### Warning: This beta is no longer up to date with the release SdFat. | |||||
### Warning: This is an early beta version of SdFat Version 2. | |||||
### Please use the current version of SdFat. | |||||
This library is in early development and features may change. | |||||
It will clearly have bugs. I am posting this version to get comments and | |||||
help finding bugs/compatibility problems. | |||||
Changes Version 1.0.10: | |||||
You can help by posting issues for problems you find. I am doing a great deal | |||||
of testing but actual applications make the best test cases. | |||||
Initial test version for Particle Gen3 mesh. | |||||
SdFat Version 2 supports FAT16/FAT32 and exFAT SD cards. It is mostly | |||||
backward compatible with SdFat Version 1 for FAT16/FAT32 cards. | |||||
Changes Version 1.0.9: | |||||
exFAT supports files larger than 4GB so files sizes and positions are | |||||
type uint64_t for classes that support exFAT. | |||||
This version of SdFat has been modified to use standard POSIX/Linux | |||||
definitions of open flags from fcntl.h. | |||||
exFAT has many features not available in FAT16/FAT32. exFAT has excellent | |||||
support for contiguous files on flash devices and supports preallocation. | |||||
Open flags are access modes, O_RDONLY, O_RDWR, O_WRONLY, and modifiers | |||||
O_APPEND, O_CREAT, O_EXCL, O_SYNC, O_TRUNC. | |||||
If the SD card is the only SPI device, use dedicated SPI mode. This can | |||||
greatly improve performance. See the bench example. | |||||
The mods required changing the type for open flags from uint8_t to int so | |||||
bugs are likely if any uint8_t local variables were missed. | |||||
Here is write performance for an old, 2011, card on a Due board. | |||||
``` | |||||
Shared SPI: | |||||
write speed and latency | |||||
speed,max,min,avg | |||||
KB/Sec,usec,usec,usec | |||||
294.45,24944,1398,1737 | |||||
Dedicated SPI: | |||||
write speed and latency | |||||
speed,max,min,avg | |||||
KB/Sec,usec,usec,usec | |||||
3965.11,16733,110,127 | |||||
``` | |||||
The default version of SdFatConfig.h enables support for dedicated SPI and | |||||
optimized access to contiguous files. This make SdFat Version 2 slightly | |||||
larger than Version 1. If these features are disabled, Version 2 is smaller | |||||
than Version 1. | |||||
The types for the classes SdFat and File are defined in SdFatConfig.h. | |||||
The default version of SdFatConfig.h defines SdFat to only support FAT16/FAT32. | |||||
SdFat and File are defined in terms of more basic classes by typedefs. You | |||||
can use these basic classes in applications. | |||||
Support for exFAT requires a substantial amount of flash. Here are sizes on | |||||
an UNO for a simple program that opens a file, prints one line, and closes | |||||
the file. | |||||
``` | |||||
FAT16/FAT32 only: 9780 bytes flash, 875 bytes SRAM. | |||||
exFAT only: 13830 bytes flash, 938 bytes SRAM. | |||||
FAT16/FAT32/exFAT: 19326 bytes flash, 928 bytes SRAM. | |||||
``` | |||||
The section below of SdFatConfig.h has been edited to uses FAT16/FAT32 for | |||||
small AVR boards and FAT16/FAT32/exFAT for all other boards. | |||||
``` | |||||
/** | |||||
* File types for SdFat, File, SdFile, SdBaseFile, fstream, | |||||
* ifstream, and ofstream. | |||||
* | |||||
* Set SDFAT_FILE_TYPE to: | |||||
* | |||||
* 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
*/ | |||||
#if defined(__AVR__) && FLASHEND < 0X8000 | |||||
// FAT16/FAT32 for 32K AVR boards. | |||||
#define SDFAT_FILE_TYPE 1 | |||||
#else // defined(__AVR__) && FLASHEND < 0X8000 | |||||
// FAT16/FAT32 and exFAT for all other boards. | |||||
#define SDFAT_FILE_TYPE 3 | |||||
#endif // defined(__AVR__) && FLASHEND < 0X8000 | |||||
``` | |||||
The SdBaseFile class has no Arduino Stream or Print support. | |||||
The File class is derived from Stream and SdBaseFile. | |||||
The SdFile class is derived from SdBaseFile and Print. | |||||
Please try the examples. Start with SdInfo, bench, and ExFatLogger. | |||||
To use SdFat Version 2, unzip the download file, rename the library folder | |||||
SdFat and place the SdFat folder into the libraries sub-folder in your main | |||||
sketch folder. | |||||
For more information see the Manual installation section of this guide: | |||||
http://arduino.cc/en/Guide/Libraries | |||||
A number of configuration options can be set by editing SdFatConfig.h | |||||
define macros. See the html documentation File tab for details. | |||||
Please read the html documentation for this library in SdFat/extras/SdFat.html. | |||||
Start with the Main Page. Next go to the Classes tab and read the | |||||
documentation for the classes SdFat32, SdExFat, SdFs, File32, ExFile, FsFile. | |||||
The SdFat and File classes are defined in terms of the above classes by | |||||
typedefs. Edit SdFatConfig.h to select class options. | |||||
Please continue by reading the html documentation in the SdFat/extras folder. |
#ifndef AnalogBinLogger_h | |||||
#define AnalogBinLogger_h | |||||
const size_t BLOCK_SIZE = 64; | |||||
//------------------------------------------------------------------------------ | |||||
// First block of file. | |||||
const size_t PIN_NUM_DIM = BLOCK_SIZE - 3*sizeof(uint32_t) - 2*sizeof(uint8_t); | |||||
struct metadata_t { | |||||
uint32_t adcFrequency; // ADC clock frequency | |||||
uint32_t cpuFrequency; // CPU clock frequency | |||||
uint32_t sampleInterval; // Sample interval in CPU cycles. | |||||
uint8_t recordEightBits; // Size of ADC values, nonzero for 8-bits. | |||||
uint8_t pinCount; // Number of analog pins in a sample. | |||||
uint8_t pinNumber[PIN_NUM_DIM]; // List of pin numbers in a sample. | |||||
}; | |||||
//------------------------------------------------------------------------------ | |||||
// Data block for 8-bit ADC mode. | |||||
const size_t DATA_DIM8 = (BLOCK_SIZE - 2*sizeof(uint16_t))/sizeof(uint8_t); | |||||
struct block8_t { | |||||
uint16_t count; // count of data values | |||||
uint16_t overrun; // count of overruns since last block | |||||
uint8_t data[DATA_DIM8]; | |||||
}; | |||||
//------------------------------------------------------------------------------ | |||||
// Data block for 10-bit ADC mode. | |||||
const size_t DATA_DIM16 = (BLOCK_SIZE - 2*sizeof(uint16_t))/sizeof(uint16_t); | |||||
struct block16_t { | |||||
unsigned short count; // count of data values | |||||
unsigned short overrun; // count of overruns since last block | |||||
unsigned short data[DATA_DIM16]; | |||||
}; | |||||
#endif // AnalogBinLogger_h |
/** | |||||
* This program logs data from the Arduino ADC to a binary file. | |||||
* | |||||
* Samples are logged at regular intervals. Each Sample consists of the ADC | |||||
* values for the analog pins defined in the PIN_LIST array. The pins numbers | |||||
* may be in any order. | |||||
* | |||||
* Edit the configuration constants below to set the sample pins, sample rate, | |||||
* and other configuration values. | |||||
* | |||||
* If your SD card has a long write latency, it may be necessary to use | |||||
* slower sample rates. Using a Mega Arduino helps overcome latency | |||||
* problems since more 64 byte buffer blocks will be used. | |||||
* | |||||
* Each 64 byte data block in the file has a four byte header followed by up | |||||
* to 60 bytes of data. (60 values in 8-bit mode or 30 values in 10-bit mode) | |||||
* Each block contains an integral number of samples with unused space at the | |||||
* end of the block. | |||||
* | |||||
*/ | |||||
#ifdef __AVR__ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "BufferedPrint.h" | |||||
#include "FreeStack.h" | |||||
#include "AvrAdcLogger.h" | |||||
// Save SRAM if 328. | |||||
#ifdef __AVR_ATmega328P__ | |||||
#include "MinimumSerial.h" | |||||
MinimumSerial MinSerial; | |||||
#define Serial MinSerial | |||||
#endif // __AVR_ATmega328P__ | |||||
//------------------------------------------------------------------------------ | |||||
// This example was designed for exFAT but will support FAT16/FAT32. | |||||
// | |||||
// If an exFAT SD is required, the ExFatFormatter example will format | |||||
// smaller cards with an exFAT file system. | |||||
// | |||||
// Note: Uno will not support SD_FAT_TYPE = 3. | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 2 | |||||
//------------------------------------------------------------------------------ | |||||
// Set USE_RTC nonzero for file timestamps. | |||||
// RAM use will be marginal on Uno with RTClib. | |||||
#define USE_RTC 0 | |||||
#if USE_RTC | |||||
#include "RTClib.h" | |||||
#endif | |||||
//------------------------------------------------------------------------------ | |||||
// Pin definitions. | |||||
// | |||||
// Digital pin to indicate an error, set to -1 if not used. | |||||
// The led blinks for fatal errors. The led goes on solid for SD write | |||||
// overrun errors and logging continues. | |||||
const int8_t ERROR_LED_PIN = -1; | |||||
// SD chip select pin. | |||||
const uint8_t SD_CS_PIN = SS; | |||||
//------------------------------------------------------------------------------ | |||||
// Analog pin number list for a sample. Pins may be in any order and pin | |||||
// numbers may be repeated. | |||||
const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4}; | |||||
//------------------------------------------------------------------------------ | |||||
// Sample rate in samples per second. | |||||
const float SAMPLE_RATE = 5000; // Must be 0.25 or greater. | |||||
// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a | |||||
// constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not | |||||
// used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4 | |||||
// will result in a 200 microsecond sample interval. | |||||
const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE; | |||||
// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to | |||||
// be rounded to a a multiple of the ADC clock period and will reduce sample | |||||
// time jitter. | |||||
#define ROUND_SAMPLE_INTERVAL 1 | |||||
//------------------------------------------------------------------------------ | |||||
// Reference voltage. See the processor data-sheet for reference details. | |||||
// uint8_t const ADC_REF = 0; // External Reference AREF pin. | |||||
uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference. | |||||
// uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega) | |||||
// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56 | |||||
//------------------------------------------------------------------------------ | |||||
// File definitions. | |||||
// | |||||
// Maximum file size in bytes. | |||||
// The program creates a contiguous file with MAX_FILE_SIZE_MiB bytes. | |||||
// The file will be truncated if logging is stopped early. | |||||
const uint32_t MAX_FILE_SIZE_MiB = 100; // 100 MiB file. | |||||
// log file name. Integer field before dot will be incremented. | |||||
#define LOG_FILE_NAME "AvrAdc00.bin" | |||||
// Maximum length name including zero byte. | |||||
const size_t NAME_DIM = 40; | |||||
// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC. | |||||
#define RECORD_EIGHT_BITS 0 | |||||
//------------------------------------------------------------------------------ | |||||
// FIFO size definition. Use a multiple of 512 bytes for best performance. | |||||
// | |||||
#if RAMEND < 0X8FF | |||||
#error SRAM too small | |||||
#elif RAMEND < 0X10FF | |||||
const size_t FIFO_SIZE_BYTES = 512; | |||||
#elif RAMEND < 0X20FF | |||||
const size_t FIFO_SIZE_BYTES = 4*512; | |||||
#elif RAMEND < 0X40FF | |||||
const size_t FIFO_SIZE_BYTES = 12*512; | |||||
#else // RAMEND | |||||
const size_t FIFO_SIZE_BYTES = 16*512; | |||||
#endif // RAMEND | |||||
//------------------------------------------------------------------------------ | |||||
// ADC clock rate. | |||||
// The ADC clock rate is normally calculated from the pin count and sample | |||||
// interval. The calculation attempts to use the lowest possible ADC clock | |||||
// rate. | |||||
// | |||||
// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to | |||||
// one of these values. You must choose an appropriate ADC clock rate for | |||||
// your sample interval. | |||||
// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno | |||||
// #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno | |||||
// #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno | |||||
// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno | |||||
// #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only) | |||||
//============================================================================== | |||||
// End of configuration constants. | |||||
//============================================================================== | |||||
// Temporary log file. Will be deleted if a reset or power failure occurs. | |||||
#define TMP_FILE_NAME "tmp_adc.bin" | |||||
// Number of analog pins to log. | |||||
const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]); | |||||
// Minimum ADC clock cycles per sample interval | |||||
const uint16_t MIN_ADC_CYCLES = 15; | |||||
// Extra cpu cycles to setup ADC with more than one pin per sample. | |||||
const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0; | |||||
// Maximum cycles for timer0 system interrupt, millis, micros. | |||||
const uint16_t ISR_TIMER0 = 160; | |||||
//============================================================================== | |||||
const uint32_t MAX_FILE_SIZE = MAX_FILE_SIZE_MiB << 20; | |||||
// Select fastest interface. | |||||
#if ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // ENABLE_DEDICATED_SPI | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
typedef File file_t; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
typedef File32 file_t; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
typedef ExFile file_t; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
typedef FsFile file_t; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
file_t binFile; | |||||
file_t csvFile; | |||||
char binName[] = LOG_FILE_NAME; | |||||
#if RECORD_EIGHT_BITS | |||||
const size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM8/PIN_COUNT); | |||||
typedef block8_t block_t; | |||||
#else // RECORD_EIGHT_BITS | |||||
const size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM16/PIN_COUNT); | |||||
typedef block16_t block_t; | |||||
#endif // RECORD_EIGHT_BITS | |||||
// Size of FIFO in blocks. | |||||
size_t const FIFO_DIM = FIFO_SIZE_BYTES/sizeof(block_t); | |||||
block_t* fifoData; | |||||
volatile size_t fifoCount = 0; // volatile - shared, ISR and background. | |||||
size_t fifoHead = 0; // Only accessed by ISR during logging. | |||||
size_t fifoTail = 0; // Only accessed by writer during logging. | |||||
//============================================================================== | |||||
// Interrupt Service Routines | |||||
// Disable ADC interrupt if true. | |||||
volatile bool isrStop = false; | |||||
// Pointer to current buffer. | |||||
block_t* isrBuf = nullptr; | |||||
// overrun count | |||||
uint16_t isrOver = 0; | |||||
// ADC configuration for each pin. | |||||
uint8_t adcmux[PIN_COUNT]; | |||||
uint8_t adcsra[PIN_COUNT]; | |||||
uint8_t adcsrb[PIN_COUNT]; | |||||
uint8_t adcindex = 1; | |||||
// Insure no timer events are missed. | |||||
volatile bool timerError = false; | |||||
volatile bool timerFlag = false; | |||||
//------------------------------------------------------------------------------ | |||||
// ADC done interrupt. | |||||
ISR(ADC_vect) { | |||||
// Read ADC data. | |||||
#if RECORD_EIGHT_BITS | |||||
uint8_t d = ADCH; | |||||
#else // RECORD_EIGHT_BITS | |||||
// This will access ADCL first. | |||||
uint16_t d = ADC; | |||||
#endif // RECORD_EIGHT_BITS | |||||
if (!isrBuf) { | |||||
if (fifoCount < FIFO_DIM) { | |||||
isrBuf = fifoData + fifoHead; | |||||
} else { | |||||
// no buffers - count overrun | |||||
if (isrOver < 0XFFFF) { | |||||
isrOver++; | |||||
} | |||||
// Avoid missed timer error. | |||||
timerFlag = false; | |||||
return; | |||||
} | |||||
} | |||||
// Start ADC for next pin | |||||
if (PIN_COUNT > 1) { | |||||
ADMUX = adcmux[adcindex]; | |||||
ADCSRB = adcsrb[adcindex]; | |||||
ADCSRA = adcsra[adcindex]; | |||||
if (adcindex == 0) { | |||||
timerFlag = false; | |||||
} | |||||
adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0; | |||||
} else { | |||||
timerFlag = false; | |||||
} | |||||
// Store ADC data. | |||||
isrBuf->data[isrBuf->count++] = d; | |||||
// Check for buffer full. | |||||
if (isrBuf->count >= BLOCK_MAX_COUNT) { | |||||
fifoHead = fifoHead < (FIFO_DIM - 1) ? fifoHead + 1 : 0; | |||||
fifoCount++; | |||||
// Check for end logging. | |||||
if (isrStop) { | |||||
adcStop(); | |||||
return; | |||||
} | |||||
// Set buffer needed and clear overruns. | |||||
isrBuf = nullptr; | |||||
isrOver = 0; | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// timer1 interrupt to clear OCF1B | |||||
ISR(TIMER1_COMPB_vect) { | |||||
// Make sure ADC ISR responded to timer event. | |||||
if (timerFlag) { | |||||
timerError = true; | |||||
} | |||||
timerFlag = true; | |||||
} | |||||
//============================================================================== | |||||
// Error messages stored in flash. | |||||
#define error(msg) (Serial.println(F(msg)),errorHalt()) | |||||
#define assert(e) ((e) ? (void)0 : error("assert: " #e)) | |||||
//------------------------------------------------------------------------------ | |||||
// | |||||
void fatalBlink() { | |||||
while (true) { | |||||
if (ERROR_LED_PIN >= 0) { | |||||
digitalWrite(ERROR_LED_PIN, HIGH); | |||||
delay(200); | |||||
digitalWrite(ERROR_LED_PIN, LOW); | |||||
delay(200); | |||||
} | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void errorHalt() { | |||||
// Print minimal error data. | |||||
// sd.errorPrint(&Serial); | |||||
// Print extended error info - uses extra bytes of flash. | |||||
sd.printSdError(&Serial); | |||||
// Try to save data. | |||||
binFile.close(); | |||||
fatalBlink(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printUnusedStack() { | |||||
Serial.print(F("\nUnused stack: ")); | |||||
Serial.println(UnusedStack()); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
#if USE_RTC | |||||
RTC_DS1307 rtc; | |||||
// Call back for file timestamps. Only called for file create and sync(). | |||||
void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) { | |||||
DateTime now = rtc.now(); | |||||
// Return date using FS_DATE macro to format fields. | |||||
*date = FS_DATE(now.year(), now.month(), now.day()); | |||||
// Return time using FS_TIME macro to format fields. | |||||
*time = FS_TIME(now.hour(), now.minute(), now.second()); | |||||
// Return low time bits in units of 10 ms. | |||||
*ms10 = now.second() & 1 ? 100 : 0; | |||||
} | |||||
#endif // USE_RTC | |||||
//============================================================================== | |||||
#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2 | |||||
#error unexpected ADC prescaler bits | |||||
#endif | |||||
//------------------------------------------------------------------------------ | |||||
inline bool adcActive() {return (1 << ADIE) & ADCSRA;} | |||||
//------------------------------------------------------------------------------ | |||||
// initialize ADC and timer1 | |||||
void adcInit(metadata_t* meta) { | |||||
uint8_t adps; // prescaler bits for ADCSRA | |||||
uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles. | |||||
if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) { | |||||
error("Invalid ADC reference"); | |||||
} | |||||
#ifdef ADC_PRESCALER | |||||
if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) { | |||||
error("Invalid ADC prescaler"); | |||||
} | |||||
adps = ADC_PRESCALER; | |||||
#else // ADC_PRESCALER | |||||
// Allow extra cpu cycles to change ADC settings if more than one pin. | |||||
int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC; | |||||
for (adps = 7; adps > 0; adps--) { | |||||
if (adcCycles >= (MIN_ADC_CYCLES << adps)) { | |||||
break; | |||||
} | |||||
} | |||||
#endif // ADC_PRESCALER | |||||
meta->adcFrequency = F_CPU >> adps; | |||||
if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) { | |||||
error("Sample Rate Too High"); | |||||
} | |||||
#if ROUND_SAMPLE_INTERVAL | |||||
// Round so interval is multiple of ADC clock. | |||||
ticks += 1 << (adps - 1); | |||||
ticks >>= adps; | |||||
ticks <<= adps; | |||||
#endif // ROUND_SAMPLE_INTERVAL | |||||
if (PIN_COUNT > BLOCK_MAX_COUNT || PIN_COUNT > PIN_NUM_DIM) { | |||||
error("Too many pins"); | |||||
} | |||||
meta->pinCount = PIN_COUNT; | |||||
meta->recordEightBits = RECORD_EIGHT_BITS; | |||||
for (int i = 0; i < PIN_COUNT; i++) { | |||||
uint8_t pin = PIN_LIST[i]; | |||||
if (pin >= NUM_ANALOG_INPUTS) { | |||||
error("Invalid Analog pin number"); | |||||
} | |||||
meta->pinNumber[i] = pin; | |||||
// Set ADC reference and low three bits of analog pin number. | |||||
adcmux[i] = (pin & 7) | ADC_REF; | |||||
if (RECORD_EIGHT_BITS) { | |||||
adcmux[i] |= 1 << ADLAR; | |||||
} | |||||
// If this is the first pin, trigger on timer/counter 1 compare match B. | |||||
adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0; | |||||
#ifdef MUX5 | |||||
if (pin > 7) { | |||||
adcsrb[i] |= (1 << MUX5); | |||||
} | |||||
#endif // MUX5 | |||||
adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps; | |||||
// First pin triggers on timer 1 compare match B rest are free running. | |||||
adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC; | |||||
} | |||||
// Setup timer1 | |||||
TCCR1A = 0; | |||||
uint8_t tshift; | |||||
if (ticks < 0X10000) { | |||||
// no prescale, CTC mode | |||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10); | |||||
tshift = 0; | |||||
} else if (ticks < 0X10000*8) { | |||||
// prescale 8, CTC mode | |||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11); | |||||
tshift = 3; | |||||
} else if (ticks < 0X10000*64) { | |||||
// prescale 64, CTC mode | |||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10); | |||||
tshift = 6; | |||||
} else if (ticks < 0X10000*256) { | |||||
// prescale 256, CTC mode | |||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12); | |||||
tshift = 8; | |||||
} else if (ticks < 0X10000*1024) { | |||||
// prescale 1024, CTC mode | |||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10); | |||||
tshift = 10; | |||||
} else { | |||||
error("Sample Rate Too Slow"); | |||||
} | |||||
// divide by prescaler | |||||
ticks >>= tshift; | |||||
// set TOP for timer reset | |||||
ICR1 = ticks - 1; | |||||
// compare for ADC start | |||||
OCR1B = 0; | |||||
// multiply by prescaler | |||||
ticks <<= tshift; | |||||
// Sample interval in CPU clock ticks. | |||||
meta->sampleInterval = ticks; | |||||
meta->cpuFrequency = F_CPU; | |||||
float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval; | |||||
Serial.print(F("Sample pins:")); | |||||
for (uint8_t i = 0; i < meta->pinCount; i++) { | |||||
Serial.print(' '); | |||||
Serial.print(meta->pinNumber[i], DEC); | |||||
} | |||||
Serial.println(); | |||||
Serial.print(F("ADC bits: ")); | |||||
Serial.println(meta->recordEightBits ? 8 : 10); | |||||
Serial.print(F("ADC clock kHz: ")); | |||||
Serial.println(meta->adcFrequency/1000); | |||||
Serial.print(F("Sample Rate: ")); | |||||
Serial.println(sampleRate); | |||||
Serial.print(F("Sample interval usec: ")); | |||||
Serial.println(1000000.0/sampleRate); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// enable ADC and timer1 interrupts | |||||
void adcStart() { | |||||
// initialize ISR | |||||
adcindex = 1; | |||||
isrBuf = nullptr; | |||||
isrOver = 0; | |||||
isrStop = false; | |||||
// Clear any pending interrupt. | |||||
ADCSRA |= 1 << ADIF; | |||||
// Setup for first pin. | |||||
ADMUX = adcmux[0]; | |||||
ADCSRB = adcsrb[0]; | |||||
ADCSRA = adcsra[0]; | |||||
// Enable timer1 interrupts. | |||||
timerError = false; | |||||
timerFlag = false; | |||||
TCNT1 = 0; | |||||
TIFR1 = 1 << OCF1B; | |||||
TIMSK1 = 1 << OCIE1B; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
inline void adcStop() { | |||||
TIMSK1 = 0; | |||||
ADCSRA = 0; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// Convert binary file to csv file. | |||||
void binaryToCsv() { | |||||
uint8_t lastPct = 0; | |||||
block_t* pd; | |||||
metadata_t* pm; | |||||
uint32_t t0 = millis(); | |||||
// Use fast buffered print class. | |||||
BufferedPrint<file_t, 64> bp(&csvFile); | |||||
block_t binBuffer[FIFO_DIM]; | |||||
assert(sizeof(block_t) == sizeof(metadata_t)); | |||||
binFile.rewind(); | |||||
uint32_t tPct = millis(); | |||||
bool doMeta = true; | |||||
while (!Serial.available()) { | |||||
pd = binBuffer; | |||||
int nb = binFile.read(binBuffer, sizeof(binBuffer)); | |||||
if (nb < 0) { | |||||
error("read binFile failed"); | |||||
} | |||||
size_t nd = nb/sizeof(block_t); | |||||
if (nd < 1) { | |||||
break; | |||||
} | |||||
if (doMeta) { | |||||
doMeta = false; | |||||
pm = (metadata_t*)pd++; | |||||
if (PIN_COUNT != pm->pinCount) { | |||||
error("Invalid pinCount"); | |||||
} | |||||
bp.print(F("Interval,")); | |||||
float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency; | |||||
bp.print(intervalMicros, 4); | |||||
bp.println(F(",usec")); | |||||
for (uint8_t i = 0; i < PIN_COUNT; i++) { | |||||
if (i) { | |||||
bp.print(','); | |||||
} | |||||
bp.print(F("pin")); | |||||
bp.print(pm->pinNumber[i]); | |||||
} | |||||
bp.println(); | |||||
if (nd-- == 1) { | |||||
break; | |||||
} | |||||
} | |||||
for (size_t i = 0; i < nd; i++, pd++) { | |||||
if (pd->overrun) { | |||||
bp.print(F("OVERRUN,")); | |||||
bp.println(pd->overrun); | |||||
} | |||||
for (size_t j = 0; j < pd->count; j += PIN_COUNT) { | |||||
for (size_t i = 0; i < PIN_COUNT; i++) { | |||||
if (!bp.printField(pd->data[i + j], i == (PIN_COUNT-1) ? '\n' : ',')) { | |||||
error("printField failed"); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
if ((millis() - tPct) > 1000) { | |||||
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100); | |||||
if (pct != lastPct) { | |||||
tPct = millis(); | |||||
lastPct = pct; | |||||
Serial.print(pct, DEC); | |||||
Serial.println('%'); | |||||
} | |||||
} | |||||
} | |||||
if (!bp.sync() || !csvFile.close()) { | |||||
error("close csvFile failed"); | |||||
} | |||||
Serial.print(F("Done: ")); | |||||
Serial.print(0.001*(millis() - t0)); | |||||
Serial.println(F(" Seconds")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void createBinFile() { | |||||
binFile.close(); | |||||
while (sd.exists(binName)) { | |||||
char* p = strchr(binName, '.'); | |||||
if (!p) { | |||||
error("no dot in filename"); | |||||
} | |||||
while (true) { | |||||
p--; | |||||
if (p < binName || *p < '0' || *p > '9') { | |||||
error("Can't create file name"); | |||||
} | |||||
if (p[0] != '9') { | |||||
p[0]++; | |||||
break; | |||||
} | |||||
p[0] = '0'; | |||||
} | |||||
} | |||||
Serial.print(F("Opening: ")); | |||||
Serial.println(binName); | |||||
if (!binFile.open(binName, O_RDWR | O_CREAT)) { | |||||
error("open binName failed"); | |||||
} | |||||
Serial.print(F("Allocating: ")); | |||||
Serial.print(MAX_FILE_SIZE_MiB); | |||||
Serial.println(F(" MiB")); | |||||
if (!binFile.preAllocate(MAX_FILE_SIZE)) { | |||||
error("preAllocate failed"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
bool createCsvFile() { | |||||
char csvName[NAME_DIM]; | |||||
if (!binFile.isOpen()) { | |||||
Serial.println(F("No current binary file")); | |||||
return false; | |||||
} | |||||
binFile.getName(csvName, sizeof(csvName)); | |||||
char* dot = strchr(csvName, '.'); | |||||
if (!dot) { | |||||
error("no dot in binName"); | |||||
} | |||||
strcpy(dot + 1, "csv"); | |||||
if (!csvFile.open(csvName, O_WRONLY|O_CREAT|O_TRUNC)) { | |||||
error("open csvFile failed"); | |||||
} | |||||
Serial.print(F("Writing: ")); | |||||
Serial.print(csvName); | |||||
Serial.println(F(" - type any character to stop")); | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// log data | |||||
void logData() { | |||||
uint32_t t0; | |||||
uint32_t t1; | |||||
uint32_t overruns =0; | |||||
uint32_t count = 0; | |||||
uint32_t maxLatencyUsec = 0; | |||||
size_t maxFifoUse = 0; | |||||
block_t fifoBuffer[FIFO_DIM]; | |||||
adcInit((metadata_t*)fifoBuffer); | |||||
// Write metadata. | |||||
if (sizeof(metadata_t) != binFile.write(fifoBuffer, sizeof(metadata_t))) { | |||||
error("Write metadata failed"); | |||||
} | |||||
fifoCount = 0; | |||||
fifoHead = 0; | |||||
fifoTail = 0; | |||||
fifoData = fifoBuffer; | |||||
// Initialize all blocks to save ISR overhead. | |||||
memset(fifoBuffer, 0, sizeof(fifoBuffer)); | |||||
Serial.println(F("Logging - type any character to stop")); | |||||
// Wait for Serial Idle. | |||||
Serial.flush(); | |||||
delay(10); | |||||
t0 = millis(); | |||||
t1 = t0; | |||||
// Start logging interrupts. | |||||
adcStart(); | |||||
while (1) { | |||||
uint32_t m; | |||||
noInterrupts(); | |||||
size_t tmpFifoCount = fifoCount; | |||||
interrupts(); | |||||
if (tmpFifoCount) { | |||||
block_t* pBlock = fifoData + fifoTail; | |||||
// Write block to SD. | |||||
m = micros(); | |||||
if (sizeof(block_t) != binFile.write(pBlock, sizeof(block_t))) { | |||||
error("write data failed"); | |||||
} | |||||
m = micros() - m; | |||||
t1 = millis(); | |||||
if (m > maxLatencyUsec) { | |||||
maxLatencyUsec = m; | |||||
} | |||||
if (tmpFifoCount >maxFifoUse) { | |||||
maxFifoUse = tmpFifoCount; | |||||
} | |||||
count += pBlock->count; | |||||
// Add overruns and possibly light LED. | |||||
if (pBlock->overrun) { | |||||
overruns += pBlock->overrun; | |||||
if (ERROR_LED_PIN >= 0) { | |||||
digitalWrite(ERROR_LED_PIN, HIGH); | |||||
} | |||||
} | |||||
// Initialize empty block to save ISR overhead. | |||||
pBlock->count = 0; | |||||
pBlock->overrun = 0; | |||||
fifoTail = fifoTail < (FIFO_DIM - 1) ? fifoTail + 1 : 0; | |||||
noInterrupts(); | |||||
fifoCount--; | |||||
interrupts(); | |||||
if (binFile.curPosition() >= MAX_FILE_SIZE) { | |||||
// File full so stop ISR calls. | |||||
adcStop(); | |||||
break; | |||||
} | |||||
} | |||||
if (timerError) { | |||||
error("Missed timer event - rate too high"); | |||||
} | |||||
if (Serial.available()) { | |||||
// Stop ISR interrupts. | |||||
isrStop = true; | |||||
} | |||||
if (fifoCount == 0 && !adcActive()) { | |||||
break; | |||||
} | |||||
} | |||||
Serial.println(); | |||||
// Truncate file if recording stopped early. | |||||
if (binFile.curPosition() < MAX_FILE_SIZE) { | |||||
Serial.println(F("Truncating file")); | |||||
Serial.flush(); | |||||
if (!binFile.truncate()) { | |||||
error("Can't truncate file"); | |||||
} | |||||
} | |||||
Serial.print(F("Max write latency usec: ")); | |||||
Serial.println(maxLatencyUsec); | |||||
Serial.print(F("Record time sec: ")); | |||||
Serial.println(0.001*(t1 - t0), 3); | |||||
Serial.print(F("Sample count: ")); | |||||
Serial.println(count/PIN_COUNT); | |||||
Serial.print(F("Overruns: ")); | |||||
Serial.println(overruns); | |||||
Serial.print(F("FIFO_DIM: ")); | |||||
Serial.println(FIFO_DIM); | |||||
Serial.print(F("maxFifoUse: ")); | |||||
Serial.println(maxFifoUse + 1); // include ISR use. | |||||
Serial.println(F("Done")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void openBinFile() { | |||||
char name[NAME_DIM]; | |||||
serialClearInput(); | |||||
Serial.println(F("Enter file name")); | |||||
if (!serialReadLine(name, sizeof(name))) { | |||||
return; | |||||
} | |||||
if (!sd.exists(name)) { | |||||
Serial.println(name); | |||||
Serial.println(F("File does not exist")); | |||||
return; | |||||
} | |||||
binFile.close(); | |||||
if (!binFile.open(name, O_RDWR)) { | |||||
Serial.println(name); | |||||
Serial.println(F("open failed")); | |||||
return; | |||||
} | |||||
Serial.println(F("File opened")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// Print data file to Serial | |||||
void printData() { | |||||
block_t buf; | |||||
if (!binFile.isOpen()) { | |||||
Serial.println(F("No current binary file")); | |||||
return; | |||||
} | |||||
binFile.rewind(); | |||||
if (binFile.read(&buf , sizeof(buf)) != sizeof(buf)) { | |||||
error("Read metadata failed"); | |||||
} | |||||
Serial.println(F("Type any character to stop")); | |||||
delay(1000); | |||||
while (!Serial.available() && | |||||
binFile.read(&buf , sizeof(buf)) == sizeof(buf)) { | |||||
if (buf.count == 0) { | |||||
break; | |||||
} | |||||
if (buf.overrun) { | |||||
Serial.print(F("OVERRUN,")); | |||||
Serial.println(buf.overrun); | |||||
} | |||||
for (size_t i = 0; i < buf.count; i++) { | |||||
Serial.print(buf.data[i], DEC); | |||||
if ((i+1)%PIN_COUNT) { | |||||
Serial.print(','); | |||||
} else { | |||||
Serial.println(); | |||||
} | |||||
} | |||||
} | |||||
Serial.println(F("Done")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void serialClearInput() { | |||||
do { | |||||
delay(10); | |||||
} while (Serial.read() >= 0); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
bool serialReadLine(char* str, size_t size) { | |||||
size_t n = 0; | |||||
while(!Serial.available()) { | |||||
} | |||||
while (true) { | |||||
int c = Serial.read(); | |||||
if (c < ' ') break; | |||||
str[n++] = c; | |||||
if (n >= size) { | |||||
Serial.println(F("input too long")); | |||||
return false; | |||||
} | |||||
uint32_t m = millis(); | |||||
while (!Serial.available() && (millis() - m) < 100){} | |||||
if (!Serial.available()) break; | |||||
} | |||||
str[n] = 0; | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup(void) { | |||||
if (ERROR_LED_PIN >= 0) { | |||||
pinMode(ERROR_LED_PIN, OUTPUT); | |||||
} | |||||
Serial.begin(9600); | |||||
while(!Serial) {} | |||||
Serial.println(F("Type any character to begin.")); | |||||
while(!Serial.available()) {} | |||||
FillStack(); | |||||
// Read the first sample pin to init the ADC. | |||||
analogRead(PIN_LIST[0]); | |||||
#if !ENABLE_DEDICATED_SPI | |||||
Serial.println(F( | |||||
"\nFor best performance edit SdFatConfig.h\n" | |||||
"and set ENABLE_DEDICATED_SPI nonzero")); | |||||
#endif // !ENABLE_DEDICATED_SPI | |||||
// Initialize SD. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
error("sd.begin failed"); | |||||
} | |||||
#if USE_RTC | |||||
if (!rtc.begin()) { | |||||
error("rtc.begin failed"); | |||||
} | |||||
if (!rtc.isrunning()) { | |||||
// Set RTC to sketch compile date & time. | |||||
// rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); | |||||
error("RTC is NOT running!"); | |||||
} else { | |||||
Serial.println(F("RTC is running")); | |||||
} | |||||
// Set callback | |||||
FsDateTime::setCallback(dateTime); | |||||
#endif // USE_RTC | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop(void) { | |||||
printUnusedStack(); | |||||
// Read any Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
Serial.println(); | |||||
Serial.println(F("type:")); | |||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("c - convert file to csv")); | |||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("p - print data to Serial")); | |||||
Serial.println(F("r - record ADC data")); | |||||
while(!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
char c = tolower(Serial.read()); | |||||
Serial.println(); | |||||
if (ERROR_LED_PIN >= 0) { | |||||
digitalWrite(ERROR_LED_PIN, LOW); | |||||
} | |||||
// Read any Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
if (c == 'b') { | |||||
openBinFile(); | |||||
} else if (c == 'c') { | |||||
if (createCsvFile()) { | |||||
binaryToCsv(); | |||||
} | |||||
} else if (c == 'l') { | |||||
Serial.println(F("ls:")); | |||||
sd.ls(&Serial, LS_DATE | LS_SIZE); | |||||
} else if (c == 'p') { | |||||
printData(); | |||||
} else if (c == 'r') { | |||||
createBinFile(); | |||||
logData(); | |||||
} else { | |||||
Serial.println(F("Invalid entry")); | |||||
} | |||||
} | |||||
#else // __AVR__ | |||||
#error This program is only for AVR. | |||||
#endif // __AVR__ |
// A simple read/write example for SD.h. | |||||
// Mostly from the SD.h ReadWrite example. | |||||
// | |||||
// Your SD must be formatted FAT16/FAT32. | |||||
// | |||||
// Set USE_SD_H nonzero to use SD.h. | |||||
// Set USE_SD_H zero to use SdFat.h. | |||||
// | |||||
#define USE_SD_H 0 | |||||
// | |||||
#if USE_SD_H | |||||
#include <SD.h> | |||||
#else // USE_SD_H | |||||
#include "SdFat.h" | |||||
SdFat SD; | |||||
#endif // USE_SD_H | |||||
// Modify SD_CS_PIN for your board. | |||||
// For Teensy 3.6 and SdFat.h use BUILTIN_SDCARD. | |||||
#define SD_CS_PIN SS | |||||
File myFile; | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) {} | |||||
#if USE_SD_H | |||||
Serial.println(F("Using SD.h. Set USE_SD_H zero to use SdFat.h.")); | |||||
#else // USE_SD_H | |||||
Serial.println(F("Using SdFat.h. Set USE_SD_H nonzero to use SD.h.")); | |||||
#endif // USE_SD_H | |||||
Serial.println(F("\nType any character to begin.")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
Serial.print("Initializing SD card..."); | |||||
if (!SD.begin(SD_CS_PIN)) { | |||||
Serial.println("initialization failed!"); | |||||
return; | |||||
} | |||||
Serial.println("initialization done."); | |||||
// open the file. | |||||
myFile = SD.open("test.txt", FILE_WRITE); | |||||
// if the file opened okay, write to it: | |||||
if (myFile) { | |||||
Serial.print("Writing to test.txt..."); | |||||
myFile.println("testing 1, 2, 3."); | |||||
// close the file: | |||||
myFile.close(); | |||||
Serial.println("done."); | |||||
} else { | |||||
// if the file didn't open, print an error: | |||||
Serial.println("error opening test.txt"); | |||||
} | |||||
// re-open the file for reading: | |||||
myFile = SD.open("test.txt"); | |||||
if (myFile) { | |||||
Serial.println("test.txt:"); | |||||
// read from the file until there's nothing else in it: | |||||
while (myFile.available()) { | |||||
Serial.write(myFile.read()); | |||||
} | |||||
// close the file: | |||||
myFile.close(); | |||||
} else { | |||||
// if the file didn't open, print an error: | |||||
Serial.println("error opening test.txt"); | |||||
} | |||||
} | |||||
void loop() { | |||||
// nothing happens after setup | |||||
} |
// Test and benchmark of the fast bufferedPrint class. | |||||
// | |||||
// Mainly for AVR but may improve print performance with other CPUs. | |||||
#include "SdFat.h" | |||||
#include "BufferedPrint.h" | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
typedef File file_t; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
typedef File32 file_t; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
typedef ExFile file_t; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
typedef FsFile file_t; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
// number of lines to print | |||||
const uint16_t N_PRINT = 20000; | |||||
//------------------------------------------------------------------------------ | |||||
void benchmark() { | |||||
file_t file; | |||||
BufferedPrint<file_t, 64> bp; | |||||
// do write test | |||||
Serial.println(); | |||||
for (int test = 0; test < 6; test++) { | |||||
char fileName[13] = "bench0.txt"; | |||||
fileName[5] = '0' + test; | |||||
// open or create file - truncate existing file. | |||||
if (!file.open(fileName, O_RDWR | O_CREAT | O_TRUNC)) { | |||||
sd.errorHalt(&Serial, F("open failed")); | |||||
} | |||||
if (test & 1) { | |||||
bp.begin(&file); | |||||
} | |||||
uint32_t t = millis(); | |||||
switch(test) { | |||||
case 0: | |||||
Serial.println(F("Test of println(uint16_t)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
file.println(i); | |||||
} | |||||
break; | |||||
case 1: | |||||
Serial.println(F("Test of printField(uint16_t, char)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
bp.printField(i, '\n'); | |||||
} | |||||
break; | |||||
case 2: | |||||
Serial.println(F("Test of println(uint32_t)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
file.println(12345678UL + i); | |||||
} | |||||
break; | |||||
case 3: | |||||
Serial.println(F("Test of printField(uint32_t, char)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
bp.printField(12345678UL + i, '\n'); | |||||
} | |||||
break; | |||||
case 4: | |||||
Serial.println(F("Test of println(double)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
file.println((double)0.01*i); | |||||
} | |||||
break; | |||||
case 5: | |||||
Serial.println(F("Test of printField(double, char)")); | |||||
for (uint16_t i = 0; i < N_PRINT; i++) { | |||||
bp.printField((double)0.01*i, '\n'); | |||||
} | |||||
break; | |||||
} | |||||
if (test & 1) { | |||||
bp.sync(); | |||||
} | |||||
if (file.getWriteError()) { | |||||
sd.errorHalt(&Serial, F("write failed")); | |||||
} | |||||
double s = file.fileSize(); | |||||
file.close(); | |||||
t = millis() - t; | |||||
Serial.print(F("Time ")); | |||||
Serial.print(0.001*t, 3); | |||||
Serial.println(F(" sec")); | |||||
Serial.print(F("File size ")); | |||||
Serial.print(0.001*s); | |||||
Serial.println(F(" KB")); | |||||
Serial.print(F("Write ")); | |||||
Serial.print(s/t); | |||||
Serial.println(F(" KB/sec")); | |||||
Serial.println(); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void testMemberFunctions() { | |||||
BufferedPrint<Print, 32> bp(&Serial); | |||||
char c = 'c'; // char | |||||
//#define BASIC_TYPES | |||||
#ifdef BASIC_TYPES | |||||
signed char sc = -1; // signed 8-bit | |||||
unsigned char uc = 1; // unsiged 8-bit | |||||
signed short ss = -2; // signed 16-bit | |||||
unsigned short us = 2; // unsigned 16-bit | |||||
signed long sl = -4; // signed 32-bit | |||||
unsigned long ul = 4; // unsigned 32-bit | |||||
#else // BASIC_TYPES | |||||
int8_t sc = -1; // signed 8-bit | |||||
uint8_t uc = 1; // unsiged 8-bit | |||||
int16_t ss = -2; // signed 16-bit | |||||
uint16_t us = 2; // unsigned 16-bit | |||||
int32_t sl = -4; // signed 32-bit | |||||
uint32_t ul = 4; // unsigned 32-bit | |||||
#endif // BASIC_TYPES | |||||
float f = -1.234; | |||||
double d = -5.678; | |||||
bp.println(); | |||||
bp.println("Test print()"); | |||||
bp.print(c); | |||||
bp.println(); | |||||
bp.print("string"); | |||||
bp.println(); | |||||
bp.print(F("flash")); | |||||
bp.println(); | |||||
bp.print(sc); | |||||
bp.println(); | |||||
bp.print(uc); | |||||
bp.println(); | |||||
bp.print(ss); | |||||
bp.println(); | |||||
bp.print(us); | |||||
bp.println(); | |||||
bp.print(sl); | |||||
bp.println(); | |||||
bp.print(ul); | |||||
bp.println(); | |||||
bp.print(f); | |||||
