto fail; } #if defined(USE_TEENSY3_SPI) | defined(USE_TEENSY4_SPI) spiRec(dst, 512); spiRecIgnore(2); #else // OPTIMIZE_HARDWARE_SPI // start first spi transfer SPDR = 0XFF; // transfer data for (uint16_t i = 0; i < 511; i++) { while (!(SPSR & (1 << SPIF))); dst[i] = SPDR; SPDR = 0XFF; } // wait for last byte while (!(SPSR & (1 << SPIF))); dst[511] = SPDR; // skip CRC bytes spiRec(); spiRec(); #endif chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Set the SPI clock rate. * * \param[in] sckRateID A value in the range [0, 6]. * * 0 = 8 MHz * 1 = 4 MHz * 2 = 2 MHz * 3 = 1 MHz * 4 = 500 kHz * 5 = 125 kHz * 6 = 63 kHz * * The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum * SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128 * for \a scsRateID = 6. * * \return The value one, true, is returned for success and the value zero, * false, is returned for an invalid value of \a sckRateID. */ uint8_t Sd2Card::setSckRate(uint8_t sckRateID) { #if defined(USE_TEENSY3_SPI) || defined(USE_TEENSY4_SPI) spiInit(sckRateID); return true; #else if (sckRateID > 6) sckRateID = 6; // see avr processor datasheet for SPI register bit definitions if ((sckRateID & 1) || sckRateID == 6) { SPSR &= ~(1 << SPI2X); } else { SPSR |= (1 << SPI2X); } SPCR &= ~((1 < SD_READ_TIMEOUT) { return false; // SD_CARD_ERROR_READ_TIMEOUT } } if (status_ != DATA_START_BLOCK) { return false; // SD_CARD_ERROR_READ } return true; } //------------------------------------------------------------------------------ /** * Writes a 512 byte block to an SD card. * * \param[in] blockNumber Logical block to be written. * \param[in] src Pointer to the location of the data to be written. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::SD_writeBlock(uint32_t blockNumber, const uint8_t* src) { #if SD_PROTECT_BLOCK_ZERO // don't allow write to first block if (blockNumber == 0) { goto fail; // SD_CARD_ERROR_WRITE_BLOCK_ZERO } #endif // SD_PROTECT_BLOCK_ZERO // use address if not SDHC card if (type_ != SD_CARD_TYPE_SDHC) blockNumber <<= 9; chipSelectLow(); if (cardCommand(CMD24, blockNumber)) { goto fail; // SD_CARD_ERROR_CMD24 } if (!writeData(DATA_START_BLOCK, src)) goto fail; // wait for flash programming to complete if (!waitNotBusy(SD_WRITE_TIMEOUT)) { goto fail; // SD_CARD_ERROR_WRITE_TIMEOUT } // response is r2 so get and check two bytes for nonzero if (cardCommand(CMD13, 0) || spiRec()) { goto fail; // SD_CARD_ERROR_WRITE_PROGRAMMING } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ // send one block of data for write block or write multiple blocks uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) { #if defined(OPTIMIZE_HARDWARE_SPI) && !defined(USE_TEENSY4_SPI) // send data - optimized loop SPDR = token; // send two byte per iteration for (uint16_t i = 0; i < 512; i += 2) { while (!(SPSR & (1 << SPIF))); SPDR = src[i]; while (!(SPSR & (1 << SPIF))); SPDR = src[i+1]; } // wait for last data byte while (!(SPSR & (1 << SPIF))); #else // OPTIMIZE_HARDWARE_SPI spiSend(token); for (uint16_t i = 0; i < 512; i++) { spiSend(src[i]); } #endif // OPTIMIZE_HARDWARE_SPI spiSend(0xff); // dummy crc spiSend(0xff); // dummy crc status_ = spiRec(); if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) { return false; // SD_CARD_ERROR_WRITE } return true; }