/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* .
*/
#include
#include
#include "Sd2Card.h"
#ifdef SPI_HAS_TRANSACTION
static SPISettings settings;
#endif
#if defined(__MK20DX128__) || defined(__MK20DX256__)
#define USE_TEENSY3_SPI
// Teensy 3.0 functions (copied from sdfatlib20130629)
#include
// Limit initial fifo to three entries to avoid fifo overrun
#define SPI_INITIAL_FIFO_DEPTH 3
// define some symbols that are not in mk20dx128.h
#ifndef SPI_SR_RXCTR
#define SPI_SR_RXCTR 0XF0
#endif // SPI_SR_RXCTR
#ifndef SPI_PUSHR_CONT
#define SPI_PUSHR_CONT 0X80000000
#endif // SPI_PUSHR_CONT
#ifndef SPI_PUSHR_CTAS
#define SPI_PUSHR_CTAS(n) (((n) & 7) << 28)
#endif // SPI_PUSHR_CTAS
static void spiBegin() {
SIM_SCGC6 |= SIM_SCGC6_SPI0;
}
static void spiInit(uint8_t spiRate) {
switch (spiRate) {
// the top 2 speeds are set to 24 MHz, for the SD library defaults
case 0: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break;
case 1: settings = SPISettings(24000000, MSBFIRST, SPI_MODE0); break;
case 2: settings = SPISettings(8000000, MSBFIRST, SPI_MODE0); break;
case 3: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break;
case 4: settings = SPISettings(3000000, MSBFIRST, SPI_MODE0); break;
case 5: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break;
default: settings = SPISettings(400000, MSBFIRST, SPI_MODE0);
}
SPI.begin();
}
/** SPI receive a byte */
static uint8_t spiRec() {
SPI0_MCR |= SPI_MCR_CLR_RXF;
SPI0_SR = SPI_SR_TCF;
SPI0_PUSHR = 0xFF;
while (!(SPI0_SR & SPI_SR_TCF)) {}
return SPI0_POPR;
}
/** SPI receive multiple bytes */
static uint8_t spiRec(uint8_t* buf, size_t len) {
// clear any data in RX FIFO
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
// use 16 bit frame to avoid TD delay between frames
// get one byte if len is odd
if (len & 1) {
*buf++ = spiRec();
len--;
}
// initial number of words to push into TX FIFO
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
for (int i = 0; i < nf; i++) {
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
}
uint8_t* limit = buf + len - 2*nf;
while (buf < limit) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
uint16_t w = SPI0_POPR;
*buf++ = w >> 8;
*buf++ = w & 0XFF;
}
// limit for rest of RX data
limit += 2*nf;
while (buf < limit) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
uint16_t w = SPI0_POPR;
*buf++ = w >> 8;
*buf++ = w & 0XFF;
}
return 0;
}
static void spiRecIgnore(size_t len) {
// clear any data in RX FIFO
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
// use 16 bit frame to avoid TD delay between frames
// get one byte if len is odd
if (len & 1) {
spiRec();
len--;
}
// initial number of words to push into TX FIFO
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
for (int i = 0; i < nf; i++) {
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
len -= 2;
}
//uint8_t* limit = buf + len - 2*nf;
//while (buf < limit) {
while (len > 0) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
SPI0_POPR;
len -= 2;
}
// limit for rest of RX data
while (nf > 0) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_POPR;
nf--;
}
}
/** SPI send a byte */
static void spiSend(uint8_t b) {
SPI0_MCR |= SPI_MCR_CLR_RXF;
SPI0_SR = SPI_SR_TCF;
SPI0_PUSHR = b;
while (!(SPI0_SR & SPI_SR_TCF)) {}
}
/** SPI send multiple bytes */
#if 0
static void spiSend(const uint8_t* output, size_t len) {
// clear any data in RX FIFO
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
// use 16 bit frame to avoid TD delay between frames
// send one byte if len is odd
if (len & 1) {
spiSend(*output++);
len--;
}
// initial number of words to push into TX FIFO
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
// limit for pushing data into TX fifo
const uint8_t* limit = output + len;
for (int i = 0; i < nf; i++) {
uint16_t w = (*output++) << 8;
w |= *output++;
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | w;