bp.println(); | |||||
bp.print(d); | |||||
bp.println(); | |||||
bp.println(); | |||||
bp.println("Test println()"); | |||||
bp.println(c); | |||||
bp.println("string"); | |||||
bp.println(F("flash")); | |||||
bp.println(sc); | |||||
bp.println(uc); | |||||
bp.println(ss); | |||||
bp.println(us); | |||||
bp.println(sl); | |||||
bp.println(ul); | |||||
bp.println(f); | |||||
bp.println(d); | |||||
bp.println(); | |||||
bp.println("Test printField()"); | |||||
bp.printField(c, ','); | |||||
bp.printField("string", ','); | |||||
bp.printField(F("flash"), ','); | |||||
bp.printField(sc, ','); | |||||
bp.printField(uc, ','); | |||||
bp.printField(ss, ','); | |||||
bp.printField(us, ','); | |||||
bp.printField(sl, ','); | |||||
bp.printField(ul, ','); | |||||
bp.printField(f, ','); | |||||
bp.printField(d, '\n'); | |||||
bp.sync(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) {} | |||||
Serial.println("Type any character to begin."); | |||||
while(!Serial.available()) {} | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
Serial.println(); | |||||
Serial.println(F("Test member funcions:")); | |||||
testMemberFunctions(); | |||||
Serial.println(); | |||||
Serial.println(F("Benchmark performance for uint16_t, uint32_t, and double:")); | |||||
benchmark(); | |||||
Serial.println("Done"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
} |
/* | /* | ||||
* Example use of chdir(), ls(), mkdir(), and rmdir(). | * Example use of chdir(), ls(), mkdir(), and rmdir(). | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
// SD card chip select pin. | |||||
const uint8_t chipSelect = SS; | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// File system object. | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | SdFat sd; | ||||
// Use for file creation in folders. | |||||
SdFile file; | |||||
File file; | |||||
File root; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
File32 root; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
ExFile root; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
FsFile root; | |||||
#endif // SD_FAT_TYPE | |||||
// Create a Serial output stream. | // Create a Serial output stream. | ||||
ArduinoOutStream cout(Serial); | ArduinoOutStream cout(Serial); | ||||
// Buffer for Serial input. | |||||
char cinBuf[40]; | |||||
// Create a serial input stream. | |||||
ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf)); | |||||
//============================================================================== | |||||
// Error messages stored in flash. | |||||
#define error(msg) sd.errorHalt(F(msg)) | |||||
//------------------------------------------------------------------------------ | |||||
// Store error strings in flash to save RAM. | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
delay(1000); | delay(1000); | ||||
cout << F("Type any character to start\n"); | cout << F("Type any character to start\n"); | ||||
// Wait for input line and discard. | |||||
cin.readline(); | |||||
cout << endl; | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
// Initialize the SD card. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | } | ||||
if (sd.exists("Folder1") | |||||
if (sd.exists("Folder1") | |||||
|| sd.exists("Folder1/file1.txt") | || sd.exists("Folder1/file1.txt") | ||||
|| sd.exists("Folder1/File2.txt")) { | || sd.exists("Folder1/File2.txt")) { | ||||
error("Please remove existing Folder1, file1.txt, and File2.txt"); | error("Please remove existing Folder1, file1.txt, and File2.txt"); | ||||
} | } | ||||
int rootFileCount = 0; | int rootFileCount = 0; | ||||
sd.vwd()->rewind(); | |||||
while (file.openNext(sd.vwd(), O_RDONLY)) { | |||||
if (!root.open("/")) { | |||||
error("open root"); | |||||
} | |||||
while (file.openNext(&root, O_RDONLY)) { | |||||
if (!file.isHidden()) { | if (!file.isHidden()) { | ||||
rootFileCount++; | rootFileCount++; | ||||
} | } | ||||
if (!sd.rmdir("Folder1")) { | if (!sd.rmdir("Folder1")) { | ||||
error("rmdir for Folder1 failed\n"); | error("rmdir for Folder1 failed\n"); | ||||
} | } | ||||
cout << F("\nFolder1 removed.\n"); | cout << F("\nFolder1 removed.\n"); | ||||
cout << F("\nList of files on the SD.\n"); | cout << F("\nList of files on the SD.\n"); | ||||
sd.ls(LS_R); | sd.ls(LS_R); |
// Force exFAT formatting for all SD cards larger than 512MB. | |||||
#include "SdFat.h" | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Select fastest interface. | |||||
#if HAS_SDIO_CLASS | |||||
// SD config for Teensy 3.6 SDIO. | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
//#define SD_CONFIG SdioConfig(DMA_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
SdExFat sd; | |||||
//------------------------------------------------------------------------------ | |||||
void errorHalt() { | |||||
sd.printSdError(&Serial); | |||||
SysCall::halt(); | |||||
} | |||||
#define error(s) (Serial.println(F(s)),errorHalt()) | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) {} | |||||
Serial.println(F("Type any character to begin")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
do { | |||||
delay(10); | |||||
} while(Serial.read() >= 0); | |||||
Serial.println(); | |||||
Serial.println(F( | |||||
"Your SD will be formated exFAT.\r\n" | |||||
"All data on the SD will be lost.\r\n" | |||||
"Type 'Y' to continue.\r\n")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
if (Serial.read() != 'Y') { | |||||
Serial.println(F("Exiting, 'Y' not typed.")); | |||||
return; | |||||
} | |||||
if (!sd.cardBegin(SD_CONFIG)) { | |||||
error("cardBegin failed"); | |||||
} | |||||
if(!sd.format(&Serial)) { | |||||
error("format failed"); | |||||
} | |||||
if (!sd.volumeBegin()) { | |||||
error("volumeBegin failed"); | |||||
} | |||||
Serial.print(F("Bytes per cluster: ")); | |||||
Serial.println(sd.bytesPerCluster()); | |||||
Serial.println(F("Done")); | |||||
} | |||||
void loop() { | |||||
} |
// Avoid IDE problems by defining struct in septate .h file. | |||||
// Pad record so size is a power of two for best write performance. | |||||
#ifndef ExFatLogger_h | |||||
#define ExFatLogger_h | |||||
const size_t ADC_COUNT = 4; | |||||
struct data_t { | |||||
uint16_t adc[ADC_COUNT]; | |||||
}; | |||||
#endif // ExFatLogger_h |
// Example to demonstrate write latency for preallocated exFAT files. | |||||
// I suggest you write a PC program to convert very large bin files. | |||||
// | |||||
// If an exFAT SD is required, the ExFatFormatter example will format | |||||
// smaller cards with an exFAT file system. | |||||
// | |||||
// The maximum data rate will depend on the quality of your SD, | |||||
// the size of the FIFO, and using dedicated SPI. | |||||
#include "SdFat.h" | |||||
#include "FreeStack.h" | |||||
#include "ExFatLogger.h" | |||||
//------------------------------------------------------------------------------ | |||||
// This example was designed for exFAT but will support FAT16/FAT32. | |||||
// Note: Uno will not support SD_FAT_TYPE = 3. | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 2 | |||||
//------------------------------------------------------------------------------ | |||||
// Interval between data records in microseconds. | |||||
// Try 250 with Teensy 3.6, Due, or STM32. | |||||
// Try 2000 with AVR boards. | |||||
// Try 4000 with SAMD Zero boards. | |||||
const uint32_t LOG_INTERVAL_USEC = 2000; | |||||
// Set USE_RTC nonzero for file timestamps. | |||||
// RAM use will be marginal on Uno with RTClib. | |||||
#define USE_RTC 0 | |||||
#if USE_RTC | |||||
#include "RTClib.h" | |||||
#endif // USE_RTC | |||||
// LED to light if overruns occur. | |||||
#define ERROR_LED_PIN -1 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// FIFO SIZE - 512 byte sectors. Modify for your board. | |||||
#ifdef __AVR_ATmega328P__ | |||||
// Use 512 bytes for 328 boards. | |||||
#define FIFO_SIZE_SECTORS 1 | |||||
#elif defined(__AVR__) | |||||
// Use 2 KiB for other AVR boards. | |||||
#define FIFO_SIZE_SECTORS 4 | |||||
#else // __AVR_ATmega328P__ | |||||
// Use 8 KiB for non-AVR boards. | |||||
#define FIFO_SIZE_SECTORS 16 | |||||
#endif // __AVR_ATmega328P__ | |||||
// Preallocate 1GiB file. | |||||
const uint32_t PREALLOCATE_SIZE_MiB = 1024UL; | |||||
// Select the fastest interface. Assumes no other SPI devices. | |||||
#if ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // ENABLE_DEDICATED_SPI | |||||
// Save SRAM if 328. | |||||
#ifdef __AVR_ATmega328P__ | |||||
#include "MinimumSerial.h" | |||||
MinimumSerial MinSerial; | |||||
#define Serial MinSerial | |||||
#endif // __AVR_ATmega328P__ | |||||
//============================================================================== | |||||
// Replace logRecord(), printRecord(), and ExFatLogger.h for your sensors. | |||||
void logRecord(data_t* data, uint16_t overrun) { | |||||
if (overrun) { | |||||
// Add one since this record has no adc data. Could add overrun field. | |||||
overrun++; | |||||
data->adc[0] = 0X8000 | overrun; | |||||
} else { | |||||
for (size_t i = 0; i < ADC_COUNT; i++) { | |||||
data->adc[i] = analogRead(i); | |||||
} | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printRecord(Print* pr, data_t* data) { | |||||
static uint32_t nr = 0; | |||||
if (!data) { | |||||
pr->print(F("LOG_INTERVAL_USEC,")); | |||||
pr->println(LOG_INTERVAL_USEC); | |||||
pr->print(F("rec#")); | |||||
for (size_t i = 0; i < ADC_COUNT; i++) { | |||||
pr->print(F(",adc")); | |||||
pr->print(i); | |||||
} | |||||
pr->println(); | |||||
nr = 0; | |||||
return; | |||||
} | |||||
if (data->adc[0] & 0X8000) { | |||||
uint16_t n = data->adc[0] & 0X7FFF; | |||||
nr += n; | |||||
pr->print(F("-1,")); | |||||
pr->print(n); | |||||
pr->println(F(",overuns")); | |||||
} else { | |||||
pr->print(nr++); | |||||
for (size_t i = 0; i < ADC_COUNT; i++) { | |||||
pr->write(','); | |||||
pr->print(data->adc[i]); | |||||
} | |||||
pr->println(); | |||||
} | |||||
} | |||||
//============================================================================== | |||||
const uint64_t PREALLOCATE_SIZE = (uint64_t)PREALLOCATE_SIZE_MiB << 20; | |||||
// Max length of file name including zero byte. | |||||
#define FILE_NAME_DIM 40 | |||||
// Max number of records to buffer while SD is busy. | |||||
const size_t FIFO_DIM = 512*FIFO_SIZE_SECTORS/sizeof(data_t); | |||||
#if SD_FAT_TYPE == 0 | |||||
typedef SdFat sd_t; | |||||
typedef File file_t; | |||||
#elif SD_FAT_TYPE == 1 | |||||
typedef SdFat32 sd_t; | |||||
typedef File32 file_t; | |||||
#elif SD_FAT_TYPE == 2 | |||||
typedef SdExFat sd_t; | |||||
typedef ExFile file_t; | |||||
#elif SD_FAT_TYPE == 3 | |||||
typedef SdFs sd_t; | |||||
typedef FsFile file_t; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
sd_t sd; | |||||
file_t binFile; | |||||
file_t csvFile; | |||||
// You may modify the filename. Digits before the dot are file versions. | |||||
char binName[] = "ExFatLogger00.bin"; | |||||
//------------------------------------------------------------------------------ | |||||
#if USE_RTC | |||||
RTC_DS1307 rtc; | |||||
// Call back for file timestamps. Only called for file create and sync(). | |||||
void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) { | |||||
DateTime now = rtc.now(); | |||||
// Return date using FS_DATE macro to format fields. | |||||
*date = FS_DATE(now.year(), now.month(), now.day()); | |||||
// Return time using FS_TIME macro to format fields. | |||||
*time = FS_TIME(now.hour(), now.minute(), now.second()); | |||||
// Return low time bits in units of 10 ms. | |||||
*ms10 = now.second() & 1 ? 100 : 0; | |||||
} | |||||
#endif // USE_RTC | |||||
//------------------------------------------------------------------------------ | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
#define dbgAssert(e) ((e) ? (void)0 : error("assert " #e)) | |||||
//----------------------------------------------------------------------------- | |||||
// Convert binary file to csv file. | |||||
void binaryToCsv() { | |||||
uint8_t lastPct = 0; | |||||
uint32_t t0 = millis(); | |||||
data_t binData[FIFO_DIM]; | |||||
if (!binFile.seekSet(512)) { | |||||
error("binFile.seek faile"); | |||||
} | |||||
uint32_t tPct = millis(); | |||||
printRecord(&csvFile, nullptr); | |||||
while (!Serial.available() && binFile.available()) { | |||||
int nb = binFile.read(binData, sizeof(binData)); | |||||
if (nb <= 0 ) { | |||||
error("read binFile failed"); | |||||
} | |||||
size_t nr = nb/sizeof(data_t); | |||||
for (size_t i = 0; i < nr; i++) { | |||||
printRecord(&csvFile, &binData[i]); | |||||
} | |||||
if ((millis() - tPct) > 1000) { | |||||
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100); | |||||
if (pct != lastPct) { | |||||
tPct = millis(); | |||||
lastPct = pct; | |||||
Serial.print(pct, DEC); | |||||
Serial.println('%'); | |||||
csvFile.sync(); | |||||
} | |||||
} | |||||
if (Serial.available()) { | |||||
break; | |||||
} | |||||
} | |||||
csvFile.close(); | |||||
Serial.print(F("Done: ")); | |||||
Serial.print(0.001*(millis() - t0)); | |||||
Serial.println(F(" Seconds")); | |||||
} | |||||
//------------------------------------------------------------------------------- | |||||
void createBinFile() { | |||||
binFile.close(); | |||||
while (sd.exists(binName)) { | |||||
char* p = strchr(binName, '.'); | |||||
if (!p) { | |||||
error("no dot in filename"); | |||||
} | |||||
while (true) { | |||||
p--; | |||||
if (p < binName || *p < '0' || *p > '9') { | |||||
error("Can't create file name"); | |||||
} | |||||
if (p[0] != '9') { | |||||
p[0]++; | |||||
break; | |||||
} | |||||
p[0] = '0'; | |||||
} | |||||
} | |||||
if (!binFile.open(binName, O_RDWR | O_CREAT)) { | |||||
error("open binName failed"); | |||||
} | |||||
Serial.println(binName); | |||||
if (!binFile.preAllocate(PREALLOCATE_SIZE)) { | |||||
error("preAllocate failed"); | |||||
} | |||||
Serial.print(F("preAllocated: ")); | |||||
Serial.print(PREALLOCATE_SIZE_MiB); | |||||
Serial.println(F(" MiB")); | |||||
} | |||||
//------------------------------------------------------------------------------- | |||||
bool createCsvFile() { | |||||
char csvName[FILE_NAME_DIM]; | |||||
if (!binFile.isOpen()) { | |||||
Serial.println(F("No current binary file")); | |||||
return false; | |||||
} | |||||
// Create a new csvFile. | |||||
binFile.getName(csvName, sizeof(csvName)); | |||||
char* dot = strchr(csvName, '.'); | |||||
if (!dot) { | |||||
error("no dot in filename"); | |||||
} | |||||
strcpy(dot + 1, "csv"); | |||||
if (!csvFile.open(csvName, O_WRONLY | O_CREAT | O_TRUNC)) { | |||||
error("open csvFile failed"); | |||||
} | |||||
serialClearInput(); | |||||
Serial.print(F("Writing: ")); | |||||
Serial.print(csvName); | |||||
Serial.println(F(" - type any character to stop")); | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------- | |||||
void logData() { | |||||
int32_t delta; // Jitter in log time. | |||||
int32_t maxDelta = 0; | |||||
uint32_t maxLogMicros = 0; | |||||
uint32_t maxWriteMicros = 0; | |||||
size_t maxFifoUse = 0; | |||||
size_t fifoCount = 0; | |||||
size_t fifoHead = 0; | |||||
size_t fifoTail = 0; | |||||
uint16_t overrun = 0; | |||||
uint16_t maxOverrun = 0; | |||||
uint32_t totalOverrun = 0; | |||||
uint32_t fifoBuf[128*FIFO_SIZE_SECTORS]; | |||||
data_t* fifoData = (data_t*)fifoBuf; | |||||
// Write dummy sector to start multi-block write. | |||||
dbgAssert(sizeof(fifoBuf) >= 512); | |||||
memset(fifoBuf, 0, sizeof(fifoBuf)); | |||||
if (binFile.write(fifoBuf, 512) != 512) { | |||||
error("write first sector failed"); | |||||
} | |||||
serialClearInput(); | |||||
Serial.println(F("Type any character to stop")); | |||||
// Wait until SD is not busy. | |||||
while (sd.card()->isBusy()) {} | |||||
// Start time for log file. | |||||
uint32_t m = millis(); | |||||
// Time to log next record. | |||||
uint32_t logTime = micros(); | |||||
while (true) { | |||||
// Time for next data record. | |||||
logTime += LOG_INTERVAL_USEC; | |||||
// Wait until time to log data. | |||||
delta = micros() - logTime; | |||||
if (delta > 0) { | |||||
Serial.print(F("delta: ")); | |||||
Serial.println(delta); | |||||
error("Rate too fast"); | |||||
} | |||||
while (delta < 0) { | |||||
delta = micros() - logTime; | |||||
} | |||||
if (fifoCount < FIFO_DIM) { | |||||
uint32_t m = micros(); | |||||
logRecord(fifoData + fifoHead, overrun); | |||||
m = micros() - m; | |||||
if (m > maxLogMicros) { | |||||
maxLogMicros = m; | |||||
} | |||||
fifoHead = fifoHead < (FIFO_DIM - 1) ? fifoHead + 1 : 0; | |||||
fifoCount++; | |||||
if (overrun) { | |||||
if (overrun > maxOverrun) { | |||||
maxOverrun = overrun; | |||||
} | |||||
overrun = 0; | |||||
} | |||||
} else { | |||||
totalOverrun++; | |||||
overrun++; | |||||
if (overrun > 0XFFF) { | |||||
error("too many overruns"); | |||||
} | |||||
if (ERROR_LED_PIN >= 0) { | |||||
digitalWrite(ERROR_LED_PIN, HIGH); | |||||
} | |||||
} | |||||
// Save max jitter. | |||||
if (delta > maxDelta) { | |||||
maxDelta = delta; | |||||
} | |||||
// Write data if SD is not busy. | |||||
if (!sd.card()->isBusy()) { | |||||
size_t nw = fifoHead > fifoTail ? fifoCount : FIFO_DIM - fifoTail; | |||||
// Limit write time by not writing more than 512 bytes. | |||||
const size_t MAX_WRITE = 512/sizeof(data_t); | |||||
if (nw > MAX_WRITE) nw = MAX_WRITE; | |||||
size_t nb = nw*sizeof(data_t); | |||||
uint32_t usec = micros(); | |||||
if (nb != binFile.write(fifoData + fifoTail, nb)) { | |||||
error("write binFile failed"); | |||||
} | |||||
usec = micros() - usec; | |||||
if (usec > maxWriteMicros) { | |||||
maxWriteMicros = usec; | |||||
} | |||||
fifoTail = (fifoTail + nw) < FIFO_DIM ? fifoTail + nw : 0; | |||||
if (fifoCount > maxFifoUse) { | |||||
maxFifoUse = fifoCount; | |||||
} | |||||
fifoCount -= nw; | |||||
if (Serial.available()) { | |||||
break; | |||||
} | |||||
} | |||||
} | |||||
Serial.print(F("\nLog time: ")); | |||||
Serial.print(0.001*(millis() - m)); | |||||
Serial.println(F(" Seconds")); | |||||
binFile.truncate(); | |||||
binFile.sync(); | |||||
Serial.print(("File size: ")); | |||||
// Warning cast used for print since fileSize is uint64_t. | |||||
Serial.print((uint32_t)binFile.fileSize()); | |||||
Serial.println(F(" bytes")); | |||||
Serial.print(F("totalOverrun: ")); | |||||
Serial.println(totalOverrun); | |||||
Serial.print(F("FIFO_DIM: ")); | |||||
Serial.println(FIFO_DIM); | |||||
Serial.print(F("maxFifoUse: ")); | |||||
Serial.println(maxFifoUse); | |||||
Serial.print(F("maxLogMicros: ")); | |||||
Serial.println(maxLogMicros); | |||||
Serial.print(F("maxWriteMicros: ")); | |||||
Serial.println(maxWriteMicros); | |||||
Serial.print(F("Log interval: ")); | |||||
Serial.print(LOG_INTERVAL_USEC); | |||||
Serial.print(F(" micros\nmaxDelta: ")); | |||||
Serial.print(maxDelta); | |||||
Serial.println(F(" micros")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void openBinFile() { | |||||
char name[FILE_NAME_DIM]; | |||||
serialClearInput(); | |||||
Serial.println(F("Enter file name")); | |||||
if (!serialReadLine(name, sizeof(name))) { | |||||
return; | |||||
} | |||||
if (!sd.exists(name)) { | |||||
Serial.println(name); | |||||
Serial.println(F("File does not exist")); | |||||
return; | |||||
} | |||||
binFile.close(); | |||||
if (!binFile.open(name, O_RDONLY)) { | |||||
Serial.println(name); | |||||
Serial.println(F("open failed")); | |||||
return; | |||||
} | |||||
Serial.println(F("File opened")); | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void printData() { | |||||
if (!binFile.isOpen()) { | |||||
Serial.println(F("No current binary file")); | |||||
return; | |||||
} | |||||
// Skip first dummy sector. | |||||
if (!binFile.seekSet(512)) { | |||||
error("seek failed"); | |||||
} | |||||
serialClearInput(); | |||||
Serial.println(F("type any character to stop\n")); | |||||
delay(1000); | |||||
printRecord(&Serial, nullptr); | |||||
while (binFile.available() && !Serial.available()) { | |||||
data_t record; | |||||
if (binFile.read(&record, sizeof(data_t)) != sizeof(data_t)) { | |||||
error("read binFile failed"); | |||||
} | |||||
printRecord(&Serial, &record); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printUnusedStack() { | |||||
#if HAS_UNUSED_STACK | |||||
Serial.print(F("\nUnused stack: ")); | |||||
Serial.println(UnusedStack()); | |||||
#endif // HAS_UNUSED_STACK | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void serialClearInput() { | |||||
do { | |||||
delay(10); | |||||
} while (Serial.read() >= 0); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
bool serialReadLine(char* str, size_t size) { | |||||
size_t n = 0; | |||||
while(!Serial.available()) { | |||||
yield(); | |||||
} | |||||
while (true) { | |||||
int c = Serial.read(); | |||||
if (c < ' ') break; | |||||
str[n++] = c; | |||||
if (n >= size) { | |||||
Serial.println(F("input too long")); | |||||
return false; | |||||
} | |||||
uint32_t m = millis(); | |||||
while (!Serial.available() && (millis() - m) < 100){} | |||||
if (!Serial.available()) break; | |||||
} | |||||
str[n] = 0; | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void testSensor() { | |||||
const uint32_t interval = 200000; | |||||
int32_t diff; | |||||
data_t data; | |||||
serialClearInput(); | |||||
Serial.println(F("\nTesting - type any character to stop\n")); | |||||
delay(1000); | |||||
