/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* .
*/
#include
#include
#include "Sd2Card.h"
#ifdef SPI_HAS_TRANSACTION
static SPISettings settings;
#endif
#if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define USE_TEENSY3_SPI
// Teensy 3.0 functions (copied from sdfatlib20130629)
#include
// Limit initial fifo to three entries to avoid fifo overrun
#define SPI_INITIAL_FIFO_DEPTH 3
// define some symbols that are not in mk20dx128.h
#ifndef SPI_SR_RXCTR
#define SPI_SR_RXCTR 0XF0
#endif // SPI_SR_RXCTR
#ifndef SPI_PUSHR_CONT
#define SPI_PUSHR_CONT 0X80000000
#endif // SPI_PUSHR_CONT
#ifndef SPI_PUSHR_CTAS
#define SPI_PUSHR_CTAS(n) (((n) & 7) << 28)
#endif // SPI_PUSHR_CTAS
static void spiBegin() {
SIM_SCGC6 |= SIM_SCGC6_SPI0;
}
static void spiInit(uint8_t spiRate) {
switch (spiRate) {
// the top 2 speeds are set to 24 MHz, for the SD library defaults
case 0: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break;
case 1: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break;
case 2: settings = SPISettings(8000000, MSBFIRST, SPI_MODE0); break;
case 3: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break;
case 4: settings = SPISettings(3000000, MSBFIRST, SPI_MODE0); break;
case 5: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break;
default: settings = SPISettings(400000, MSBFIRST, SPI_MODE0);
}
SPI.begin();
}
/** SPI receive a byte */
static uint8_t spiRec() {
SPI0_MCR |= SPI_MCR_CLR_RXF;
SPI0_SR = SPI_SR_TCF;
SPI0_PUSHR = 0xFF;
while (!(SPI0_SR & SPI_SR_TCF)) {}
return SPI0_POPR;
}
/** SPI receive multiple bytes */
static uint8_t spiRec(uint8_t* buf, size_t len) {
// clear any data in RX FIFO
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
// use 16 bit frame to avoid TD delay between frames
// get one byte if len is odd
if (len & 1) {
*buf++ = spiRec();
len--;
}
// initial number of words to push into TX FIFO
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
for (int i = 0; i < nf; i++) {
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
}
uint8_t* limit = buf + len - 2*nf;
while (buf < limit) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
uint16_t w = SPI0_POPR;
*buf++ = w >> 8;
*buf++ = w & 0XFF;
}
// limit for rest of RX data
limit += 2*nf;
while (buf < limit) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
uint16_t w = SPI0_POPR;
*buf++ = w >> 8;
*buf++ = w & 0XFF;
}
return 0;
}
static void spiRecIgnore(size_t len) {
// clear any data in RX FIFO
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
// use 16 bit frame to avoid TD delay between frames
// get one byte if len is odd
if (len & 1) {
spiRec();
len--;
}
// initial number of words to push into TX FIFO
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
for (int i = 0; i < nf; i++) {
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
len -= 2;
}
//uint8_t* limit = buf + len - 2*nf;
//while (buf < limit) {
while (len > 0) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
SPI0_POPR;
len -= 2;
}
// limit for rest of RX data
while (nf > 0) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_POPR;
nf--;
}
}
/** SPI send a byte */
static void spiSend(uint8_t b) {
SPI0_MCR |= SPI_MCR_CLR_RXF;
SPI0_SR = SPI_SR_TCF;
SPI0_PUSHR = b;
while (!(SPI0_SR & SPI_SR_TCF)) {}
}
/** SPI send multiple bytes */
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
#define USE_TEENSY4_SPI
static void spiInit(uint8_t spiRate) {
switch (spiRate) {
// the top 2 speeds are set to 24 MHz, for the SD library defaults
case 0: settings = SPISettings(25200000, MSBFIRST, SPI_MODE0); break;
case 1: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break;
case 2: settings = SPISettings(8000000, MSBFIRST, SPI_MODE0); break;
case 3: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break;
case 4: settings = SPISettings(3000000, MSBFIRST, SPI_MODE0); break;
case 5: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break;
default: settings = SPISettings(400000, MSBFIRST, SPI_MODE0);
}
SPI.begin();
}
static void spiSend(uint8_t b) {
SPI.transfer(b);
}
static uint8_t spiRec(void) {
return SPI.transfer(0xff);
}
static void spiRec(uint8_t* buf, size_t len) {
SPI.transfer(buf, len);
}
static void spiRecIgnore(size_t len) {
for (size_t i=0; i < len; i++)
SPI.transfer(0xff);
}
//------------------------------------------------------------------------------
#else
// functions for hardware SPI
/** Send a byte to the card */
static void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
/** Receive a byte from the card */
static uint8_t spiRec(void) {
spiSend(0XFF);
return SPDR;
}
#endif
//------------------------------------------------------------------------------
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg)
{
// wait up to 300 ms if busy
waitNotBusy(300);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC
uint8_t crc = 0XFF;
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
spiSend(crc);
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
return status_;
}
//------------------------------------------------------------------------------
#ifdef SPI_HAS_TRANSACTION
static uint8_t chip_select_asserted = 0;
#endif
void Sd2Card::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
#ifdef SPI_HAS_TRANSACTION
if (chip_select_asserted) {
chip_select_asserted = 0;
SPI.endTransaction();
}
#endif
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectLow(void) {
#ifdef SPI_HAS_TRANSACTION
if (!chip_select_asserted) {
chip_select_asserted = 1;
SPI.beginTransaction(settings);
}
#endif
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
/**
* Initialize an SD flash memory card.