}
// write data to TX FIFO
while (output < limit) {
uint16_t w = *output++ << 8;
w |= *output++;
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | w;
SPI0_POPR;
}
// wait for data to be sent
while (nf) {
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
SPI0_POPR;
nf--;
}
}
#endif
//------------------------------------------------------------------------------
#else
// functions for hardware SPI
/** Send a byte to the card */
static void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
/** Receive a byte from the card */
static uint8_t spiRec(void) {
spiSend(0XFF);
return SPDR;
}
#endif
//------------------------------------------------------------------------------
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// end read if in partialBlockRead mode
readEnd();
// select card
chipSelectLow();
// wait up to 300 ms if busy
waitNotBusy(300);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC
uint8_t crc = 0XFF;
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
spiSend(crc);
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
return status_;
}
//------------------------------------------------------------------------------
/**
* Determine the size of an SD flash memory card.
*
* \return The number of 512 byte data blocks in the card
* or zero if an error occurs.
*/
uint32_t Sd2Card::cardSize(void) {
csd_t csd;
if (!readCSD(&csd)) return 0;
if (csd.v1.csd_ver == 0) {
uint8_t read_bl_len = csd.v1.read_bl_len;
uint16_t c_size = (csd.v1.c_size_high << 10)
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
| csd.v1.c_size_mult_low;
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
} else if (csd.v2.csd_ver == 1) {
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
return (c_size + 1) << 10;
} else {
error(SD_CARD_ERROR_BAD_CSD);
return 0;
}
}
//------------------------------------------------------------------------------
#ifdef SPI_HAS_TRANSACTION
static uint8_t chip_select_asserted = 0;
#endif
void Sd2Card::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
#ifdef SPI_HAS_TRANSACTION
if (chip_select_asserted) {
chip_select_asserted = 0;
SPI.endTransaction();
}
#endif
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectLow(void) {
#ifdef SPI_HAS_TRANSACTION
if (!chip_select_asserted) {
chip_select_asserted = 1;
SPI.beginTransaction(settings);
}
#endif
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
/** Erase a range of blocks.
*
* \param[in] firstBlock The address of the first block in the range.
* \param[in] lastBlock The address of the last block in the range.
*
* \note This function requests the SD card to do a flash erase for a
* range of blocks. The data on the card after an erase operation is
* either 0 or 1, depends on the card vendor. The card must support
* single block erase.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
if (!eraseSingleBlockEnable()) {
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto fail;
}
if (type_ != SD_CARD_TYPE_SDHC) {
firstBlock <<= 9;
lastBlock <<= 9;
}
if (cardCommand(CMD32, firstBlock)
|| cardCommand(CMD33, lastBlock)
|| cardCommand(CMD38, 0)) {
error(SD_CARD_ERROR_ERASE);
goto fail;
}
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
error(SD_CARD_ERROR_ERASE_TIMEOUT);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Determine if card supports single block erase.
*
* \return The value one, true, is returned if single block erase is supported.
* The value zero, false, is returned if single block erase is not supported.
*/
uint8_t Sd2Card::eraseSingleBlockEnable(void) {
csd_t csd;
return readCSD(&csd) ? csd.v1.erase_blk_en : 0;
}
//------------------------------------------------------------------------------
/**
* Initialize an SD flash memory card.
*
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. The reason for failure
* can be determined by calling errorCode() and errorData().