printRecord(&Serial, nullptr); | |||||
uint32_t m = micros(); | |||||
while (!Serial.available()) { | |||||
m += interval; | |||||
do { | |||||
diff = m - micros(); | |||||
} while (diff > 0); | |||||
logRecord(&data, 0); | |||||
printRecord(&Serial, &data); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
if (ERROR_LED_PIN >= 0) { | |||||
pinMode(ERROR_LED_PIN, OUTPUT); | |||||
digitalWrite(ERROR_LED_PIN, HIGH); | |||||
} | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
delay(1000); | |||||
Serial.println(F("Type any character to begin")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
FillStack(); | |||||
#if !ENABLE_DEDICATED_SPI | |||||
Serial.println(F( | |||||
"\nFor best performance edit SdFatConfig.h\n" | |||||
"and set ENABLE_DEDICATED_SPI nonzero")); | |||||
#endif // !ENABLE_DEDICATED_SPI | |||||
Serial.print(FIFO_DIM); | |||||
Serial.println(F(" FIFO entries will be used.")); | |||||
// Initialize SD. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
#if USE_RTC | |||||
if (!rtc.begin()) { | |||||
error("rtc.begin failed"); | |||||
} | |||||
if (!rtc.isrunning()) { | |||||
// Set RTC to sketch compile date & time. | |||||
// rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); | |||||
error("RTC is NOT running!"); | |||||
} | |||||
// Set callback | |||||
FsDateTime::setCallback(dateTime); | |||||
#endif // USE_RTC | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
printUnusedStack(); | |||||
// Read any Serial data. | |||||
serialClearInput(); | |||||
if (ERROR_LED_PIN >= 0) { | |||||
digitalWrite(ERROR_LED_PIN, LOW); | |||||
} | |||||
Serial.println(); | |||||
Serial.println(F("type: ")); | |||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("c - convert file to csv")); | |||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("p - print data to Serial")); | |||||
Serial.println(F("r - record data")); | |||||
Serial.println(F("t - test without logging")); | |||||
while(!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
char c = tolower(Serial.read()); | |||||
Serial.println(); | |||||
if (c == 'b') { | |||||
openBinFile(); | |||||
} else if (c == 'c') { | |||||
if (createCsvFile()) { | |||||
binaryToCsv(); | |||||
} | |||||
} else if (c == 'l') { | |||||
Serial.println(F("ls:")); | |||||
sd.ls(&Serial, LS_DATE | LS_SIZE); | |||||
} else if (c == 'p') { | |||||
printData(); | |||||
} else if (c == 'r') { | |||||
createBinFile(); | |||||
logData(); | |||||
} else if (c == 't') { | |||||
testSensor(); | |||||
} else { | |||||
Serial.println(F("Invalid entry")); | |||||
} | |||||
} |
// Simple test of Unicode file name. | |||||
// Note: Unicode is only supported by the SdExFat class. | |||||
// No exFAT functions will be defined for char* paths. | |||||
// The SdFs class cannot be used. | |||||
#include "SdFat.h" | |||||
#if USE_UNICODE_NAMES | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Use SPI, SD_CS_PIN, SHARED_SPI, FULL_SPEED. | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN) | |||||
SdExFat sd; | |||||
ExFile file; | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) { | |||||
yield(); | |||||
} | |||||
Serial.println("Type any character to begin"); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
if (!file.open(u"Euros \u20AC test.txt", FILE_WRITE)) { | |||||
Serial.println("file.open failed"); | |||||
return; | |||||
} | |||||
file.println("This is not Unicode"); | |||||
file.close(); | |||||
Serial.println("Done!"); | |||||
} | |||||
void loop() { | |||||
} | |||||
#else // USE_UNICODE_NAMES | |||||
#error USE_UNICODE_NAMES must be nonzero in SdFat/src/ExFatLib/ExFatCongfig.h | |||||
#endif // USE_UNICODE_NAMES |
/* | /* | ||||
* Print size, modify date/time, and name for all files in root. | * Print size, modify date/time, and name for all files in root. | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
// SD default chip select pin. | |||||
const uint8_t chipSelect = SS; | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// file system object | |||||
SdFat sd; | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
SdFile file; | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File dir; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 dir; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile dir; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile dir; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
//------------------------------------------------------------------------------ | |||||
// Store error strings in flash to save RAM. | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
// Initialize the SD. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | } | ||||
// Open next file in root. The volume working directory, vwd, is root. | |||||
// Warning, openNext starts at the current position of sd.vwd() so a | |||||
// rewind may be neccessary in your application. | |||||
sd.vwd()->rewind(); | |||||
while (file.openNext(sd.vwd(), O_RDONLY)) { | |||||
// Open root directory | |||||
if (!dir.open("/")){ | |||||
error("dir.open failed"); | |||||
} | |||||
// Open next file in root. | |||||
// Warning, openNext starts at the current position of dir so a | |||||
// rewind may be necessary in your application. | |||||
while (file.openNext(&dir, O_RDONLY)) { | |||||
file.printFileSize(&Serial); | file.printFileSize(&Serial); | ||||
Serial.write(' '); | Serial.write(' '); | ||||
file.printModifyDateTime(&Serial); | file.printModifyDateTime(&Serial); | ||||
Serial.println(); | Serial.println(); | ||||
file.close(); | file.close(); | ||||
} | } | ||||
Serial.println("Done!"); | |||||
if (dir.getError()) { | |||||
Serial.println("openNext failed"); | |||||
} else { | |||||
Serial.println("Done!"); | |||||
} | |||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void loop() {} | |||||
void loop() {} |
#include <SPI.h> | #include <SPI.h> | ||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 3 | |||||
// | // | ||||
// Set DISABLE_CHIP_SELECT to disable a second SPI device. | // Set DISABLE_CHIP_SELECT to disable a second SPI device. | ||||
// For example, with the Ethernet shield, set DISABLE_CHIP_SELECT | // For example, with the Ethernet shield, set DISABLE_CHIP_SELECT | ||||
// to 10 to disable the Ethernet controller. | // to 10 to disable the Ethernet controller. | ||||
const int8_t DISABLE_CHIP_SELECT = -1; | const int8_t DISABLE_CHIP_SELECT = -1; | ||||
// | // | ||||
// Test with reduced SPI speed for breadboards. SD_SCK_MHZ(4) will select | |||||
// Test with reduced SPI speed for breadboards. SD_SCK_MHZ(4) will select | |||||
// the highest speed supported by the board that is not over 4 MHz. | // the highest speed supported by the board that is not over 4 MHz. | ||||
// Change SPI_SPEED to SD_SCK_MHZ(50) for best performance. | // Change SPI_SPEED to SD_SCK_MHZ(50) for best performance. | ||||
#define SPI_SPEED SD_SCK_MHZ(4) | #define SPI_SPEED SD_SCK_MHZ(4) | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// File system object. | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | SdFat sd; | ||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
// Serial streams | // Serial streams | ||||
ArduinoOutStream cout(Serial); | ArduinoOutStream cout(Serial); | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
reformatMsg(); | reformatMsg(); | ||||
return; | return; | ||||
} | } | ||||
if (!sd.vwd()->isOpen()) { | |||||
cout << F("Can't open root directory.\n"); | |||||
reformatMsg(); | |||||
return; | |||||
} | |||||
cout << F("Can't determine error type\n"); | cout << F("Can't determine error type\n"); | ||||
return; | return; | ||||
} | } | ||||
cout << F("\nCard successfully initialized.\n"); | cout << F("\nCard successfully initialized.\n"); | ||||
cout << endl; | cout << endl; | ||||
uint32_t size = sd.card()->cardSize(); | |||||
uint32_t size = sd.card()->sectorCount(); | |||||
if (size == 0) { | if (size == 0) { | ||||
cout << F("Can't determine the card size.\n"); | cout << F("Can't determine the card size.\n"); | ||||
cardOrSpeed(); | cardOrSpeed(); | ||||
cout << F(" MB (MB = 1,000,000 bytes)\n"); | cout << F(" MB (MB = 1,000,000 bytes)\n"); | ||||
cout << endl; | cout << endl; | ||||
cout << F("Volume is FAT") << int(sd.vol()->fatType()); | cout << F("Volume is FAT") << int(sd.vol()->fatType()); | ||||
cout << F(", Cluster size (bytes): ") << 512L * sd.vol()->blocksPerCluster(); | |||||
cout << F(", Cluster size (bytes): ") << sd.vol()->bytesPerCluster(); | |||||
cout << endl << endl; | cout << endl << endl; | ||||
cout << F("Files found (date time size name):\n"); | cout << F("Files found (date time size name):\n"); | ||||
sd.ls(LS_R | LS_DATE | LS_SIZE); | sd.ls(LS_R | LS_DATE | LS_SIZE); | ||||
if ((sizeMB > 1100 && sd.vol()->blocksPerCluster() < 64) | |||||
if ((sizeMB > 1100 && sd.vol()->sectorsPerCluster() < 64) | |||||
|| (sizeMB < 2200 && sd.vol()->fatType() == 32)) { | || (sizeMB < 2200 && sd.vol()->fatType() == 32)) { | ||||
cout << F("\nThis card should be reformatted for best performance.\n"); | cout << F("\nThis card should be reformatted for best performance.\n"); | ||||
cout << F("Use a cluster size of 32 KB for cards larger than 1 GB.\n"); | cout << F("Use a cluster size of 32 KB for cards larger than 1 GB.\n"); |
#include "SdFat.h" | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
char line[40]; | |||||
//------------------------------------------------------------------------------ | |||||
// Store error strings in flash to save RAM. | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | |||||
// Check for extra characters in field or find minus sign. | |||||
char* skipSpace(char* str) { | |||||
while (isspace(*str)) str++; | |||||
return str; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
bool parseLine(char* str) { | |||||
char* ptr; | |||||
// Set strtok start of line. | |||||
str = strtok(str, ","); | |||||
if (!str) return false; | |||||
// Print text field. | |||||
Serial.println(str); | |||||
// Subsequent calls to strtok expects a null pointer. | |||||
str = strtok(nullptr, ","); | |||||
if (!str) return false; | |||||
// Convert string to long integer. | |||||
int32_t i32 = strtol(str, &ptr, 0); | |||||
if (str == ptr || *skipSpace(ptr)) return false; | |||||
Serial.println(i32); | |||||
str = strtok(nullptr, ","); | |||||
if (!str) return false; | |||||
// strtoul accepts a leading minus with unexpected results. | |||||
if (*skipSpace(str) == '-') return false; | |||||
// Convert string to unsigned long integer. | |||||
uint32_t u32 = strtoul(str, &ptr, 0); | |||||
if (str == ptr || *skipSpace(ptr)) return false; | |||||
Serial.println(u32); | |||||
str = strtok(nullptr, ","); | |||||
if (!str) return false; | |||||
// Convert string to double. | |||||
double d = strtod(str, &ptr); | |||||
if (str == ptr || *skipSpace(ptr)) return false; | |||||
Serial.println(d); | |||||
// Check for extra fields. | |||||
return strtok(nullptr, ",") == nullptr; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
yield(); | |||||
} | |||||
Serial.println("Type any character to start"); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
// Initialize the SD. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
return; | |||||
} | |||||
// Remove any existing file. | |||||
if (sd.exists("ReadCsvDemo.csv")) { | |||||
sd.remove("ReadCsvDemo.csv"); | |||||
} | |||||
// Create the file. | |||||
if (!file.open("ReadCsvDemo.csv", FILE_WRITE)) { | |||||
error("open failed"); | |||||
} | |||||
// Write test data. | |||||
file.print(F( | |||||
"abc,123,456,7.89\r\n" | |||||
"def,-321,654,-9.87\r\n" | |||||
"ghi,333,0xff,5.55")); | |||||
// Rewind file for read. | |||||
file.rewind(); | |||||
while (file.available()) { | |||||
int n = file.fgets(line, sizeof(line)); | |||||
if (n <= 0) { | |||||
error("fgets failed"); | |||||
} | |||||
if (line[n-1] != '\n' && n == (sizeof(line) - 1)) { | |||||
error("line too long"); | |||||
} | |||||
if (!parseLine(line)) { | |||||
error("parseLine failed"); | |||||
} | |||||
Serial.println(); | |||||
} | |||||
file.close(); | |||||
Serial.println(F("Done")); | |||||
} | |||||
void loop() { | |||||
} |
// Test of time-stamp callback. | |||||
// Set the callback with this statement. | |||||
// FsDateTime::setCallback(dateTime); | |||||
#include "SdFat.h" | |||||
// https://github.com/adafruit/RTClib | |||||
#include "RTClib.h" | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
RTC_DS1307 rtc; | |||||
//------------------------------------------------------------------------------ | |||||
// Call back for file timestamps. Only called for file create and sync(). | |||||
void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) { | |||||
DateTime now = rtc.now(); | |||||
// Return date using FS_DATE macro to format fields. | |||||
*date = FS_DATE(now.year(), now.month(), now.day()); | |||||
// Return time using FS_TIME macro to format fields. | |||||
*time = FS_TIME(now.hour(), now.minute(), now.second()); | |||||
// Return low time bits in units of 10 ms, 0 <= ms10 <= 199. | |||||
*ms10 = now.second() & 1 ? 100 : 0; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printField(Print* pr, char sep, uint8_t v) { | |||||
if (sep) { | |||||
pr->write(sep); | |||||
} | |||||
if (v < 10) { | |||||
pr->write('0'); | |||||
} | |||||
pr->print(v); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printNow(Print* pr) { | |||||
DateTime now = rtc.now(); | |||||
pr->print(now.year()); | |||||
printField(pr, '-',now.month()); | |||||
printField(pr, '-',now.day()); | |||||
printField(pr, ' ',now.hour()); | |||||
printField(pr, ':',now.minute()); | |||||
printField(pr, ':',now.second()); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) { | |||||
yield(); | |||||
} | |||||
Serial.println(F("Type any character to begin")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
if (!rtc.begin()) { | |||||
Serial.println(F("rtc.begin failed")); | |||||
return; | |||||
} | |||||
if (!rtc.isrunning()) { | |||||
Serial.println("RTC is NOT running!"); | |||||
return; | |||||
// following line sets the RTC to the date & time this sketch was compiled | |||||
// rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); | |||||
// This line sets the RTC with an explicit date & time, for example to set | |||||
// January 21, 2014 at 3am you would call: | |||||
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); | |||||
} | |||||
Serial.print(F("DateTime::now ")); | |||||
printNow(&Serial); | |||||
Serial.println(); | |||||
// Set callback | |||||
FsDateTime::setCallback(dateTime); | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
// Remove old version to set create time. | |||||
if (sd.exists("RtcTest.txt")) { | |||||
sd.remove("RtcTest.txt"); | |||||
} | |||||
if (!file.open("RtcTest.txt", FILE_WRITE)) { | |||||
Serial.println(F("file.open failed")); | |||||
return; | |||||
} | |||||
// Print current date time to file. | |||||
file.print(F("Test file at: ")); | |||||
printNow(&file); | |||||
file.println(); | |||||
file.close(); | |||||
// List files in SD root. | |||||
sd.ls(LS_DATE | LS_SIZE); | |||||
Serial.println(F("Done")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
} |
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "FreeStack.h" | #include "FreeStack.h" | ||||
// set ENABLE_EXTENDED_TRANSFER_CLASS non-zero to use faster EX classes | |||||
// Use first SPI port | |||||
SdFat sd1; | |||||
// SdFatEX sd1; | |||||
const uint8_t SD1_CS = PA4; // chip select for sd1 | |||||
// Use second SPI port | |||||
SPIClass SPI_2(2); | |||||
SdFat sd2(&SPI_2); | |||||
// SdFatEX sd2(&SPI_2); | |||||
const uint8_t SD2_CS = PB12; // chip select for sd2 | |||||
// Chip select PA4, shared SPI, 18 MHz, port 1. | |||||
#define SD1_CONFIG SdSpiConfig(PA4, SHARED_SPI, SD_SCK_MHZ(18), &SPI) | |||||
SdFs sd1; | |||||
FsFile file1; | |||||
// Use mySPI2 since SPI2 is used in SPI.h as a different type. | |||||
static SPIClass mySPI2(2); | |||||
// Chip select PB21, dedicated SPI, 18 MHz, port 2. | |||||
#define SD2_CONFIG SdSpiConfig(PB12, DEDICATED_SPI, SD_SCK_MHZ(18), &mySPI2) | |||||
SdFs sd2; | |||||
FsFile file2; | |||||
const uint8_t BUF_DIM = 100; | const uint8_t BUF_DIM = 100; | ||||
uint8_t buf[BUF_DIM]; | uint8_t buf[BUF_DIM]; | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// print error msg, any SD error codes, and halt. | // print error msg, any SD error codes, and halt. | ||||
// store messages in flash | // store messages in flash | ||||
#define errorExit(msg) errorHalt(F(msg)) | |||||
#define initError(msg) initErrorHalt(F(msg)) | |||||
#define error(msg) {Serial.println(msg); errorHalt();} | |||||
void errorHalt() { | |||||
if (sd1.sdErrorCode()) { | |||||
sd1.errorHalt(); | |||||
} | |||||
sd2.errorHalt(); | |||||
} | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | // Wait for USB Serial | ||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | |||||
} | } | ||||
Serial.print(F("FreeStack: ")); | |||||
Serial.println(FreeStack()); | |||||
// fill buffer with known data | // fill buffer with known data | ||||
for (size_t i = 0; i < sizeof(buf); i++) { | for (size_t i = 0; i < sizeof(buf); i++) { | ||||
Serial.println(F("type any character to start")); | Serial.println(F("type any character to start")); | ||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
SysCall::yield(); | |||||
} | } | ||||
Serial.print(F("FreeStack: ")); | |||||
Serial.println(FreeStack()); | |||||
// initialize the first card | // initialize the first card | ||||
if (!sd1.begin(SD1_CS, SD_SCK_MHZ(18))) { | |||||
sd1.initError("sd1:"); | |||||
if (!sd1.begin(SD1_CONFIG)) { | |||||
error("sd1.begin"); | |||||
} | } | ||||
// create Dir1 on sd1 if it does not exist | // create Dir1 on sd1 if it does not exist | ||||
if (!sd1.exists("/Dir1")) { | if (!sd1.exists("/Dir1")) { | ||||
if (!sd1.mkdir("/Dir1")) { | if (!sd1.mkdir("/Dir1")) { | ||||
sd1.errorExit("sd1.mkdir"); | |||||
error("sd1.mkdir"); | |||||
} | } | ||||
} | } | ||||
// Make Dir1 the working directory on sd1. | |||||
if (!sd1.chdir("Dir1")) { | |||||
error("dsd1.chdir"); | |||||
} | |||||
// initialize the second card | // initialize the second card | ||||
if (!sd2.begin(SD2_CS, SD_SCK_MHZ(18))) { | |||||
sd2.initError("sd2:"); | |||||
if (!sd2.begin(SD2_CONFIG)) { | |||||
error("sd2.begin"); | |||||
} | } | ||||
// create Dir2 on sd2 if it does not exist | // create Dir2 on sd2 if it does not exist | ||||
if (!sd2.exists("/Dir2")) { | if (!sd2.exists("/Dir2")) { | ||||
if (!sd2.mkdir("/Dir2")) { | if (!sd2.mkdir("/Dir2")) { | ||||
sd2.errorExit("sd2.mkdir"); | |||||
error("sd2.mkdir"); | |||||
} | } | ||||
} | } | ||||
// list root directory on both cards | |||||
Serial.println(F("------sd1 root-------")); | |||||
sd1.ls(); | |||||
Serial.println(F("------sd2 root-------")); | |||||
sd2.ls(); | |||||
// make /Dir1 the default directory for sd1 | |||||
if (!sd1.chdir("/Dir1")) { | |||||
sd1.errorExit("sd1.chdir"); | |||||
} | |||||
// Make Dir2 the working directory on sd2. | |||||
if (!sd2.chdir("Dir2")) { | |||||
error("sd2.chdir"); | |||||
} | |||||
// remove test.bin from /Dir1 directory of sd1 | // remove test.bin from /Dir1 directory of sd1 | ||||
if (sd1.exists("test.bin")) { | if (sd1.exists("test.bin")) { | ||||
if (!sd1.remove("test.bin")) { | if (!sd1.remove("test.bin")) { | ||||
sd2.errorExit("remove test.bin"); | |||||
error("remove test.bin"); | |||||
} | } | ||||
} | } | ||||
// make /Dir2 the default directory for sd2 | |||||
if (!sd2.chdir("/Dir2")) { | |||||
sd2.errorExit("sd2.chdir"); | |||||
} | |||||
// remove rename.bin from /Dir2 directory of sd2 | // remove rename.bin from /Dir2 directory of sd2 | ||||
if (sd2.exists("rename.bin")) { | if (sd2.exists("rename.bin")) { | ||||
if (!sd2.remove("rename.bin")) { | if (!sd2.remove("rename.bin")) { | ||||
sd2.errorExit("remove rename.bin"); | |||||
error("remove rename.bin"); | |||||
} | } | ||||
} | } | ||||
// list current directory on both cards | |||||
// list directories. | |||||
Serial.println(F("------sd1 Dir1-------")); | Serial.println(F("------sd1 Dir1-------")); | ||||
sd1.ls(); | |||||
sd1.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("------sd2 Dir2-------")); | Serial.println(F("------sd2 Dir2-------")); | ||||
sd2.ls(); | |||||
sd2.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("---------------------")); | Serial.println(F("---------------------")); | ||||
// set the current working directory for open() to sd1 | |||||
sd1.chvol(); | |||||
// create or open /Dir1/test.bin and truncate it to zero length | // create or open /Dir1/test.bin and truncate it to zero length | ||||
SdFile file1; | |||||
if (!file1.open("test.bin", O_RDWR | O_CREAT | O_TRUNC)) { | |||||
sd1.errorExit("file1"); | |||||
if (!file1.open(&sd1, "test.bin", O_RDWR | O_CREAT | O_TRUNC)) { | |||||
error("file1.open"); | |||||
} | } | ||||
Serial.println(F("Writing test.bin to sd1")); | Serial.println(F("Writing test.bin to sd1")); | ||||
// write data to /Dir1/test.bin on sd1 | // write data to /Dir1/test.bin on sd1 | ||||
for (uint16_t i = 0; i < NWRITE; i++) { | for (uint16_t i = 0; i < NWRITE; i++) { | ||||
if (file1.write(buf, sizeof(buf)) != sizeof(buf)) { | if (file1.write(buf, sizeof(buf)) != sizeof(buf)) { | ||||
sd1.errorExit("sd1.write"); | |||||