*
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::SD_init(uint8_t sckRateID, uint8_t chipSelectPin) {
type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
unsigned int t0 = millis();
uint32_t arg;
digitalWrite(chipSelectPin_, HIGH);
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
#if defined(USE_TEENSY3_SPI)
spiBegin();
spiInit(6);
#elif defined(USE_TEENSY4_SPI)
spiInit(6);
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
#else
// set pin modes
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
// SS must be in output mode even it is not chip select
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
// Enable SPI, Master, clock rate f_osc/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// clear double speed
SPSR &= ~(1 << SPI2X);
#ifdef SPI_HAS_TRANSACTION
settings = SPISettings(250000, MSBFIRST, SPI_MODE0);
#endif
#endif // not USE_TEENSY3_SPI
// must supply min of 74 clock cycles with CS high.
#ifdef SPI_HAS_TRANSACTION
SPI.beginTransaction(settings);
#endif
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
#ifdef SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
chipSelectLow();
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
unsigned int d = millis() - t0;
if (d > SD_INIT_TIMEOUT) {
goto fail; // SD_CARD_ERROR_CMD0
}
}
// check SD version
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
type_ = SD_CARD_TYPE_SD1;
} else {
// only need last byte of r7 response
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
if (status_ != 0XAA) {
goto fail; // SD_CARD_ERROR_CMD8
}
type_ = SD_CARD_TYPE_SD2;
}
// initialize card and send host supports SDHC if SD2
arg = (type_ == SD_CARD_TYPE_SD2) ? 0X40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
unsigned int d = millis() - t0;
if (d > SD_INIT_TIMEOUT) {
goto fail; // SD_CARD_ERROR_ACMD41
}
}
// if SD2 read OCR register to check for SDHC card
if (type_ == SD_CARD_TYPE_SD2) {
if (cardCommand(CMD58, 0)) {
goto fail; // SD_CARD_ERROR_CMD58
}
if ((spiRec() & 0XC0) == 0XC0) type_ = SD_CARD_TYPE_SDHC;
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) spiRec();
}
chipSelectHigh();
return setSckRate(sckRateID);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Read a 512 byte block from an SD card device.
*
* \param[in] block Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::SD_readBlock(uint32_t block, uint8_t* dst)
{
// use address if not SDHC card
if (type_ != SD_CARD_TYPE_SDHC) block <<= 9;
chipSelectLow();
if (cardCommand(CMD17, block)) {
goto fail; // SD_CARD_ERROR_CMD17
}
if (!waitStartBlock()) {
goto fail;
}
#if defined(USE_TEENSY3_SPI) | defined(USE_TEENSY4_SPI)
spiRec(dst, 512);
spiRecIgnore(2);
#else // OPTIMIZE_HARDWARE_SPI
// start first spi transfer
SPDR = 0XFF;
// transfer data
for (uint16_t i = 0; i < 511; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for last byte
while (!(SPSR & (1 << SPIF)));
dst[511] = SPDR;
// skip CRC bytes
spiRec();
spiRec();
#endif
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Set the SPI clock rate.
*
* \param[in] sckRateID A value in the range [0, 6].
*
* 0 = 8 MHz
* 1 = 4 MHz
* 2 = 2 MHz
* 3 = 1 MHz
* 4 = 500 kHz
* 5 = 125 kHz
* 6 = 63 kHz
*
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
* for \a scsRateID = 6.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned for an invalid value of \a sckRateID.
*/
uint8_t Sd2Card::setSckRate(uint8_t sckRateID) {
#if defined(USE_TEENSY3_SPI) || defined(USE_TEENSY4_SPI)
spiInit(sckRateID);
return true;
#else
if (sckRateID > 6) sckRateID = 6;
// see avr processor datasheet for SPI register bit definitions
if ((sckRateID & 1) || sckRateID == 6) {
SPSR &= ~(1 << SPI2X);
} else {
SPSR |= (1 << SPI2X);
}
SPCR &= ~((1 < SD_READ_TIMEOUT) {
return false; // SD_CARD_ERROR_READ_TIMEOUT
}
}
if (status_ != DATA_START_BLOCK) {
return false; // SD_CARD_ERROR_READ
}
return true;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::SD_writeBlock(uint32_t blockNumber, const uint8_t* src) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
goto fail; // SD_CARD_ERROR_WRITE_BLOCK_ZERO
}
#endif // SD_PROTECT_BLOCK_ZERO
// use address if not SDHC card
if (type_ != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
chipSelectLow();
if (cardCommand(CMD24, blockNumber)) {
goto fail; // SD_CARD_ERROR_CMD24
}
if (!writeData(DATA_START_BLOCK, src)) goto fail;
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
goto fail; // SD_CARD_ERROR_WRITE_TIMEOUT
}
// response is r2 so get and check two bytes for nonzero
if (cardCommand(CMD13, 0) || spiRec()) {
goto fail; // SD_CARD_ERROR_WRITE_PROGRAMMING
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
// send one block of data for write block or write multiple blocks
uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) {
#if defined(OPTIMIZE_HARDWARE_SPI) && !defined(USE_TEENSY4_SPI)
// send data - optimized loop
SPDR = token;
// send two byte per iteration
for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
while (!(SPSR & (1 << SPIF)));
SPDR = src[i+1];
}
// wait for last data byte
while (!(SPSR & (1 << SPIF)));
#else // OPTIMIZE_HARDWARE_SPI
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(src[i]);
}
#endif // OPTIMIZE_HARDWARE_SPI
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
return false; // SD_CARD_ERROR_WRITE
}
return true;
}