*/
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
uint32_t arg;
digitalWrite(chipSelectPin_, HIGH);
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
#ifdef USE_TEENSY3_SPI
spiBegin();
spiInit(6);
#else
// set pin modes
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
// SS must be in output mode even it is not chip select
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
// Enable SPI, Master, clock rate f_osc/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// clear double speed
SPSR &= ~(1 << SPI2X);
#ifdef SPI_HAS_TRANSACTION
settings = SPISettings(250000, MSBFIRST, SPI_MODE0);
#endif
#endif // not USE_TEENSY3_SPI
// must supply min of 74 clock cycles with CS high.
#ifdef SPI_HAS_TRANSACTION
SPI.beginTransaction(settings);
#endif
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
#ifdef SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
chipSelectLow();
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD0);
goto fail;
}
}
// check SD version
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
type(SD_CARD_TYPE_SD1);
} else {
// only need last byte of r7 response
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
if (status_ != 0XAA) {
error(SD_CARD_ERROR_CMD8);
goto fail;
}
type(SD_CARD_TYPE_SD2);
}
// initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_ACMD41);
goto fail;
}
}
// if SD2 read OCR register to check for SDHC card
if (type() == SD_CARD_TYPE_SD2) {
if (cardCommand(CMD58, 0)) {
error(SD_CARD_ERROR_CMD58);
goto fail;
}
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) spiRec();
}
chipSelectHigh();
return setSckRate(sckRateID);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Enable or disable partial block reads.
*
* Enabling partial block reads improves performance by allowing a block
* to be read over the SPI bus as several sub-blocks. Errors may occur
* if the time between reads is too long since the SD card may timeout.
* The SPI SS line will be held low until the entire block is read or
* readEnd() is called.
*
* Use this for applications like the Adafruit Wave Shield.
*
* \param[in] value The value TRUE (non-zero) or FALSE (zero).)
*/
void Sd2Card::partialBlockRead(uint8_t value) {
readEnd();
partialBlockRead_ = value;
}
//------------------------------------------------------------------------------
/**
* Read a 512 byte block from an SD card device.
*
* \param[in] block Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readBlock(uint32_t block, uint8_t* dst) {
return readData(block, 0, 512, dst);
}
//------------------------------------------------------------------------------
/**
* Read part of a 512 byte block from an SD card.
*
* \param[in] block Logical block to be read.
* \param[in] offset Number of bytes to skip at start of block
* \param[out] dst Pointer to the location that will receive the data.
* \param[in] count Number of bytes to read
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst) {
#if !defined(USE_TEENSY3_SPI) && defined(OPTIMIZE_HARDWARE_SPI)
uint16_t n;
#endif
if (count == 0) return true;
if ((count + offset) > 512) {
goto fail;
}
if (!inBlock_ || block != block_ || offset < offset_) {
block_ = block;
// use address if not SDHC card
if (type()!= SD_CARD_TYPE_SDHC) block <<= 9;
if (cardCommand(CMD17, block)) {
error(SD_CARD_ERROR_CMD17);
goto fail;
}
if (!waitStartBlock()) {
goto fail;
}
offset_ = 0;
inBlock_ = 1;
}
#if defined(USE_TEENSY3_SPI)
// skip data before offset
//for (;offset_ < offset; offset_++) {
//spiRec();
//}
spiRecIgnore(offset);
spiRec(dst, count);
#elif defined(OPTIMIZE_HARDWARE_SPI)
// start first spi transfer
SPDR = 0XFF;
// skip data before offset
for (;offset_ < offset; offset_++) {
while (!(SPSR & (1 << SPIF)));
SPDR = 0XFF;
}
// transfer data
n = count - 1;
for (uint16_t i = 0; i < n; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for last byte
while (!(SPSR & (1 << SPIF)));
dst[n] = SPDR;
#else // OPTIMIZE_HARDWARE_SPI
// skip data before offset
for (;offset_ < offset; offset_++) {
spiRec();
}
// transfer data
for (uint16_t i = 0; i < count; i++) {
dst[i] = spiRec();
}