error("file1.write"); | |||||
} | } | ||||
} | } | ||||
// set the current working directory for open() to sd2 | |||||
sd2.chvol(); | |||||
// create or open /Dir2/copy.bin and truncate it to zero length | // create or open /Dir2/copy.bin and truncate it to zero length | ||||
SdFile file2; | |||||
if (!file2.open("copy.bin", O_WRONLY | O_CREAT | O_TRUNC)) { | |||||
sd2.errorExit("file2"); | |||||
if (!file2.open(&sd2, "copy.bin", O_WRONLY | O_CREAT | O_TRUNC)) { | |||||
error("file2.open"); | |||||
} | } | ||||
Serial.println(F("Copying test.bin to copy.bin")); | Serial.println(F("Copying test.bin to copy.bin")); | ||||
while (1) { | while (1) { | ||||
int n = file1.read(buf, sizeof(buf)); | int n = file1.read(buf, sizeof(buf)); | ||||
if (n < 0) { | if (n < 0) { | ||||
sd1.errorExit("read1"); | |||||
error("file1.read"); | |||||
} | } | ||||
if (n == 0) { | if (n == 0) { | ||||
break; | break; | ||||
} | } | ||||
if ((int)file2.write(buf, n) != n) { | if ((int)file2.write(buf, n) != n) { | ||||
sd2.errorExit("write2"); | |||||
error("file2.write"); | |||||
} | } | ||||
} | } | ||||
t = millis() - t; | t = millis() - t; | ||||
Serial.println(F(" millis")); | Serial.println(F(" millis")); | ||||
// close test.bin | // close test.bin | ||||
file1.close(); | file1.close(); | ||||
// sync copy.bin so ls works. | |||||
file2.close(); | file2.close(); | ||||
// list current directory on both cards | |||||
// list directories. | |||||
Serial.println(F("------sd1 -------")); | Serial.println(F("------sd1 -------")); | ||||
sd1.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
sd1.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("------sd2 -------")); | Serial.println(F("------sd2 -------")); | ||||
sd2.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
sd2.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("---------------------")); | Serial.println(F("---------------------")); | ||||
Serial.println(F("Renaming copy.bin")); | Serial.println(F("Renaming copy.bin")); | ||||
// rename the copy | |||||
// Rename copy.bin. The renamed file will be in Dir2. | |||||
if (!sd2.rename("copy.bin", "rename.bin")) { | if (!sd2.rename("copy.bin", "rename.bin")) { | ||||
sd2.errorExit("sd2.rename"); | |||||
error("rename copy.bin"); | |||||
} | } | ||||
// list current directory on both cards | |||||
file2.close(); | |||||
// list directories. | |||||
Serial.println(F("------sd1 -------")); | Serial.println(F("------sd1 -------")); | ||||
sd1.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
sd1.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("------sd2 -------")); | Serial.println(F("------sd2 -------")); | ||||
sd2.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
sd2.ls("/", LS_R | LS_SIZE); | |||||
Serial.println(F("---------------------")); | Serial.println(F("---------------------")); | ||||
Serial.println(F("Done")); | Serial.println(F("Done")); | ||||
} | } |
// Print a list of error codes, symbols, and comments. | |||||
#include "SdFat.h" | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) {} | |||||
delay(1000); | |||||
Serial.println(); | |||||
Serial.println(F("Code,Symbol - failed operation")); | |||||
for (uint8_t code = 0; code <= SD_CARD_ERROR_UNKNOWN; code++) { | |||||
Serial.print(code < 16 ? "0X0" : "0X"); | |||||
Serial.print(code, HEX); | |||||
Serial.print(","); | |||||
printSdErrorSymbol(&Serial, code); | |||||
Serial.print(" - "); | |||||
printSdErrorText(&Serial, code); | |||||
Serial.println(); | |||||
} | |||||
} | |||||
void loop() {} |
/* | /* | ||||
* This program will format an SD or SDHC card. | |||||
* This program will format SD/SDHC/SDXC cards. | |||||
* Warning all data will be deleted! | * Warning all data will be deleted! | ||||
* | * | ||||
* For SD/SDHC cards larger than 64 MB this | |||||
* program attempts to match the format | |||||
* This program attempts to match the format | |||||
* generated by SDFormatter available here: | * generated by SDFormatter available here: | ||||
* | * | ||||
* http://www.sdcard.org/consumers/formatter/ | * http://www.sdcard.org/consumers/formatter/ | ||||
* | * | ||||
* For smaller cards this program uses FAT16 | |||||
* and SDFormatter uses FAT12. | |||||
* For very small cards this program uses FAT16 | |||||
* and the above SDFormatter uses FAT12. | |||||
*/ | */ | ||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
// | |||||
// Change the value of chipSelect if your hardware does | |||||
// not use the default value, SS. Common values are: | |||||
// Arduino Ethernet shield: pin 4 | |||||
// Sparkfun SD shield: pin 8 | |||||
// Adafruit SD shields and modules: pin 10 | |||||
const uint8_t chipSelect = SS; | |||||
// Initialize at highest supported speed not over 50 MHz. | |||||
// Reduce max speed if errors occur. | |||||
#define SPI_SPEED SD_SCK_MHZ(50) | |||||
// Print extra info for debug if DEBUG_PRINT is nonzero | |||||
#define DEBUG_PRINT 0 | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
#if DEBUG_PRINT | |||||
#include "FreeStack.h" | |||||
#endif // DEBUG_PRINT | |||||
/* | |||||
Set DISABLE_CS_PIN to disable a second SPI device. | |||||
For example, with the Ethernet shield, set DISABLE_CS_PIN | |||||
to 10 to disable the Ethernet controller. | |||||
*/ | |||||
const int8_t DISABLE_CS_PIN = -1; | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI | |||||
and your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
//============================================================================== | |||||
// Serial output stream | // Serial output stream | ||||
ArduinoOutStream cout(Serial); | ArduinoOutStream cout(Serial); | ||||
#if USE_SDIO | |||||
// Use faster SdioCardEX | |||||
SdioCardEX card; | |||||
// SdioCard card; | |||||
#else // USE_SDIO | |||||
Sd2Card card; | |||||
#endif // USE_SDIO | |||||
uint32_t cardSizeBlocks; | |||||
uint32_t cardCapacityMB; | |||||
// cache for SD block | |||||
cache_t cache; | |||||
// MBR information | |||||
uint8_t partType; | |||||
uint32_t relSector; | |||||
uint32_t partSize; | |||||
// Fake disk geometry | |||||
uint8_t numberOfHeads; | |||||
uint8_t sectorsPerTrack; | |||||
// FAT parameters | |||||
uint16_t reservedSectors; | |||||
uint8_t sectorsPerCluster; | |||||
uint32_t fatStart; | |||||
uint32_t fatSize; | |||||
uint32_t dataStart; | |||||
// constants for file system structure | |||||
uint16_t const BU16 = 128; | |||||
uint16_t const BU32 = 8192; | |||||
// strings needed in file system structures | |||||
char noName[] = "NO NAME "; | |||||
char fat16str[] = "FAT16 "; | |||||
char fat32str[] = "FAT32 "; | |||||
//------------------------------------------------------------------------------ | |||||
#define sdError(msg) {cout << F("error: ") << F(msg) << endl; sdErrorHalt();} | |||||
//------------------------------------------------------------------------------ | |||||
void sdErrorHalt() { | |||||
if (card.errorCode()) { | |||||
cout << F("SD error: ") << hex << int(card.errorCode()); | |||||
cout << ',' << int(card.errorData()) << dec << endl; | |||||
} | |||||
SysCall::halt(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
#if DEBUG_PRINT | |||||
void debugPrint() { | |||||
cout << F("FreeStack: ") << FreeStack() << endl; | |||||
cout << F("partStart: ") << relSector << endl; | |||||
cout << F("partSize: ") << partSize << endl; | |||||
cout << F("reserved: ") << reservedSectors << endl; | |||||
cout << F("fatStart: ") << fatStart << endl; | |||||
cout << F("fatSize: ") << fatSize << endl; | |||||
cout << F("dataStart: ") << dataStart << endl; | |||||
cout << F("clusterCount: "); | |||||
cout << ((relSector + partSize - dataStart)/sectorsPerCluster) << endl; | |||||
cout << endl; | |||||
cout << F("Heads: ") << int(numberOfHeads) << endl; | |||||
cout << F("Sectors: ") << int(sectorsPerTrack) << endl; | |||||
cout << F("Cylinders: "); | |||||
cout << cardSizeBlocks/(numberOfHeads*sectorsPerTrack) << endl; | |||||
} | |||||
#endif // DEBUG_PRINT | |||||
//------------------------------------------------------------------------------ | |||||
// write cached block to the card | |||||
uint8_t writeCache(uint32_t lbn) { | |||||
return card.writeBlock(lbn, cache.data); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// initialize appropriate sizes for SD capacity | |||||
void initSizes() { | |||||
if (cardCapacityMB <= 6) { | |||||
sdError("Card is too small."); | |||||
} else if (cardCapacityMB <= 16) { | |||||
sectorsPerCluster = 2; | |||||
} else if (cardCapacityMB <= 32) { | |||||
sectorsPerCluster = 4; | |||||
} else if (cardCapacityMB <= 64) { | |||||
sectorsPerCluster = 8; | |||||
} else if (cardCapacityMB <= 128) { | |||||
sectorsPerCluster = 16; | |||||
} else if (cardCapacityMB <= 1024) { | |||||
sectorsPerCluster = 32; | |||||
} else if (cardCapacityMB <= 32768) { | |||||
sectorsPerCluster = 64; | |||||
} else { | |||||
// SDXC cards | |||||
sectorsPerCluster = 128; | |||||
} | |||||
cout << F("Blocks/Cluster: ") << int(sectorsPerCluster) << endl; | |||||
// set fake disk geometry | |||||
sectorsPerTrack = cardCapacityMB <= 256 ? 32 : 63; | |||||
if (cardCapacityMB <= 16) { | |||||
numberOfHeads = 2; | |||||
} else if (cardCapacityMB <= 32) { | |||||
numberOfHeads = 4; | |||||
} else if (cardCapacityMB <= 128) { | |||||
numberOfHeads = 8; | |||||
} else if (cardCapacityMB <= 504) { | |||||
numberOfHeads = 16; | |||||
} else if (cardCapacityMB <= 1008) { | |||||
numberOfHeads = 32; | |||||
} else if (cardCapacityMB <= 2016) { | |||||
numberOfHeads = 64; | |||||
} else if (cardCapacityMB <= 4032) { | |||||
numberOfHeads = 128; | |||||
} else { | |||||
numberOfHeads = 255; | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// zero cache and optionally set the sector signature | |||||
void clearCache(uint8_t addSig) { | |||||
memset(&cache, 0, sizeof(cache)); | |||||
if (addSig) { | |||||
cache.mbr.mbrSig0 = BOOTSIG0; | |||||
cache.mbr.mbrSig1 = BOOTSIG1; | |||||
} | |||||
} | |||||
uint32_t cardSectorCount = 0; | |||||
uint8_t sectorBuffer[512]; | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// zero FAT and root dir area on SD | |||||
void clearFatDir(uint32_t bgn, uint32_t count) { | |||||
clearCache(false); | |||||
#if USE_SDIO | |||||
for (uint32_t i = 0; i < count; i++) { | |||||
if (!card.writeBlock(bgn + i, cache.data)) { | |||||
sdError("Clear FAT/DIR writeBlock failed"); | |||||
} | |||||
if ((i & 0XFF) == 0) { | |||||
cout << '.'; | |||||
} | |||||
} | |||||
#else // USE_SDIO | |||||
if (!card.writeStart(bgn, count)) { | |||||
sdError("Clear FAT/DIR writeStart failed"); | |||||
} | |||||
for (uint32_t i = 0; i < count; i++) { | |||||
if ((i & 0XFF) == 0) { | |||||
cout << '.'; | |||||
} | |||||
if (!card.writeData(cache.data)) { | |||||
sdError("Clear FAT/DIR writeData failed"); | |||||
} | |||||
} | |||||
if (!card.writeStop()) { | |||||
sdError("Clear FAT/DIR writeStop failed"); | |||||
} | |||||
#endif // USE_SDIO | |||||
cout << endl; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return cylinder number for a logical block number | |||||
uint16_t lbnToCylinder(uint32_t lbn) { | |||||
return lbn / (numberOfHeads * sectorsPerTrack); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return head number for a logical block number | |||||
uint8_t lbnToHead(uint32_t lbn) { | |||||
return (lbn % (numberOfHeads * sectorsPerTrack)) / sectorsPerTrack; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return sector number for a logical block number | |||||
uint8_t lbnToSector(uint32_t lbn) { | |||||
return (lbn % sectorsPerTrack) + 1; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// format and write the Master Boot Record | |||||
void writeMbr() { | |||||
clearCache(true); | |||||
part_t* p = cache.mbr.part; | |||||
p->boot = 0; | |||||
uint16_t c = lbnToCylinder(relSector); | |||||
if (c > 1023) { | |||||
sdError("MBR CHS"); | |||||
} | |||||
p->beginCylinderHigh = c >> 8; | |||||
p->beginCylinderLow = c & 0XFF; | |||||
p->beginHead = lbnToHead(relSector); | |||||
p->beginSector = lbnToSector(relSector); | |||||
p->type = partType; | |||||
uint32_t endLbn = relSector + partSize - 1; | |||||
c = lbnToCylinder(endLbn); | |||||
if (c <= 1023) { | |||||
p->endCylinderHigh = c >> 8; | |||||
p->endCylinderLow = c & 0XFF; | |||||
p->endHead = lbnToHead(endLbn); | |||||
p->endSector = lbnToSector(endLbn); | |||||
} else { | |||||
// Too big flag, c = 1023, h = 254, s = 63 | |||||
p->endCylinderHigh = 3; | |||||
p->endCylinderLow = 255; | |||||
p->endHead = 254; | |||||
p->endSector = 63; | |||||
} | |||||
p->firstSector = relSector; | |||||
p->totalSectors = partSize; | |||||
if (!writeCache(0)) { | |||||
sdError("write MBR"); | |||||
} | |||||
} | |||||
// SdCardFactory constructs and initializes the appropriate card. | |||||
SdCardFactory cardFactory; | |||||
// Pointer to generic SD card. | |||||
SdCard* m_card = nullptr; | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// generate serial number from card size and micros since boot | |||||
uint32_t volSerialNumber() { | |||||
return (cardSizeBlocks << 8) + micros(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// format the SD as FAT16 | |||||
void makeFat16() { | |||||
uint32_t nc; | |||||
for (dataStart = 2 * BU16;; dataStart += BU16) { | |||||
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster; | |||||
fatSize = (nc + 2 + 255)/256; | |||||
uint32_t r = BU16 + 1 + 2 * fatSize + 32; | |||||
if (dataStart < r) { | |||||
continue; | |||||
} | |||||
relSector = dataStart - r + BU16; | |||||
break; | |||||
} | |||||
// check valid cluster count for FAT16 volume | |||||
if (nc < 4085 || nc >= 65525) { | |||||
sdError("Bad cluster count"); | |||||
} | |||||
reservedSectors = 1; | |||||
fatStart = relSector + reservedSectors; | |||||
partSize = nc * sectorsPerCluster + 2 * fatSize + reservedSectors + 32; | |||||
if (partSize < 32680) { | |||||
partType = 0X01; | |||||
} else if (partSize < 65536) { | |||||
partType = 0X04; | |||||
} else { | |||||
partType = 0X06; | |||||
} | |||||
// write MBR | |||||
writeMbr(); | |||||
clearCache(true); | |||||
fat_boot_t* pb = &cache.fbs; | |||||
pb->jump[0] = 0XEB; | |||||
pb->jump[1] = 0X00; | |||||
pb->jump[2] = 0X90; | |||||
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) { | |||||
pb->oemId[i] = ' '; | |||||
} | |||||
pb->bytesPerSector = 512; | |||||
pb->sectorsPerCluster = sectorsPerCluster; | |||||
pb->reservedSectorCount = reservedSectors; | |||||
pb->fatCount = 2; | |||||
pb->rootDirEntryCount = 512; | |||||
pb->mediaType = 0XF8; | |||||
pb->sectorsPerFat16 = fatSize; | |||||
pb->sectorsPerTrack = sectorsPerTrack; | |||||
pb->headCount = numberOfHeads; | |||||
pb->hidddenSectors = relSector; | |||||
pb->totalSectors32 = partSize; | |||||
pb->driveNumber = 0X80; | |||||
pb->bootSignature = EXTENDED_BOOT_SIG; | |||||
pb->volumeSerialNumber = volSerialNumber(); | |||||
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel)); | |||||
memcpy(pb->fileSystemType, fat16str, sizeof(pb->fileSystemType)); | |||||
// write partition boot sector | |||||
if (!writeCache(relSector)) { | |||||
sdError("FAT16 write PBS failed"); | |||||
} | |||||
// clear FAT and root directory | |||||
clearFatDir(fatStart, dataStart - fatStart); | |||||
clearCache(false); | |||||
cache.fat16[0] = 0XFFF8; | |||||
cache.fat16[1] = 0XFFFF; | |||||
// write first block of FAT and backup for reserved clusters | |||||
if (!writeCache(fatStart) | |||||
|| !writeCache(fatStart + fatSize)) { | |||||
sdError("FAT16 reserve failed"); | |||||
} | |||||
} | |||||
#define sdError(msg) {cout << F("error: ") << F(msg) << endl; sdErrorHalt();} | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// format the SD as FAT32 | |||||
void makeFat32() { | |||||
uint32_t nc; | |||||
relSector = BU32; | |||||
for (dataStart = 2 * BU32;; dataStart += BU32) { | |||||
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster; | |||||
fatSize = (nc + 2 + 127)/128; | |||||
uint32_t r = relSector + 9 + 2 * fatSize; | |||||
if (dataStart >= r) { | |||||
break; | |||||
void sdErrorHalt() { | |||||
if (!m_card) { | |||||
cout << F("Invalid SD_CONFIG") << endl; | |||||
} else if (m_card->errorCode()) { | |||||
if (m_card->errorCode() == SD_CARD_ERROR_CMD0) { | |||||
cout << F("No card, wrong chip select pin, or wiring error?") << endl; | |||||
} | } | ||||
cout << F("SD errorCode: ") << hex << showbase; | |||||
printSdErrorSymbol(&Serial, m_card->errorCode()); | |||||
cout << F(" = ") << int(m_card->errorCode()) << endl; | |||||
cout << F("SD errorData = ") << int(m_card->errorData()) << endl; | |||||
} | } | ||||
// error if too few clusters in FAT32 volume | |||||
if (nc < 65525) { | |||||
sdError("Bad cluster count"); | |||||
} | |||||
reservedSectors = dataStart - relSector - 2 * fatSize; | |||||
fatStart = relSector + reservedSectors; | |||||
partSize = nc * sectorsPerCluster + dataStart - relSector; | |||||
// type depends on address of end sector | |||||
// max CHS has lbn = 16450560 = 1024*255*63 | |||||
if ((relSector + partSize) <= 16450560) { | |||||
// FAT32 | |||||
partType = 0X0B; | |||||
} else { | |||||
// FAT32 with INT 13 | |||||
partType = 0X0C; | |||||
} | |||||
writeMbr(); | |||||
clearCache(true); | |||||
fat32_boot_t* pb = &cache.fbs32; | |||||
pb->jump[0] = 0XEB; | |||||
pb->jump[1] = 0X00; | |||||
pb->jump[2] = 0X90; | |||||
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) { | |||||
pb->oemId[i] = ' '; | |||||
} | |||||
pb->bytesPerSector = 512; | |||||
pb->sectorsPerCluster = sectorsPerCluster; | |||||
pb->reservedSectorCount = reservedSectors; | |||||
pb->fatCount = 2; | |||||
pb->mediaType = 0XF8; | |||||
pb->sectorsPerTrack = sectorsPerTrack; | |||||
pb->headCount = numberOfHeads; | |||||
pb->hidddenSectors = relSector; | |||||
pb->totalSectors32 = partSize; | |||||
pb->sectorsPerFat32 = fatSize; | |||||
pb->fat32RootCluster = 2; | |||||
pb->fat32FSInfo = 1; | |||||
pb->fat32BackBootBlock = 6; | |||||
pb->driveNumber = 0X80; | |||||
pb->bootSignature = EXTENDED_BOOT_SIG; | |||||
pb->volumeSerialNumber = volSerialNumber(); | |||||
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel)); | |||||
memcpy(pb->fileSystemType, fat32str, sizeof(pb->fileSystemType)); | |||||
// write partition boot sector and backup | |||||
if (!writeCache(relSector) | |||||
|| !writeCache(relSector + 6)) { | |||||
sdError("FAT32 write PBS failed"); | |||||
} | |||||
clearCache(true); | |||||
// write extra boot area and backup | |||||
if (!writeCache(relSector + 2) | |||||
|| !writeCache(relSector + 8)) { | |||||
sdError("FAT32 PBS ext failed"); | |||||
} | |||||
fat32_fsinfo_t* pf = &cache.fsinfo; | |||||
pf->leadSignature = FSINFO_LEAD_SIG; | |||||
pf->structSignature = FSINFO_STRUCT_SIG; | |||||
pf->freeCount = 0XFFFFFFFF; | |||||
pf->nextFree = 0XFFFFFFFF; | |||||
// write FSINFO sector and backup | |||||
if (!writeCache(relSector + 1) | |||||
|| !writeCache(relSector + 7)) { | |||||
sdError("FAT32 FSINFO failed"); | |||||
} | |||||
clearFatDir(fatStart, 2 * fatSize + sectorsPerCluster); | |||||
clearCache(false); | |||||
cache.fat32[0] = 0x0FFFFFF8; | |||||
cache.fat32[1] = 0x0FFFFFFF; | |||||
cache.fat32[2] = 0x0FFFFFFF; | |||||
// write first block of FAT and backup for reserved clusters | |||||
if (!writeCache(fatStart) | |||||
|| !writeCache(fatStart + fatSize)) { | |||||
sdError("FAT32 reserve failed"); | |||||
} | |||||
SysCall::halt(); | |||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// flash erase all data | // flash erase all data | ||||
do { | do { | ||||
lastBlock = firstBlock + ERASE_SIZE - 1; | lastBlock = firstBlock + ERASE_SIZE - 1; | ||||
if (lastBlock >= cardSizeBlocks) { | |||||
lastBlock = cardSizeBlocks - 1; | |||||
if (lastBlock >= cardSectorCount) { | |||||
lastBlock = cardSectorCount - 1; | |||||
} | } | ||||
if (!card.erase(firstBlock, lastBlock)) { | |||||
if (!m_card->erase(firstBlock, lastBlock)) { | |||||
sdError("erase failed"); | sdError("erase failed"); | ||||
} | } | ||||
cout << '.'; | cout << '.'; | ||||
if ((n++)%32 == 31) { | |||||
if ((n++)%64 == 63) { | |||||
cout << endl; | cout << endl; | ||||
} | } | ||||
firstBlock += ERASE_SIZE; | firstBlock += ERASE_SIZE; | ||||
} while (firstBlock < cardSizeBlocks); | |||||
} while (firstBlock < cardSectorCount); | |||||
cout << endl; | cout << endl; | ||||
if (!card.readBlock(0, cache.data)) { | |||||
if (!m_card->readSector(0, sectorBuffer)) { | |||||
sdError("readBlock"); | sdError("readBlock"); | ||||
} | } | ||||
cout << hex << showbase << setfill('0') << internal; | cout << hex << showbase << setfill('0') << internal; | ||||
cout << F("All data set to ") << setw(4) << int(cache.data[0]) << endl; | |||||
cout << F("All data set to ") << setw(4) << int(sectorBuffer[0]) << endl; | |||||
cout << dec << noshowbase << setfill(' ') << right; | cout << dec << noshowbase << setfill(' ') << right; | ||||
cout << F("Erase done\n"); | cout << F("Erase done\n"); | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void formatCard() { | void formatCard() { | ||||
cout << endl; | |||||
cout << F("Formatting\n"); | |||||
initSizes(); | |||||
if (card.type() != SD_CARD_TYPE_SDHC) { | |||||
cout << F("FAT16\n"); | |||||
makeFat16(); | |||||
ExFatFormatter exFatFormatter; | |||||
FatFormatter fatFormatter; | |||||
// Format exFAT if larger than 32GB. | |||||
bool rtn = cardSectorCount > 67108864 ? | |||||
exFatFormatter.format(m_card, sectorBuffer, &Serial) : | |||||
fatFormatter.format(m_card, sectorBuffer, &Serial); | |||||
if (!rtn) { | |||||
sdErrorHalt(); | |||||
} | |||||
cout << F("Run the SdInfo example for format details.") << endl; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printConfig(SdSpiConfig config) { | |||||
if (DISABLE_CS_PIN < 0) { | |||||
cout << F( | |||||
"\nAssuming the SD is the only SPI device.\n" | |||||
"Edit DISABLE_CS_PIN to disable an SPI device.\n"); | |||||
} else { | } else { | ||||
cout << F("FAT32\n"); | |||||
makeFat32(); | |||||
cout << F("\nDisabling SPI device on pin "); | |||||
cout << int(DISABLE_CS_PIN) << endl; | |||||
pinMode(DISABLE_CS_PIN, OUTPUT); | |||||
digitalWrite(DISABLE_CS_PIN, HIGH); | |||||
} | } | ||||
#if DEBUG_PRINT | |||||
debugPrint(); | |||||
#endif // DEBUG_PRINT | |||||
cout << F("Format done\n"); | |||||
cout << F("\nAssuming the SD chip select pin is: ") << int(config.csPin); | |||||
cout << F("\nEdit SD_CS_PIN to change the SD chip select pin.\n"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printConfig(SdioConfig config) { | |||||
(void)config; | |||||
cout << F("Assuming an SDIO interface.\n"); | |||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
char c; | char c; | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
cout << F("Type any character to start\n"); | |||||
printConfig(SD_CONFIG); | |||||
cout << F("\nType any character to start\n"); | |||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
cout << F( | cout << F( | ||||
"\n" | "\n" | ||||
"This program can erase and/or format SD/SDHC cards.\n" | |||||
"This program can erase and/or format SD/SDHC/SDXC cards.\n" | |||||
"\n" | "\n" | ||||
"Erase uses the card's fast flash erase command.\n" | "Erase uses the card's fast flash erase command.\n" | ||||
"Flash erase sets all data to 0X00 for most cards\n" | "Flash erase sets all data to 0X00 for most cards\n" | ||||
"and 0XFF for a few vendor's cards.\n" | "and 0XFF for a few vendor's cards.\n" | ||||
"\n" | "\n" | ||||
"Cards larger than 2 GB will be formatted FAT32 and\n" | |||||
"smaller cards will be formatted FAT16.\n" | |||||
"Cards up to 2 GiB (GiB = 2^30 bytes) will be formated FAT16.\n" | |||||
"Cards larger than 2 GiB and up to 32 GiB will be formatted\n" | |||||
"FAT32. Cards larger than 32 GiB will be formatted exFAT.\n" | |||||
"\n" | "\n" | ||||
"Warning, all data on the card will be erased.\n" | "Warning, all data on the card will be erased.\n" | ||||
"Enter 'Y' to continue: "); | "Enter 'Y' to continue: "); | ||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
c = Serial.read(); | c = Serial.read(); | ||||
cout << c << endl; | cout << c << endl; | ||||
if (c != 'Y') { | if (c != 'Y') { | ||||
delay(10); | delay(10); | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
// Select and initialize proper card driver. | |||||
m_card = cardFactory.newCard(SD_CONFIG); | |||||
if (!m_card || m_card->errorCode()) { | |||||
sdError("card init failed."); | |||||
return; | |||||
} | |||||
cardSectorCount = m_card->sectorCount(); | |||||
if (!cardSectorCount) { | |||||
sdError("Get sector count failed."); | |||||
return; | |||||
} | |||||
cout << F("\nCard size: ") << cardSectorCount*5.12e-7; | |||||
cout << F(" GB (GB = 1E9 bytes)\n"); | |||||
cout << F("Card size: ") << cardSectorCount/2097152.0; | |||||
cout << F(" GiB (GiB = 2^30 bytes)\n"); | |||||
cout << F("Card will be formated "); | |||||
if (cardSectorCount > 67108864) { | |||||
cout << F("exFAT\n"); | |||||
} else if (cardSectorCount > 4194304) { | |||||
cout << F("FAT32\n"); | |||||
} else { | |||||
cout << F("FAT16\n"); | |||||
} | |||||
cout << F( | cout << F( | ||||
"\n" | "\n" | ||||
"Options are:\n" | "Options are:\n" | ||||
cout << F("Quiting, invalid option entered.") << endl; | cout << F("Quiting, invalid option entered.") << endl; | ||||
return; | return; | ||||
} | } | ||||
#if USE_SDIO | |||||
if (!card.begin()) { | |||||
sdError("card.begin failed"); | |||||
} | |||||
#else // USE_SDIO | |||||
if (!card.begin(chipSelect, SPI_SPEED)) { | |||||
cout << F( | |||||
"\nSD initialization failure!\n" | |||||
"Is the SD card inserted correctly?\n" | |||||
"Is chip select correct at the top of this program?\n"); | |||||
sdError("card.begin failed"); | |||||
} | |||||
#endif | |||||
cardSizeBlocks = card.cardSize(); | |||||
if (cardSizeBlocks == 0) { | |||||
sdError("cardSize"); | |||||
} | |||||
cardCapacityMB = (cardSizeBlocks + 2047)/2048; | |||||
cout << F("Card Size: ") << setprecision(0) << 1.048576*cardCapacityMB; | |||||
cout << F(" MB, (MB = 1,000,000 bytes)") << endl; | |||||
if (c == 'E' || c == 'F') { | if (c == 'E' || c == 'F') { | ||||
eraseCard(); | eraseCard(); | ||||
} | } | ||||
formatCard(); | formatCard(); | ||||
} | } | ||||
} | } | ||||
//------------------------------------------------------------------------------ | |||||
void loop() {} | |||||
void loop() { | |||||
} |
/* | /* | ||||
* This program attempts to initialize an SD card and analyze its structure. | * This program attempts to initialize an SD card and analyze its structure. | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
/* | /* | ||||
* SD chip select pin. Common values are: | |||||
* | |||||
* Arduino Ethernet shield, pin 4. | |||||
* SparkFun SD shield, pin 8. | |||||
* Adafruit SD shields and modules, pin 10. | |||||
* Default SD chip select is the SPI SS pin. | |||||
*/ | |||||
const uint8_t SD_CHIP_SELECT = SS; | |||||
Set DISABLE_CS_PIN to disable a second SPI device. | |||||
For example, with the Ethernet shield, set DISABLE_CS_PIN | |||||
to 10 to disable the Ethernet controller. | |||||
*/ | |||||
const int8_t DISABLE_CS_PIN = -1; | |||||
/* | /* | ||||
* Set DISABLE_CHIP_SELECT to disable a second SPI device. | |||||
* For example, with the Ethernet shield, set DISABLE_CHIP_SELECT | |||||
* to 10 to disable the Ethernet controller. | |||||
*/ | |||||
const int8_t DISABLE_CHIP_SELECT = -1; | |||||
#if USE_SDIO | |||||
// Use faster SdioCardEX | |||||
SdFatSdioEX sd; | |||||
// SdFatSdio sd; | |||||
#else // USE_SDIO | |||||
SdFat sd; | |||||
#endif // USE_SDIO | |||||
Change the value of SD_CS_PIN if you are using SPI | |||||
and your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// serial output steam | |||||
ArduinoOutStream cout(Serial); | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
// global for card size | |||||
uint32_t cardSize; | |||||
// global for card erase size | |||||
uint32_t eraseSize; | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// store error strings in flash | |||||
#define sdErrorMsg(msg) sd.errorPrint(F(msg)); | |||||
SdFs sd; | |||||
cid_t m_cid; | |||||
csd_t m_csd; | |||||
uint32_t m_eraseSize; | |||||
uint32_t m_ocr; | |||||
static ArduinoOutStream cout(Serial); | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
uint8_t cidDmp() { | |||||
cid_t cid; | |||||
if (!sd.card()->readCID(&cid)) { | |||||
sdErrorMsg("readCID failed"); | |||||
return false; | |||||
} | |||||
bool cidDmp() { | |||||
cout << F("\nManufacturer ID: "); | cout << F("\nManufacturer ID: "); | ||||
cout << hex << int(cid.mid) << dec << endl; | |||||
cout << F("OEM ID: ") << cid.oid[0] << cid.oid[1] << endl; | |||||
cout << uppercase << showbase << hex << int(m_cid.mid) << dec << endl; | |||||
cout << F("OEM ID: ") << m_cid.oid[0] << m_cid.oid[1] << endl; | |||||
cout << F("Product: "); | cout << F("Product: "); | ||||
for (uint8_t i = 0; i < 5; i++) { | for (uint8_t i = 0; i < 5; i++) { | ||||
cout << cid.pnm[i]; | |||||
cout << m_cid.pnm[i]; | |||||
} | } | ||||
cout << F("\nVersion: "); | cout << F("\nVersion: "); | ||||
cout << int(cid.prv_n) << '.' << int(cid.prv_m) << endl; | |||||
cout << F("Serial number: ") << hex << cid.psn << dec << endl; | |||||
cout << int(m_cid.prv_n) << '.' << int(m_cid.prv_m) << endl; | |||||
cout << F("Serial number: ") << hex << m_cid.psn << dec << endl; | |||||
cout << F("Manufacturing date: "); | cout << F("Manufacturing date: "); | ||||
cout << int(cid.mdt_month) << '/'; | |||||
cout << (2000 + cid.mdt_year_low + 10 * cid.mdt_year_high) << endl; | |||||
cout << int(m_cid.mdt_month) << '/'; | |||||
cout << (2000 + m_cid.mdt_year_low + 10 * m_cid.mdt_year_high) << endl; | |||||
cout << endl; | cout << endl; | ||||
return true; | return true; | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
uint8_t csdDmp() { | |||||
csd_t csd; | |||||
uint8_t eraseSingleBlock; | |||||
if (!sd.card()->readCSD(&csd)) { | |||||
sdErrorMsg("readCSD failed"); | |||||
return false; | |||||
} | |||||
if (csd.v1.csd_ver == 0) { | |||||
eraseSingleBlock = csd.v1.erase_blk_en; | |||||
eraseSize = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low; | |||||
} else if (csd.v2.csd_ver == 1) { | |||||
eraseSingleBlock = csd.v2.erase_blk_en; | |||||
eraseSize = (csd.v2.sector_size_high << 1) | csd.v2.sector_size_low; | |||||
bool csdDmp() { | |||||
bool eraseSingleBlock; | |||||
if (m_csd.v1.csd_ver == 0) { | |||||
eraseSingleBlock = m_csd.v1.erase_blk_en; | |||||
m_eraseSize = (m_csd.v1.sector_size_high << 1) | m_csd.v1.sector_size_low; | |||||
} else if (m_csd.v2.csd_ver == 1) { | |||||
eraseSingleBlock = m_csd.v2.erase_blk_en; | |||||
m_eraseSize = (m_csd.v2.sector_size_high << 1) | m_csd.v2.sector_size_low; | |||||
} else { | } else { | ||||
cout << F("csd version error\n"); | |||||
cout << F("m_csd version error\n"); | |||||
return false; | return false; | ||||
} | } | ||||
eraseSize++; | |||||
cout << F("cardSize: ") << 0.000512*cardSize; | |||||
m_eraseSize++; | |||||
cout << F("cardSize: ") << 0.000512 * sdCardCapacity(&m_csd); | |||||
cout << F(" MB (MB = 1,000,000 bytes)\n"); | cout << F(" MB (MB = 1,000,000 bytes)\n"); | ||||
cout << F("flashEraseSize: ") << int(eraseSize) << F(" blocks\n"); | |||||
cout << F("flashEraseSize: ") << int(m_eraseSize) << F(" blocks\n"); | |||||
cout << F("eraseSingleBlock: "); | cout << F("eraseSingleBlock: "); | ||||
if (eraseSingleBlock) { | if (eraseSingleBlock) { | ||||
cout << F("true\n"); | cout << F("true\n"); | ||||
return true; | return true; | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// print partition table | |||||
uint8_t partDmp() { | |||||
mbr_t mbr; | |||||
if (!sd.card()->readBlock(0, (uint8_t*)&mbr)) { | |||||
sdErrorMsg("read MBR failed"); | |||||
void errorPrint() { | |||||
if (sd.sdErrorCode()) { | |||||
cout << F("SD errorCode: ") << hex << showbase; | |||||
printSdErrorSymbol(&Serial, sd.sdErrorCode()); | |||||
cout << F(" = ") << int(sd.sdErrorCode()) << endl; | |||||
cout << F("SD errorData = ") << int(sd.sdErrorData()) << endl; | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
bool mbrDmp() { | |||||
MbrSector_t mbr; | |||||
bool valid = true; | |||||
if (!sd.card()->readSector(0, (uint8_t*)&mbr)) { | |||||
cout << F("\nread MBR failed.\n"); | |||||
errorPrint(); | |||||
return false; | return false; | ||||
} | } | ||||
cout << F("\nSD Partition Table\n"); | |||||
cout << F("part,boot,bgnCHS[3],type,endCHS[3],start,length\n"); | |||||
for (uint8_t ip = 1; ip < 5; ip++) { | for (uint8_t ip = 1; ip < 5; ip++) { | ||||
part_t *pt = &mbr.part[ip - 1]; | |||||
if ((pt->boot & 0X7F) != 0 || pt->firstSector > cardSize) { | |||||
cout << F("\nNo MBR. Assuming Super Floppy format.\n"); | |||||
return true; | |||||
MbrPart_t *pt = &mbr.part[ip - 1]; | |||||
if ((pt->boot != 0 && pt->boot != 0X80) || | |||||
getLe32(pt->relativeSectors) > sdCardCapacity(&m_csd)) { | |||||
valid = false; | |||||
} | |||||
cout << int(ip) << ',' << uppercase << showbase << hex; | |||||
cout << int(pt->boot) << ','; | |||||
for (int i = 0; i < 3; i++ ) { | |||||
cout << int(pt->beginCHS[i]) << ','; | |||||
} | } | ||||
cout << int(pt->type) << ','; | |||||
for (int i = 0; i < 3; i++ ) { | |||||
cout << int(pt->endCHS[i]) << ','; | |||||
} | |||||
cout << dec << getLe32(pt->relativeSectors) << ','; | |||||
cout << getLe32(pt->totalSectors) << endl; | |||||
} | } | ||||
cout << F("\nSD Partition Table\n"); | |||||
cout << F("part,boot,type,start,length\n"); | |||||
for (uint8_t ip = 1; ip < 5; ip++) { | |||||
part_t *pt = &mbr.part[ip - 1]; | |||||
cout << int(ip) << ',' << hex << int(pt->boot) << ',' << int(pt->type); | |||||
cout << dec << ',' << pt->firstSector <<',' << pt->totalSectors << endl; | |||||
if (!valid) { | |||||
cout << F("\nMBR not valid, assuming Super Floppy format.\n"); | |||||
} | } | ||||
return true; | return true; | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void volDmp() { | |||||
cout << F("\nVolume is FAT") << int(sd.vol()->fatType()) << endl; | |||||
cout << F("blocksPerCluster: ") << int(sd.vol()->blocksPerCluster()) << endl; | |||||
cout << F("clusterCount: ") << sd.vol()->clusterCount() << endl; | |||||
cout << F("freeClusters: "); | |||||
uint32_t volFree = sd.vol()->freeClusterCount(); | |||||
cout << volFree << endl; | |||||
float fs = 0.000512*volFree*sd.vol()->blocksPerCluster(); | |||||
cout << F("freeSpace: ") << fs << F(" MB (MB = 1,000,000 bytes)\n"); | |||||
cout << F("fatStartBlock: ") << sd.vol()->fatStartBlock() << endl; | |||||
cout << F("fatCount: ") << int(sd.vol()->fatCount()) << endl; | |||||
cout << F("blocksPerFat: ") << sd.vol()->blocksPerFat() << endl; | |||||
cout << F("rootDirStart: ") << sd.vol()->rootDirStart() << endl; | |||||
cout << F("dataStartBlock: ") << sd.vol()->dataStartBlock() << endl; | |||||
if (sd.vol()->dataStartBlock() % eraseSize) { | |||||
cout << F("Data area is not aligned on flash erase boundaries!\n"); | |||||
void dmpVol() { | |||||
cout << F("\nScanning FAT, please wait.\n"); | |||||
uint32_t freeClusterCount = sd.freeClusterCount(); | |||||
if (sd.fatType() <= 32) { | |||||
cout << F("\nVolume is FAT") << int(sd.fatType()) << endl; | |||||
} else { | |||||
cout << F("\nVolume is exFAT\n"); | |||||
} | |||||
cout << F("sectorsPerCluster: ") << sd.sectorsPerCluster() << endl; | |||||
cout << F("clusterCount: ") << sd.clusterCount() << endl; | |||||
cout << F("freeClusterCount: ") << freeClusterCount << endl; | |||||
cout << F("fatStartSector: ") << sd.fatStartSector() << endl; | |||||
cout << F("dataStartSector: ") << sd.dataStartSector() << endl; | |||||
if (sd.dataStartSector() % m_eraseSize) { | |||||
cout << F("Data area is not aligned on flash erase boundary!\n"); | |||||
cout << F("Download and use formatter from www.sdcard.org!\n"); | cout << F("Download and use formatter from www.sdcard.org!\n"); | ||||
} | } | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
void printCardType() { | |||||
// use uppercase in hex and use 0X base prefix | |||||
cout << uppercase << showbase << endl; | |||||
cout << F("\nCard type: "); | |||||
// F stores strings in flash to save RAM | |||||
cout << F("SdFat version: ") << SD_FAT_VERSION << endl; | |||||
#if !USE_SDIO | |||||
if (DISABLE_CHIP_SELECT < 0) { | |||||
switch (sd.card()->type()) { | |||||
case SD_CARD_TYPE_SD1: | |||||
cout << F("SD1\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SD2: | |||||
cout << F("SD2\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SDHC: | |||||
if (sdCardCapacity(&m_csd) < 70000000) { | |||||
cout << F("SDHC\n"); | |||||
} else { | |||||
cout << F("SDXC\n"); | |||||
} | |||||
break; | |||||
default: | |||||
cout << F("Unknown\n"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printConfig(SdSpiConfig config) { | |||||
if (DISABLE_CS_PIN < 0) { | |||||
cout << F( | cout << F( | ||||
"\nAssuming the SD is the only SPI device.\n" | "\nAssuming the SD is the only SPI device.\n" | ||||
"Edit DISABLE_CHIP_SELECT to disable another device.\n"); | |||||
"Edit DISABLE_CS_PIN to disable an SPI device.\n"); | |||||
} else { | } else { | ||||
cout << F("\nDisabling SPI device on pin "); | cout << F("\nDisabling SPI device on pin "); | ||||
cout << int(DISABLE_CHIP_SELECT) << endl; | |||||
pinMode(DISABLE_CHIP_SELECT, OUTPUT); | |||||
digitalWrite(DISABLE_CHIP_SELECT, HIGH); | |||||
cout << int(DISABLE_CS_PIN) << endl; | |||||
pinMode(DISABLE_CS_PIN, OUTPUT); | |||||
digitalWrite(DISABLE_CS_PIN, HIGH); | |||||
} | |||||
cout << F("\nAssuming the SD chip select pin is: ") << int(config.csPin); | |||||
cout << F("\nEdit SD_CS_PIN to change the SD chip select pin.\n"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printConfig(SdioConfig config) { | |||||
(void)config; | |||||
cout << F("Assuming an SDIO interface.\n"); | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | } | ||||
cout << F("\nAssuming the SD chip select pin is: ") <<int(SD_CHIP_SELECT); | |||||
cout << F("\nEdit SD_CHIP_SELECT to change the SD chip select pin.\n"); | |||||
#endif // !USE_SDIO | |||||
cout << F("SdFat version: ") << SD_FAT_VERSION << endl; | |||||
printConfig(SD_CONFIG); | |||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void loop() { | void loop() { | ||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
uint32_t t = millis(); | uint32_t t = millis(); | ||||
#if USE_SDIO | |||||
if (!sd.cardBegin()) { | |||||
sdErrorMsg("\ncardBegin failed"); | |||||
return; | |||||
} | |||||
#else // USE_SDIO | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.cardBegin(SD_CHIP_SELECT, SD_SCK_MHZ(50))) { | |||||
sdErrorMsg("cardBegin failed"); | |||||
if (!sd.cardBegin(SD_CONFIG)) { | |||||
cout << F( | |||||
"\nSD initialization failed.\n" | |||||
"Do not reformat the card!\n" | |||||
"Is the card correctly inserted?\n" | |||||
"Is there a wiring/soldering problem?\n"); | |||||
if (isSpi(SD_CONFIG)) { | |||||
cout << F( | |||||
"Is SD_CS_PIN set to the correct value?\n" | |||||
"Does another SPI device need to be disabled?\n" | |||||
); | |||||
} | |||||
errorPrint(); | |||||
return; | return; | ||||
} | } | ||||
#endif // USE_SDIO | |||||
t = millis() - t; | t = millis() - t; | ||||
cout << F("init time: ") << t << " ms" << endl; | |||||
cardSize = sd.card()->cardSize(); | |||||
if (cardSize == 0) { | |||||
sdErrorMsg("cardSize failed"); | |||||
if (!sd.card()->readCID(&m_cid) || | |||||
!sd.card()->readCSD(&m_csd) || | |||||
!sd.card()->readOCR(&m_ocr)) { | |||||
cout << F("readInfo failed\n"); | |||||
errorPrint(); | |||||
return; | return; | ||||
} | } | ||||
cout << F("\ninit time: ") << t << " ms" << endl; | |||||
cout << F("\nCard type: "); | |||||
switch (sd.card()->type()) { | |||||
case SD_CARD_TYPE_SD1: | |||||
cout << F("SD1\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SD2: | |||||
cout << F("SD2\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SDHC: | |||||
if (cardSize < 70000000) { | |||||
cout << F("SDHC\n"); | |||||
} else { | |||||
cout << F("SDXC\n"); | |||||
} | |||||
break; | |||||
default: | |||||
cout << F("Unknown\n"); | |||||
} | |||||
if (!cidDmp()) { | |||||
printCardType(); | |||||
cidDmp(); | |||||
csdDmp(); | |||||
cout << F("\nOCR: ") << uppercase << showbase; | |||||
cout << hex << m_ocr << dec << endl; | |||||
if (!mbrDmp()) { | |||||
return; | return; | ||||
} | } | ||||
if (!csdDmp()) { | |||||
if (!sd.volumeBegin()) { | |||||
cout << F("\nvolumeBegin failed. Is the card formatted?\n"); | |||||
errorPrint(); | |||||
return; | return; | ||||
} | } | ||||
uint32_t ocr; | |||||
if (!sd.card()->readOCR(&ocr)) { | |||||
sdErrorMsg("\nreadOCR failed"); | |||||
return; | |||||
} | |||||
cout << F("OCR: ") << hex << ocr << dec << endl; | |||||
if (!partDmp()) { | |||||
return; | |||||
} | |||||
if (!sd.fsBegin()) { | |||||
sdErrorMsg("\nFile System initialization failed.\n"); | |||||
return; | |||||
} | |||||
volDmp(); | |||||
} | |||||
dmpVol(); | |||||
} |
// An example of the SdFatSoftSpi template class. | |||||
// This example is for an Adafruit Data Logging Shield on a Mega. | |||||
// An example of the SoftSpiDriver template class. | |||||
// This example is for an old Adafruit Data Logging Shield on a Mega. | |||||
// Software SPI is required on Mega since this shield connects to pins 10-13. | // Software SPI is required on Mega since this shield connects to pins 10-13. | ||||
// This example will also run on an Uno and other boards using software SPI. | // This example will also run on an Uno and other boards using software SPI. | ||||
// | // | ||||
#include <SPI.h> | #include <SPI.h> | ||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#if ENABLE_SOFTWARE_SPI_CLASS // Must be set in SdFat/SdFatConfig.h | |||||
#if SPI_DRIVER_SELECT == 2 // Must be set in SdFat/SdFatConfig.h | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
// | |||||
// Chip select may be constant or RAM variable. | |||||
const uint8_t SD_CS_PIN = 10; | |||||
// | // | ||||
// Pin numbers in templates must be constants. | // Pin numbers in templates must be constants. | ||||
const uint8_t SOFT_MISO_PIN = 12; | const uint8_t SOFT_MISO_PIN = 12; | ||||
const uint8_t SOFT_MOSI_PIN = 11; | const uint8_t SOFT_MOSI_PIN = 11; | ||||
const uint8_t SOFT_SCK_PIN = 13; | const uint8_t SOFT_SCK_PIN = 13; | ||||
// | |||||
// Chip select may be constant or RAM variable. | |||||
const uint8_t SD_CHIP_SELECT_PIN = 10; | |||||
// SdFat software SPI template | // SdFat software SPI template | ||||
SdFatSoftSpi<SOFT_MISO_PIN, SOFT_MOSI_PIN, SOFT_SCK_PIN> sd; | |||||
SoftSpiDriver<SOFT_MISO_PIN, SOFT_MOSI_PIN, SOFT_SCK_PIN> softSpi; | |||||