#endif // OPTIMIZE_HARDWARE_SPI
offset_ += count;
if (!partialBlockRead_ || offset_ >= 512) {
// read rest of data, checksum and set chip select high
readEnd();
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Skip remaining data in a block when in partial block read mode. */
void Sd2Card::readEnd(void) {
if (inBlock_) {
// skip data and crc
#if defined(USE_TEENSY3_SPI)
if (offset_ < 514) {
spiRecIgnore(514 - offset_);
offset_ = 514;
}
#elif defined(OPTIMIZE_HARDWARE_SPI)
// optimize skip for hardware
SPDR = 0XFF;
while (offset_++ < 513) {
while (!(SPSR & (1 << SPIF)));
SPDR = 0XFF;
}
// wait for last crc byte
while (!(SPSR & (1 << SPIF)));
#else // OPTIMIZE_HARDWARE_SPI
while (offset_++ < 514) spiRec();
#endif // OPTIMIZE_HARDWARE_SPI
chipSelectHigh();
inBlock_ = 0;
}
}
//------------------------------------------------------------------------------
/** read CID or CSR register */
uint8_t Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
goto fail;
}
if (!waitStartBlock()) goto fail;
// transfer data
for (uint16_t i = 0; i < 16; i++) dst[i] = spiRec();
spiRec(); // get first crc byte
spiRec(); // get second crc byte
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Set the SPI clock rate.
*
* \param[in] sckRateID A value in the range [0, 6].
*
* 0 = 8 MHz
* 1 = 4 MHz
* 2 = 2 MHz
* 3 = 1 MHz
* 4 = 500 kHz
* 5 = 125 kHz
* 6 = 63 kHz
*
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
* for \a scsRateID = 6.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned for an invalid value of \a sckRateID.
*/
uint8_t Sd2Card::setSckRate(uint8_t sckRateID) {
#ifdef USE_TEENSY3_SPI
spiInit(sckRateID);
return true;
#else
if (sckRateID > 6) sckRateID = 6;
// see avr processor datasheet for SPI register bit definitions
if ((sckRateID & 1) || sckRateID == 6) {
SPSR &= ~(1 << SPI2X);
} else {
SPSR |= (1 << SPI2X);
}
SPCR &= ~((1 < SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto fail;
}
}
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD24, blockNumber)) {
error(SD_CARD_ERROR_CMD24);
goto fail;
}
if (!writeData(DATA_START_BLOCK, src)) goto fail;
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_TIMEOUT);
goto fail;
}
// response is r2 so get and check two bytes for nonzero
if (cardCommand(CMD13, 0) || spiRec()) {
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Write one data block in a multiple block write sequence */
uint8_t Sd2Card::writeData(const uint8_t* src) {
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
return false;
}
return writeData(WRITE_MULTIPLE_TOKEN, src);
}
//------------------------------------------------------------------------------
// send one block of data for write block or write multiple blocks
uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) {
#ifdef OPTIMIZE_HARDWARE_SPI
// send data - optimized loop
SPDR = token;
// send two byte per iteration
for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
while (!(SPSR & (1 << SPIF)));
SPDR = src[i+1];
}
// wait for last data byte
while (!(SPSR & (1 << SPIF)));
#else // OPTIMIZE_HARDWARE_SPI
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(src[i]);
}
#endif // OPTIMIZE_HARDWARE_SPI
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
chipSelectHigh();
return false;
}
return true;
}
//------------------------------------------------------------------------------
/** Start a write multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
* \param[in] eraseCount The number of blocks to be pre-erased.
*
* \note This function is used with writeData() and writeStop()
* for optimized multiple block writes.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
// send pre-erase count
if (cardAcmd(ACMD23, eraseCount)) {
error(SD_CARD_ERROR_ACMD23);
goto fail;
}
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD25, blockNumber)) {
error(SD_CARD_ERROR_CMD25);
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** End a write multiple blocks sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStop(void) {
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_STOP_TRAN);
chipSelectHigh();
return false;
}