// Speed argument is ignored for software SPI. | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI, SD_SCK_MHZ(0), &softSpi) | |||||
// Test file. | |||||
SdFile file; | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
if (!sd.begin(SD_CHIP_SELECT_PIN)) { | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(); | sd.initErrorHalt(); | ||||
} | } | ||||
if (!file.open("SoftSPI.txt", O_RDWR O _CREAT)) { | |||||
if (!file.open("SoftSPI.txt", O_RDWR | O_CREAT)) { | |||||
sd.errorHalt(F("open failed")); | sd.errorHalt(F("open failed")); | ||||
} | } | ||||
file.println(F("This line was printed using software SPI.")); | file.println(F("This line was printed using software SPI.")); | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void loop() {} | void loop() {} | ||||
#else // ENABLE_SOFTWARE_SPI_CLASS | |||||
#error ENABLE_SOFTWARE_SPI_CLASS must be set non-zero in SdFat/SdFatConfig.h | |||||
#endif //ENABLE_SOFTWARE_SPI_CLASS | |||||
#else // SPI_DRIVER_SELECT | |||||
#error SPI_DRIVER_SELECT must be two in SdFat/SdFatConfig.h | |||||
#endif //SPI_DRIVER_SELECT |
// Test of time-stamp callback with Teensy3. | |||||
// The upload time will be used to set the RTC. | |||||
// You must arrange for syncing the RTC. | |||||
#include "SdFat.h" | |||||
#include <TimeLib.h> | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 3 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
//------------------------------------------------------------------------------ | |||||
// Call back for file timestamps. Only called for file create and sync(). | |||||
void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) { | |||||
// Return date using FS_DATE macro to format fields. | |||||
*date = FS_DATE(year(), month(), day()); | |||||
// Return time using FS_TIME macro to format fields. | |||||
*time = FS_TIME(hour(), minute(), second()); | |||||
// Return low time bits in units of 10 ms. | |||||
*ms10 = second() & 1 ? 100 : 0; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
time_t getTeensy3Time() | |||||
{ | |||||
return Teensy3Clock.get(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printField(Print* pr, char sep, uint8_t v) { | |||||
if (sep) { | |||||
pr->write(sep); | |||||
} | |||||
if (v < 10) { | |||||
pr->write('0'); | |||||
} | |||||
pr->print(v); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void printNow(Print* pr) { | |||||
pr->print(year()); | |||||
printField(pr, '-', month()); | |||||
printField(pr, '-', day()); | |||||
printField(pr, ' ', hour()); | |||||
printField(pr, ':', minute()); | |||||
printField(pr, ':', second()); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
// set the Time library to use Teensy 3.0's RTC to keep time | |||||
setSyncProvider(getTeensy3Time); | |||||
Serial.begin(9600); | |||||
while (!Serial) { | |||||
yield(); | |||||
} | |||||
Serial.println(F("Type any character to begin")); | |||||
while (!Serial.available()) { | |||||
yield(); | |||||
} | |||||
if (timeStatus()!= timeSet) { | |||||
Serial.println("Unable to sync with the RTC"); | |||||
return; | |||||
} | |||||
Serial.print(F("DateTime::now ")); | |||||
printNow(&Serial); | |||||
Serial.println(); | |||||
// Set callback | |||||
FsDateTime::setCallback(dateTime); | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
// Remove old version to set create time. | |||||
if (sd.exists("RtcTest.txt")) { | |||||
sd.remove("RtcTest.txt"); | |||||
} | |||||
if (!file.open("RtcTest.txt", FILE_WRITE)) { | |||||
Serial.println(F("file.open failed")); | |||||
return; | |||||
} | |||||
// Print current date time to file. | |||||
file.print(F("Test file at: ")); | |||||
printNow(&file); | |||||
file.println(); | |||||
file.close(); | |||||
// List files in SD root. | |||||
sd.ls(LS_DATE | LS_SIZE); | |||||
Serial.println(F("Done")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
} |
// Simple performance test for Teensy 3.5/3.6 SDHC. | // Simple performance test for Teensy 3.5/3.6 SDHC. | ||||
// Demonstrates yield() efficiency. | |||||
// Warning SdFatSdio and SdFatSdioEX normally should | |||||
// not both be used in a program. | |||||
// Each has its own cache and member variables. | |||||
// Demonstrates yield() efficiency for SDIO modes. | |||||
// Uses built-in SD for SPI modes. | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 3 | |||||
// 32 KiB buffer. | // 32 KiB buffer. | ||||
const size_t BUF_DIM = 32768; | const size_t BUF_DIM = 32768; | ||||
// 8 MiB file. | // 8 MiB file. | ||||
const uint32_t FILE_SIZE = 256UL*BUF_DIM; | const uint32_t FILE_SIZE = 256UL*BUF_DIM; | ||||
SdFatSdio sd; | |||||
SdFatSdioEX sdEx; | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | |||||
File file; | File file; | ||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
uint8_t buf[BUF_DIM]; | uint8_t buf[BUF_DIM]; | ||||
uint32_t yieldCalls = 0; | uint32_t yieldCalls = 0; | ||||
// Max busy time for single yield call. | // Max busy time for single yield call. | ||||
uint32_t yieldMaxUsec = 0; | uint32_t yieldMaxUsec = 0; | ||||
// Control access to the two versions of SdFat. | |||||
bool useEx = false; | |||||
//----------------------------------------------------------------------------- | |||||
bool sdBusy() { | |||||
return useEx ? sdEx.card()->isBusy() : sd.card()->isBusy(); | |||||
} | |||||
//----------------------------------------------------------------------------- | //----------------------------------------------------------------------------- | ||||
void errorHalt(const char* msg) { | void errorHalt(const char* msg) { | ||||
if (useEx) { | |||||
sdEx.errorHalt(msg); | |||||
} else { | |||||
sd.errorHalt(msg); | |||||
Serial.print("Error: "); | |||||
Serial.println(msg); | |||||
if (sd.sdErrorCode()) { | |||||
if (sd.sdErrorCode() == SD_CARD_ERROR_ACMD41) { | |||||
Serial.println("Try power cycling the SD card."); | |||||
} | |||||
printSdErrorSymbol(&Serial, sd.sdErrorCode()); | |||||
Serial.print(", ErrorData: 0X"); | |||||
Serial.println(sd.sdErrorData(), HEX); | |||||
} | } | ||||
while (true) {} | |||||
} | |||||
bool ready = false; | |||||
//----------------------------------------------------------------------------- | |||||
bool sdBusy() { | |||||
return ready ? sd.card()->isBusy() : false; | |||||
} | } | ||||
//------------------------------------------------------------------------------ | |||||
uint32_t kHzSdClk() { | |||||
return useEx ? sdEx.card()->kHzSdClk() : sd.card()->kHzSdClk(); | |||||
} | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// Replace "weak" system yield() function. | // Replace "weak" system yield() function. | ||||
void yield() { | void yield() { | ||||
Serial.println("\nsize,write,read"); | Serial.println("\nsize,write,read"); | ||||
Serial.println("bytes,KB/sec,KB/sec"); | Serial.println("bytes,KB/sec,KB/sec"); | ||||
for (size_t nb = 512; nb <= BUF_DIM; nb *= 2) { | for (size_t nb = 512; nb <= BUF_DIM; nb *= 2) { | ||||
file.truncate(0); | |||||
uint32_t nRdWr = FILE_SIZE/nb; | |||||
uint32_t nRdWr = FILE_SIZE/nb; | |||||
if (!file.truncate(0)) { | |||||
errorHalt("truncate failed"); | |||||
} | |||||
Serial.print(nb); | Serial.print(nb); | ||||
Serial.print(','); | Serial.print(','); | ||||
uint32_t t = micros(); | uint32_t t = micros(); | ||||
Serial.println(yieldCalls); | Serial.println(yieldCalls); | ||||
Serial.print("yieldMaxUsec "); | Serial.print("yieldMaxUsec "); | ||||
Serial.println(yieldMaxUsec); | Serial.println(yieldMaxUsec); | ||||
Serial.print("kHzSdClk "); | |||||
Serial.println(kHzSdClk()); | |||||
// Serial.print("kHzSdClk "); | |||||
// Serial.println(kHzSdClk()); | |||||
Serial.println("Done"); | Serial.println("Done"); | ||||
} | } | ||||
//----------------------------------------------------------------------------- | //----------------------------------------------------------------------------- | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
while (!Serial) { | while (!Serial) { | ||||
} | } | ||||
Serial.println("SdFatSdioEX uses extended multi-block transfers without DMA."); | |||||
Serial.println("SdFatSdio uses a traditional DMA SDIO implementation."); | |||||
Serial.println("Note the difference is speed and busy yield time.\n"); | |||||
} | } | ||||
//----------------------------------------------------------------------------- | //----------------------------------------------------------------------------- | ||||
void loop() { | void loop() { | ||||
static bool warn = true; | |||||
if (warn) { | |||||
warn = false; | |||||
Serial.println( | |||||
"SD cards must be power cycled to leave\n" | |||||
"SPI mode so do SDIO tests first.\n" | |||||
"\nCycle power on the card if an error occurs."); | |||||
} | |||||
do { | do { | ||||
delay(10); | delay(10); | ||||
} while (Serial.available() && Serial.read()); | } while (Serial.available() && Serial.read()); | ||||
Serial.println("Type '1' for SdFatSdioEX or '2' for SdFatSdio"); | |||||
Serial.println( | |||||
"\nType '1' for FIFO SDIO" | |||||
"\n '2' for DMA SDIO" | |||||
"\n '3' for Dedicated SPI" | |||||
"\n '4' for Shared SPI"); | |||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
} | } | ||||
char c = Serial.read(); | char c = Serial.read(); | ||||
if (c != '1' && c != '2') { | |||||
Serial.println("Invalid input"); | |||||
return; | |||||
} | |||||
if (c =='1') { | if (c =='1') { | ||||
useEx = true; | |||||
if (!sdEx.begin()) { | |||||
sd.initErrorHalt("SdFatSdioEX begin() failed"); | |||||
if (!sd.begin(SdioConfig(FIFO_SDIO))) { | |||||
errorHalt("begin failed"); | |||||
} | } | ||||
// make sdEx the current volume. | |||||
sdEx.chvol(); | |||||
} else { | |||||
useEx = false; | |||||
if (!sd.begin()) { | |||||
sd.initErrorHalt("SdFatSdio begin() failed"); | |||||
Serial.println("\nFIFO SDIO mode."); | |||||
} else if (c == '2') { | |||||
if (!sd.begin(SdioConfig(DMA_SDIO))) { | |||||
errorHalt("begin failed"); | |||||
} | |||||
Serial.println("\nDMA SDIO mode - slow for small transfers."); | |||||
} else if (c == '3') { | |||||
if (!sd.begin(SdSpiConfig(SDCARD_SS_PIN, DEDICATED_SPI, SD_SCK_MHZ(50)))) { | |||||
errorHalt("begin failed"); | |||||
} | |||||
Serial.println("\nDedicated SPI mode."); | |||||
} else if (c == '4') { | |||||
if (!sd.begin(SdSpiConfig(SDCARD_SS_PIN, SHARED_SPI, SD_SCK_MHZ(50)))) { | |||||
errorHalt("begin failed"); | |||||
} | } | ||||
// make sd the current volume. | |||||
sd.chvol(); | |||||
Serial.println("\nShared SPI mode - slow for small transfers."); | |||||
} else { | |||||
Serial.println("Invalid input"); | |||||
return; | |||||
} | } | ||||
ready = true; | |||||
runTest(); | runTest(); | ||||
ready = false; | |||||
} | } |
/* | /* | ||||
* This program is a simple binary write/read benchmark. | * This program is a simple binary write/read benchmark. | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
#include "FreeStack.h" | #include "FreeStack.h" | ||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
// Set PRE_ALLOCATE true to pre-allocate file clusters. | |||||
const bool PRE_ALLOCATE = true; | |||||
// SD chip select pin | |||||
const uint8_t chipSelect = SS; | |||||
// Set SKIP_FIRST_LATENCY true if the first read/write to the SD can | |||||
// be avoid by writing a file header or reading the first record. | |||||
const bool SKIP_FIRST_LATENCY = true; | |||||
// Size of read/write. | // Size of read/write. | ||||
const size_t BUF_SIZE = 512; | const size_t BUF_SIZE = 512; | ||||
// File size in bytes. | // File size in bytes. | ||||
const uint32_t FILE_SIZE = 1000000UL*FILE_SIZE_MB; | const uint32_t FILE_SIZE = 1000000UL*FILE_SIZE_MB; | ||||
uint8_t buf[BUF_SIZE]; | |||||
// Insure 4-byte alignment. | |||||
uint32_t buf32[(BUF_SIZE + 3)/4]; | |||||
uint8_t* buf = (uint8_t*)buf32; | |||||
// file system | |||||
#if USE_SDIO | |||||
// Traditional DMA version. | |||||
// SdFatSdio sd; | |||||
// Faster version. | |||||
SdFatSdioEX sd; | |||||
#else // USE_SDIO | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | SdFat sd; | ||||
#endif // USE_SDIO | |||||
// Set ENABLE_EXTENDED_TRANSFER_CLASS to use extended SD I/O. | |||||
// Requires dedicated use of the SPI bus. | |||||
// SdFatEX sd; | |||||
// Set ENABLE_SOFTWARE_SPI_CLASS to use software SPI. | |||||
// Args are misoPin, mosiPin, sckPin. | |||||
// SdFatSoftSpi<6, 7, 5> sd; | |||||
// test file | |||||
SdFile file; | |||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
// Serial output stream | // Serial output stream | ||||
ArduinoOutStream cout(Serial); | ArduinoOutStream cout(Serial); | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// Store error strings in flash to save RAM. | // Store error strings in flash to save RAM. | ||||
#define error(s) sd.errorHalt(F(s)) | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void cidDmp() { | void cidDmp() { | ||||
cid_t cid; | cid_t cid; | ||||
if (!sd.card()->readCID(&cid)) { | if (!sd.card()->readCID(&cid)) { | ||||
error("readCID failed"); | error("readCID failed"); | ||||
} | } | ||||
cout << F("\nManufacturer ID: "); | cout << F("\nManufacturer ID: "); | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
delay(1000); | delay(1000); | ||||
cout << F("\nUse a freshly formatted SD for best performance.\n"); | cout << F("\nUse a freshly formatted SD for best performance.\n"); | ||||
if (!ENABLE_DEDICATED_SPI) { | |||||
cout << F( | |||||
"\nSet ENABLE_DEDICATED_SPI nonzero in\n" | |||||
"SdFatConfig.h for best SPI performance.\n"); | |||||
} | |||||
// use uppercase in hex and use 0X base prefix | // use uppercase in hex and use 0X base prefix | ||||
cout << uppercase << showbase << endl; | cout << uppercase << showbase << endl; | ||||
uint32_t maxLatency; | uint32_t maxLatency; | ||||
uint32_t minLatency; | uint32_t minLatency; | ||||
uint32_t totalLatency; | uint32_t totalLatency; | ||||
bool skipLatency; | |||||
// Discard any input. | // Discard any input. | ||||
do { | do { | ||||
delay(10); | delay(10); | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
// F( stores strings in flash to save RAM | |||||
// F() stores strings in flash to save RAM | |||||
cout << F("Type any character to start\n"); | cout << F("Type any character to start\n"); | ||||
while (!Serial.available()) { | while (!Serial.available()) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
cout << F("chipSelect: ") << int(chipSelect) << endl; | |||||
cout << F("FreeStack: ") << FreeStack() << endl; | cout << F("FreeStack: ") << FreeStack() << endl; | ||||
#if USE_SDIO | |||||
if (!sd.begin()) { | |||||
sd.initErrorHalt(); | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | } | ||||
#else // USE_SDIO | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
if (sd.fatType() == FAT_TYPE_EXFAT) { | |||||
cout << F("Type is exFAT") << endl; | |||||
} else { | |||||
cout << F("Type is FAT") << int(sd.fatType()) << endl; | |||||
} | } | ||||
#endif // USE_SDIO | |||||
cout << F("Type is FAT") << int(sd.vol()->fatType()) << endl; | |||||
cout << F("Card size: ") << sd.card()->cardSize()*512E-9; | |||||
cout << F("Card size: ") << sd.card()->sectorCount()*512E-9; | |||||
cout << F(" GB (GB = 1E9 bytes)") << endl; | cout << F(" GB (GB = 1E9 bytes)") << endl; | ||||
cidDmp(); | cidDmp(); | ||||
} | } | ||||
// fill buf with known data | // fill buf with known data | ||||
for (size_t i = 0; i < (BUF_SIZE-2); i++) { | |||||
for (uint16_t i = 0; i < (BUF_SIZE-2); i++) { | |||||
buf[i] = 'A' + (i % 26); | buf[i] = 'A' + (i % 26); | ||||
} | } | ||||
buf[BUF_SIZE-2] = '\r'; | buf[BUF_SIZE-2] = '\r'; | ||||
buf[BUF_SIZE-1] = '\n'; | buf[BUF_SIZE-1] = '\n'; | ||||
cout << F("File size ") << FILE_SIZE_MB << F(" MB\n"); | |||||
cout << F("Buffer size ") << BUF_SIZE << F(" bytes\n"); | |||||
cout << F("FILE_SIZE_MB = ") << FILE_SIZE_MB << endl; | |||||
cout << F("BUF_SIZE = ") << BUF_SIZE << F(" bytes\n"); | |||||
cout << F("Starting write test, please wait.") << endl << endl; | cout << F("Starting write test, please wait.") << endl << endl; | ||||
// do write test | // do write test | ||||
uint32_t n = FILE_SIZE/sizeof(buf); | |||||
uint32_t n = FILE_SIZE/BUF_SIZE; | |||||
cout <<F("write speed and latency") << endl; | cout <<F("write speed and latency") << endl; | ||||
cout << F("speed,max,min,avg") << endl; | cout << F("speed,max,min,avg") << endl; | ||||
cout << F("KB/Sec,usec,usec,usec") << endl; | cout << F("KB/Sec,usec,usec,usec") << endl; | ||||
for (uint8_t nTest = 0; nTest < WRITE_COUNT; nTest++) { | for (uint8_t nTest = 0; nTest < WRITE_COUNT; nTest++) { | ||||
file.truncate(0); | file.truncate(0); | ||||
if (PRE_ALLOCATE) { | |||||
if (!file.preAllocate(FILE_SIZE)) { | |||||
error("preAllocate failed"); | |||||
} | |||||
} | |||||
maxLatency = 0; | maxLatency = 0; | ||||
minLatency = 9999999; | minLatency = 9999999; | ||||
totalLatency = 0; | totalLatency = 0; | ||||
skipLatency = SKIP_FIRST_LATENCY; | |||||
t = millis(); | t = millis(); | ||||
for (uint32_t i = 0; i < n; i++) { | for (uint32_t i = 0; i < n; i++) { | ||||
uint32_t m = micros(); | uint32_t m = micros(); | ||||
if (file.write(buf, sizeof(buf)) != sizeof(buf)) { | |||||
sd.errorPrint("write failed"); | |||||
file.close(); | |||||
return; | |||||
if (file.write(buf, BUF_SIZE) != BUF_SIZE) { | |||||
error("write failed"); | |||||
} | } | ||||
m = micros() - m; | m = micros() - m; | ||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
totalLatency += m; | totalLatency += m; | ||||
if (skipLatency) { | |||||
// Wait until first write to SD, not just a copy to the cache. | |||||
skipLatency = file.curPosition() < 512; | |||||
} else { | |||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
} | |||||
} | } | ||||
file.sync(); | file.sync(); | ||||
t = millis() - t; | t = millis() - t; | ||||
maxLatency = 0; | maxLatency = 0; | ||||
minLatency = 9999999; | minLatency = 9999999; | ||||
totalLatency = 0; | totalLatency = 0; | ||||
skipLatency = SKIP_FIRST_LATENCY; | |||||
t = millis(); | t = millis(); | ||||
for (uint32_t i = 0; i < n; i++) { | for (uint32_t i = 0; i < n; i++) { | ||||
buf[BUF_SIZE-1] = 0; | buf[BUF_SIZE-1] = 0; | ||||
uint32_t m = micros(); | uint32_t m = micros(); | ||||
int32_t nr = file.read(buf, sizeof(buf)); | |||||
if (nr != sizeof(buf)) { | |||||
sd.errorPrint("read failed"); | |||||
file.close(); | |||||
return; | |||||
int32_t nr = file.read(buf, BUF_SIZE); | |||||
if (nr != BUF_SIZE) { | |||||
error("read failed"); | |||||
} | } | ||||
m = micros() - m; | m = micros() - m; | ||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
totalLatency += m; | totalLatency += m; | ||||
if (buf[BUF_SIZE-1] != '\n') { | if (buf[BUF_SIZE-1] != '\n') { | ||||
error("data check"); | |||||
error("data check error"); | |||||
} | |||||
if (skipLatency) { | |||||
skipLatency = false; | |||||
} else { | |||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
} | } | ||||
} | } | ||||
s = file.fileSize(); | s = file.fileSize(); |
#include "SdFat.h" | |||||
#ifdef __AVR__ | |||||
const uint32_t FILE_SIZE_MiB = 10UL; | |||||
#else // __AVR__ | |||||
const uint32_t FILE_SIZE_MiB = 100UL; | |||||
#endif | |||||
bool waitBusy = true; | |||||
#define SD_CONFIG SdSpiConfig(SS, DEDICATED_SPI) | |||||
// Config for Teensy 3.5/3.6 buit-in SD. | |||||
//#define SD_CONFIG SdSpiConfig(SDCARD_SS_PIN, DEDICATED_SPI) | |||||
//#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
//------------------------------------------------------------------------------ | |||||
const uint64_t FILE_SIZE = (uint64_t)FILE_SIZE_MiB << 20; | |||||
SdExFat sd; | |||||
ExFile file; | |||||
uint8_t buf[512]; | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
delay(1000); | |||||
Serial.println(F("Type any character to start\n")); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
// Initialize the SD card. | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
if (!file.open("SdBusyTest.bin", O_RDWR | O_CREAT |O_TRUNC)) { | |||||
error("file open failed"); | |||||
} | |||||
if (!file.preAllocate(FILE_SIZE)) { | |||||
error("preallocate failed"); | |||||
} | |||||
Serial.print(F("Starting write of ")); | |||||
Serial.print(FILE_SIZE_MiB); | |||||
Serial.println(F(" MiB.")); | |||||
uint32_t maxMicros = 0; | |||||
uint32_t minMicros = 99999999; | |||||
uint32_t ms = millis(); | |||||
// Write a dummy sector to start a multi-sector write. | |||||
if(file.write(buf, sizeof(buf)) != sizeof(buf)) { | |||||
error("write failed for first sector"); | |||||
} | |||||
while (file.position() < FILE_SIZE) { | |||||
if (waitBusy) { | |||||
while (sd.card()->isBusy()) {} | |||||
} | |||||
uint32_t m = micros(); | |||||
if (file.write(buf, sizeof(buf)) != sizeof(buf)) { | |||||
error("write failed"); | |||||
} | |||||
m = micros() - m; | |||||
if (m < minMicros) { | |||||
minMicros = m; | |||||
} | |||||
if (m > maxMicros) { | |||||
maxMicros = m; | |||||
} | |||||
} | |||||
ms = millis() - ms; | |||||
Serial.print(F("minMicros: ")); | |||||
Serial.println(minMicros); | |||||
Serial.print(F("maxMicros: ")); | |||||
Serial.println(maxMicros); | |||||
Serial.print(1e-3*ms); | |||||
Serial.println(F(" Seconds")); | |||||
Serial.print(1.0*FILE_SIZE/ms); | |||||
Serial.println(F(" KB/sec")); | |||||
} | |||||
void loop() {} |
#include "SdFat.h" | |||||
#define DUMP_RAW 0 | |||||
#define DUMP_UPCASE 0 | |||||
const uint8_t CS_PIN = SS; | |||||
//#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#define SD_CONFIG SdSpiConfig(CS_PIN) | |||||
SdExFat sd; | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) {yield();} | |||||
Serial.println(F("Type any character to begin")); | |||||
while (!Serial.available()) {yield();} | |||||
if (!sd.begin(SD_CONFIG)){ | |||||
error("begin failed"); | |||||
} | |||||
#if DUMP_RAW | |||||
sd.dmpSector(&Serial, 0); | |||||
for (uint8_t i = 0; i < 24; i++) { | |||||
sd.dmpSector(&Serial, 0X8000 + i); | |||||
Serial.println(); | |||||
} | |||||
return; | |||||
#endif // DUMP_RAW | |||||
ExFatFile root; | |||||
if (!root.openRoot(&sd)) { | |||||
error("openRoot failed"); | |||||
} | |||||
sd.printDir(&Serial, &root); | |||||
// startSector = 0, sectorCount = 1. | |||||
sd.dmpFat(&Serial, 0, 1); | |||||
sd.dmpBitmap(&Serial); | |||||
sd.printVolInfo(&Serial); | |||||
sd.checkUpcase(&Serial); | |||||
#if DUMP_UPCASE | |||||
sd.printUpcase(&Serial); | |||||
#endif // DUMP_UPCASE | |||||
// sd.dmpCluster(&Serial, 8, 0, 4); | |||||
Serial.println("Done"); | |||||
} | |||||
void loop() { | |||||
// put your main code here, to run repeatedly: | |||||
} |
* Note: Some cards may 'stutter' others just get slow due | * Note: Some cards may 'stutter' others just get slow due | ||||
* to the number of flash erases this program causes. | * to the number of flash erases this program causes. | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include <SdFat.h> | #include <SdFat.h> | ||||
#include <SdFatUtil.h> | |||||
const uint8_t SD_CHIP_SELECT = SS; | const uint8_t SD_CHIP_SELECT = SS; | ||||
SdFat sd; | SdFat sd; | ||||
typedef File file_t; | |||||
// store error strings in flash to save RAM | // store error strings in flash to save RAM | ||||
#define error(s) sd.errorHalt(F(s)) | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
/* | /* | ||||
* create enough files to force a cluster to be allocated to dir. | * create enough files to force a cluster to be allocated to dir. | ||||
*/ | */ | ||||
void dirAllocTest(FatFile* dir) { | |||||
void dirAllocTest(file_t* dir) { | |||||
char buf[32], name[32]; | char buf[32], name[32]; | ||||
SdFile file; | |||||
file_t file; | |||||
uint16_t n; | uint16_t n; | ||||
uint32_t size = dir->dirSize(); | uint32_t size = dir->dirSize(); | ||||
// open start time | // open start time | ||||
uint32_t t0 = millis(); | uint32_t t0 = millis(); | ||||
if (!file.open(dir, name, O_WRITE | O_CREAT | O_EXCL)) { | |||||
if (!file.open(dir, name, O_WRONLY | O_CREAT | O_EXCL)) { | |||||
error("open for write failed"); | error("open for write failed"); | ||||
} | } | ||||
// open start time | // open start time | ||||
uint32_t t0 = millis(); | uint32_t t0 = millis(); | ||||
if (!file.open(dir, name, O_READ)) { | |||||
if (!file.open(dir, name, O_RDONLY)) { | |||||
error("open for read failed"); | error("open for read failed"); | ||||
} | } | ||||
} | } | ||||
void setup() { | void setup() { | ||||
file_t root; | |||||
Serial.begin(9600); | Serial.begin(9600); | ||||
while (!Serial) {} // wait for Leonardo | while (!Serial) {} // wait for Leonardo | ||||
Serial.println(F("Type any character to start")); | Serial.println(F("Type any character to start")); | ||||
// initialize the SD card at SPI_FULL_SPEED for best performance. | // initialize the SD card at SPI_FULL_SPEED for best performance. | ||||
// try SPI_HALF_SPEED if bus errors occur. | // try SPI_HALF_SPEED if bus errors occur. | ||||
if (!sd.begin(SD_CHIP_SELECT, SPI_FULL_SPEED)) sd.initErrorHalt(); | |||||
if (!sd.begin(SD_CHIP_SELECT, SPI_FULL_SPEED)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
root.openRoot(&sd); | |||||
uint32_t m = millis(); | uint32_t m = millis(); | ||||
// write files to root if FAT32 | |||||
if (sd.vol()->fatType() == 32) { | |||||
// write files to root if not FAT16 | |||||
if (sd.fatType() != 16) { | |||||
Serial.println(F("Writing files to root")); | Serial.println(F("Writing files to root")); | ||||
dirAllocTest(sd.vwd()); | |||||
dirAllocTest(&root); | |||||
} | } | ||||
// create sub1 and write files | // create sub1 and write files | ||||
SdFile sub1; | |||||
if (!sub1.mkdir(sd.vwd(), "SUB1")) error("makdeDir SUB1 failed"); | |||||
file_t sub1; | |||||
if (!sub1.mkdir(&root, "SUB1")) error("makdeDir SUB1 failed"); | |||||
Serial.println(F("Writing files to SUB1")); | Serial.println(F("Writing files to SUB1")); | ||||
dirAllocTest(&sub1); | dirAllocTest(&sub1); | ||||
// create sub2 and write files | // create sub2 and write files | ||||
SdFile sub2; | |||||
file_t sub2; | |||||
if (!sub2.mkdir(&sub1, "SUB2")) error("mkdir SUB2 failed"); | if (!sub2.mkdir(&sub1, "SUB2")) error("mkdir SUB2 failed"); | ||||
Serial.println(F("Writing files to SUB2")); | Serial.println(F("Writing files to SUB2")); | ||||
dirAllocTest(&sub2); | dirAllocTest(&sub2); |
* of flash erase operations caused by many random | * of flash erase operations caused by many random | ||||
* writes to file structures. | * writes to file structures. | ||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include <SdFat.h> | #include <SdFat.h> | ||||
#include <SdFatUtil.h> | |||||
const uint8_t SD_CHIP_SELECT = SS; | const uint8_t SD_CHIP_SELECT = SS; | ||||
SdFat sd; | SdFat sd; | ||||
typedef File file_t; | |||||
// store error strings in flash to save RAM | // store error strings in flash to save RAM | ||||
#define error(s) sd.errorHalt(F(s)) | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
/* | /* | ||||
* remove all files in dir. | * remove all files in dir. | ||||
*/ | */ | ||||
void deleteFiles(FatFile* dir) { | void deleteFiles(FatFile* dir) { | ||||
char name[32]; | char name[32]; | ||||
SdFile file; | |||||
file_t file; | |||||
// open and delete files | // open and delete files | ||||
for (uint16_t n = 0; ; n++){ | for (uint16_t n = 0; ; n++){ | ||||
uint32_t t0 = millis(); | uint32_t t0 = millis(); | ||||
// assume done if open fails | // assume done if open fails | ||||
if (!file.open(dir, name, O_WRITE)) return; | |||||
if (!file.open(dir, name, O_WRONLY)) return; | |||||
// open end time and remove start time | // open end time and remove start time | ||||
uint32_t t1 = millis(); | uint32_t t1 = millis(); | ||||
} | } | ||||
void setup() { | void setup() { | ||||
file_t root; | |||||
Serial.begin(9600); | Serial.begin(9600); | ||||
while (!Serial) {} // wait for Leonardo | while (!Serial) {} // wait for Leonardo | ||||
Serial.println(F("Type any character to start")); | Serial.println(F("Type any character to start")); | ||||
// initialize the SD card at SPI_FULL_SPEED for best performance. | // initialize the SD card at SPI_FULL_SPEED for best performance. | ||||
// try SPI_HALF_SPEED if bus errors occur. | // try SPI_HALF_SPEED if bus errors occur. | ||||
if (!sd.begin(SD_CHIP_SELECT, SPI_FULL_SPEED)) sd.initErrorHalt(); | |||||
// delete files in root if FAT32 | |||||
if (sd.vol()->fatType() == 32) { | |||||
if (!sd.begin(SD_CHIP_SELECT, SPI_FULL_SPEED)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | |||||
root.openRoot(&sd); | |||||
// delete files in root if not FAT16. | |||||
if (sd.fatType() != 16) { | |||||
Serial.println(F("Remove files in root")); | Serial.println(F("Remove files in root")); | ||||
deleteFiles(sd.vwd()); | |||||
deleteFiles(&root); | |||||
} | } | ||||
// open SUB1 and delete files | // open SUB1 and delete files | ||||
SdFile sub1; | |||||
if (!sub1.open("SUB1", O_READ)) error("open SUB1 failed"); | |||||
file_t sub1; | |||||
if (!sub1.open("SUB1", O_RDONLY)) error("open SUB1 failed"); | |||||
Serial.println(F("Remove files in SUB1")); | Serial.println(F("Remove files in SUB1")); | ||||
deleteFiles(&sub1); | deleteFiles(&sub1); | ||||
// open SUB2 and delete files | // open SUB2 and delete files | ||||
SdFile sub2; | |||||
if (!sub2.open(&sub1, "SUB2", O_READ)) error("open SUB2 failed"); | |||||
file_t sub2; | |||||
if (!sub2.open(&sub1, "SUB2", O_RDONLY)) error("open SUB2 failed"); | |||||
Serial.println(F("Remove files in SUB2")); | Serial.println(F("Remove files in SUB2")); | ||||
deleteFiles(&sub2); | deleteFiles(&sub2); | ||||
Serial.println(F("Done")); | Serial.println(F("Done")); | ||||
} | } | ||||
void loop() { } | |||||
void loop() { } |
error("Can't truncate file"); | error("Can't truncate file"); | ||||
} | } | ||||
} | } | ||||
if (!binFile.rename(sd.vwd(), binName)) { | |||||
if (!binFile.rename(binName)) { | |||||
error("Can't rename file"); | error("Can't rename file"); | ||||
} | } | ||||
Serial.print(F("File renamed: ")); | Serial.print(F("File renamed: ")); |
/* | |||||
* Example use of chdir(), ls(), mkdir(), and rmdir(). | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
// SD card chip select pin. | |||||
const uint8_t chipSelect = SS; | |||||
//------------------------------------------------------------------------------ | |||||
// File system object. | |||||
SdFat sd; | |||||
// Directory file. | |||||
SdFile root; | |||||
// Use for file creation in folders. | |||||
SdFile file; | |||||
// Create a Serial output stream. | |||||
ArduinoOutStream cout(Serial); | |||||
// Buffer for Serial input. | |||||
char cinBuf[40]; | |||||
// Create a serial input stream. | |||||
ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf)); | |||||
//============================================================================== | |||||
// Error messages stored in flash. | |||||
#define error(msg) sd.errorHalt(F(msg)) | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
delay(1000); | |||||
cout << F("Type any character to start\n"); | |||||
// Wait for input line and discard. | |||||
cin.readline(); | |||||
cout << endl; | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
if (sd.exists("Folder1") | |||||
|| sd.exists("Folder1/file1.txt") | |||||
|| sd.exists("Folder1/File2.txt")) { | |||||
error("Please remove existing Folder1, file1.txt, and File2.txt"); | |||||
} | |||||
int rootFileCount = 0; | |||||
if (!root.open("/")) { | |||||
error("open root failed"); | |||||
} | |||||
while (file.openNext(&root, O_RDONLY)) { | |||||
if (!file.isHidden()) { | |||||
rootFileCount++; | |||||
} | |||||
file.close(); | |||||
if (rootFileCount > 10) { | |||||
error("Too many files in root. Please use an empty SD."); | |||||
} | |||||
} | |||||
if (rootFileCount) { | |||||
cout << F("\nPlease use an empty SD for best results.\n\n"); | |||||
delay(1000); | |||||
} | |||||
// Create a new folder. | |||||
if (!sd.mkdir("Folder1")) { | |||||
error("Create Folder1 failed"); | |||||
} | |||||
cout << F("Created Folder1\n"); | |||||
// Create a file in Folder1 using a path. | |||||
if (!file.open("Folder1/file1.txt", O_WRONLY | O_CREAT)) { | |||||
error("create Folder1/file1.txt failed"); | |||||
} | |||||
file.close(); | |||||
cout << F("Created Folder1/file1.txt\n"); | |||||
// Change volume working directory to Folder1. | |||||
if (!sd.chdir("Folder1")) { | |||||
error("chdir failed for Folder1.\n"); | |||||
} | |||||
cout << F("chdir to Folder1\n"); | |||||
// Create File2.txt in current directory. | |||||
if (!file.open("File2.txt", O_WRONLY | O_CREAT)) { | |||||
error("create File2.txt failed"); | |||||
} | |||||
file.close(); | |||||
cout << F("Created File2.txt in current directory\n"); | |||||
cout << F("\nList of files on the SD.\n"); | |||||
sd.ls("/", LS_R); | |||||
// Remove files from current directory. | |||||
if (!sd.remove("file1.txt") || !sd.remove("File2.txt")) { | |||||
error("remove failed"); | |||||
} | |||||
cout << F("\nfile1.txt and File2.txt removed.\n"); | |||||
// Change current directory to root. | |||||
if (!sd.chdir()) { | |||||
error("chdir to root failed.\n"); | |||||
} | |||||
cout << F("\nList of files on the SD.\n"); | |||||
sd.ls(LS_R); | |||||
// Remove Folder1. | |||||
if (!sd.rmdir("Folder1")) { | |||||
error("rmdir for Folder1 failed\n"); | |||||
} | |||||
cout << F("\nFolder1 removed.\n"); | |||||
cout << F("\nList of files on the SD.\n"); | |||||
sd.ls(LS_R); | |||||
cout << F("Done!\n"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// Nothing happens in loop. | |||||
void loop() {} |
Serial.println(); | Serial.println(); | ||||
Serial.print(F("FreeStack: ")); | Serial.print(F("FreeStack: ")); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
// Create a new csvFile. | // Create a new csvFile. | ||||
strcpy(csvName, binName); | strcpy(csvName, binName); | ||||
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | ||||
// max number of blocks to erase per erase call | // max number of blocks to erase per erase call | ||||
const uint32_t ERASE_SIZE = 262144L; | const uint32_t ERASE_SIZE = 262144L; | ||||
uint32_t bgnBlock, endBlock; | uint32_t bgnBlock, endBlock; | ||||
// Delete old tmp file. | // Delete old tmp file. | ||||
if (sd.exists(TMP_FILE_NAME)) { | if (sd.exists(TMP_FILE_NAME)) { | ||||
Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | ||||
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | ||||
// Index of last queue location. | // Index of last queue location. | ||||
const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | ||||
// Allocate extra buffer space. | // Allocate extra buffer space. | ||||
block_t block[BUFFER_BLOCK_COUNT - 1]; | block_t block[BUFFER_BLOCK_COUNT - 1]; | ||||
block_t* curBlock = 0; | block_t* curBlock = 0; | ||||
block_t* emptyStack[BUFFER_BLOCK_COUNT]; | block_t* emptyStack[BUFFER_BLOCK_COUNT]; | ||||
uint8_t emptyTop; | uint8_t emptyTop; | ||||
uint8_t minTop; | uint8_t minTop; | ||||
block_t* fullQueue[QUEUE_DIM]; | block_t* fullQueue[QUEUE_DIM]; | ||||
uint8_t fullHead = 0; | uint8_t fullHead = 0; | ||||
uint8_t fullTail = 0; | |||||
uint8_t fullTail = 0; | |||||
// Use SdFat's internal buffer. | // Use SdFat's internal buffer. | ||||
emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | ||||
} | } | ||||
emptyTop = BUFFER_BLOCK_COUNT; | emptyTop = BUFFER_BLOCK_COUNT; | ||||
minTop = BUFFER_BLOCK_COUNT; | minTop = BUFFER_BLOCK_COUNT; | ||||
// Start a multiple block write. | // Start a multiple block write. | ||||
if (!sd.card()->writeStart(binFile.firstBlock())) { | if (!sd.card()->writeStart(binFile.firstBlock())) { | ||||
error("writeStart failed"); | error("writeStart failed"); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
Serial.println(F("Logging - type any character to stop")); | Serial.println(F("Logging - type any character to stop")); | ||||
bool closeFile = false; | bool closeFile = false; | ||||
uint32_t bn = 0; | |||||
uint32_t bn = 0; | |||||
uint32_t maxLatency = 0; | uint32_t maxLatency = 0; | ||||
uint32_t overrun = 0; | uint32_t overrun = 0; | ||||
uint32_t overrunTotal = 0; | uint32_t overrunTotal = 0; | ||||
logTime += LOG_INTERVAL_USEC; | logTime += LOG_INTERVAL_USEC; | ||||
if (Serial.available()) { | if (Serial.available()) { | ||||
closeFile = true; | closeFile = true; | ||||
} | |||||
} | |||||
if (closeFile) { | if (closeFile) { | ||||
if (curBlock != 0) { | if (curBlock != 0) { | ||||
// Put buffer in full queue. | // Put buffer in full queue. | ||||
overrun = 0; | overrun = 0; | ||||
} | } | ||||
if ((int32_t)(logTime - micros()) < 0) { | if ((int32_t)(logTime - micros()) < 0) { | ||||
error("Rate too fast"); | |||||
error("Rate too fast"); | |||||
} | } | ||||
int32_t delta; | int32_t delta; | ||||
do { | do { | ||||
overrunTotal++; | overrunTotal++; | ||||
if (ERROR_LED_PIN >= 0) { | if (ERROR_LED_PIN >= 0) { | ||||
digitalWrite(ERROR_LED_PIN, HIGH); | digitalWrite(ERROR_LED_PIN, HIGH); | ||||
} | |||||
} | |||||
#if ABORT_ON_OVERRUN | #if ABORT_ON_OVERRUN | ||||
Serial.println(F("Overrun abort")); | Serial.println(F("Overrun abort")); | ||||
break; | break; | ||||
#endif // ABORT_ON_OVERRUN | |||||
#endif // ABORT_ON_OVERRUN | |||||
} else { | } else { | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStop(); | sd.card()->spiStop(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
acquireData(&curBlock->data[curBlock->count++]); | acquireData(&curBlock->data[curBlock->count++]); | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStart(); | sd.card()->spiStart(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
if (curBlock->count == DATA_DIM) { | if (curBlock->count == DATA_DIM) { | ||||
fullQueue[fullHead] = curBlock; | fullQueue[fullHead] = curBlock; | ||||
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | ||||
curBlock = 0; | curBlock = 0; | ||||
} | |||||
} | |||||
} | } | ||||
} | } | ||||
if (fullHead == fullTail) { | if (fullHead == fullTail) { | ||||
if (binFile.read(&count, 2) != 2) error("read"); | if (binFile.read(&count, 2) != 2) error("read"); | ||||
if (count == 0 || count > DATA_DIM) { | if (count == 0 || count > DATA_DIM) { | ||||
endBlock = midBlock - 1; | endBlock = midBlock - 1; | ||||
} else { | |||||
} else { | |||||
bgnBlock = midBlock; | bgnBlock = midBlock; | ||||
} | } | ||||
} | } | ||||
binName[BASE_NAME_SIZE]++; | binName[BASE_NAME_SIZE]++; | ||||
} | } | ||||
} | } | ||||
if (!binFile.rename(sd.vwd(), binName)) { | |||||
if (!binFile.rename(binName)) { | |||||
error("Can't rename file"); | error("Can't rename file"); | ||||
} | } | ||||
Serial.print(F("File renamed: ")); | Serial.print(F("File renamed: ")); | ||||
pinMode(ERROR_LED_PIN, OUTPUT); | pinMode(ERROR_LED_PIN, OUTPUT); | ||||
} | } | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
// Allow userSetup access to SPI bus. | // Allow userSetup access to SPI bus. | ||||
pinMode(SD_CS_PIN, OUTPUT); | pinMode(SD_CS_PIN, OUTPUT); | ||||
digitalWrite(SD_CS_PIN, HIGH); | digitalWrite(SD_CS_PIN, HIGH); | ||||
// Setup sensors. | // Setup sensors. | ||||
userSetup(); | userSetup(); | ||||
// Initialize at the highest speed supported by the board that is | // Initialize at the highest speed supported by the board that is | ||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | // not over 50 MHz. Try a lower speed if SPI errors occur. | ||||
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
Serial.println(); | Serial.println(); | ||||
Serial.println(F("type:")); | Serial.println(F("type:")); | ||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("c - convert file to csv")); | Serial.println(F("c - convert file to csv")); | ||||
Serial.println(F("d - dump data to Serial")); | Serial.println(F("d - dump data to Serial")); | ||||
Serial.println(F("e - overrun error details")); | Serial.println(F("e - overrun error details")); | ||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("r - record data")); | Serial.println(F("r - record data")); | ||||
Serial.println(F("t - test without logging")); | Serial.println(F("t - test without logging")); | ||||
while(!Serial.available()) { | while(!Serial.available()) { | ||||
Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | ||||
SysCall::halt(); | SysCall::halt(); | ||||
#endif | #endif | ||||
char c = tolower(Serial.read()); | char c = tolower(Serial.read()); | ||||
// Discard extra Serial data. | // Discard extra Serial data. | ||||
} else if (c == 'e') { | } else if (c == 'e') { | ||||
checkOverrun(); | checkOverrun(); | ||||
} else if (c == 'l') { | } else if (c == 'l') { | ||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
} else if (c == 'r') { | } else if (c == 'r') { | ||||
logData(); | logData(); | ||||
} else if (c == 't') { | } else if (c == 't') { | ||||
testSensor(); | |||||
testSensor(); | |||||
} else { | } else { | ||||
Serial.println(F("Invalid entry")); | Serial.println(F("Invalid entry")); | ||||
} | } |
Serial.println(); | Serial.println(); | ||||
Serial.print(F("FreeStack: ")); | Serial.print(F("FreeStack: ")); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
// Create a new csvFile. | // Create a new csvFile. | ||||
strcpy(csvName, binName); | strcpy(csvName, binName); | ||||
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | ||||
// max number of blocks to erase per erase call | // max number of blocks to erase per erase call | ||||
const uint32_t ERASE_SIZE = 262144L; | const uint32_t ERASE_SIZE = 262144L; | ||||
uint32_t bgnBlock, endBlock; | uint32_t bgnBlock, endBlock; | ||||
// Delete old tmp file. | // Delete old tmp file. | ||||
if (sd.exists(TMP_FILE_NAME)) { | if (sd.exists(TMP_FILE_NAME)) { | ||||
Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | ||||
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | ||||
// Index of last queue location. | // Index of last queue location. | ||||
const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | ||||
// Allocate extra buffer space. | // Allocate extra buffer space. | ||||
block_t block[BUFFER_BLOCK_COUNT - 1]; | block_t block[BUFFER_BLOCK_COUNT - 1]; | ||||
block_t* curBlock = 0; | block_t* curBlock = 0; | ||||
block_t* emptyStack[BUFFER_BLOCK_COUNT]; | block_t* emptyStack[BUFFER_BLOCK_COUNT]; | ||||
uint8_t emptyTop; | uint8_t emptyTop; | ||||
uint8_t minTop; | uint8_t minTop; | ||||
block_t* fullQueue[QUEUE_DIM]; | block_t* fullQueue[QUEUE_DIM]; | ||||
uint8_t fullHead = 0; | uint8_t fullHead = 0; | ||||
uint8_t fullTail = 0; | |||||
uint8_t fullTail = 0; | |||||
// Use SdFat's internal buffer. | // Use SdFat's internal buffer. | ||||
emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | ||||
} | } | ||||
emptyTop = BUFFER_BLOCK_COUNT; | emptyTop = BUFFER_BLOCK_COUNT; | ||||
minTop = BUFFER_BLOCK_COUNT; | minTop = BUFFER_BLOCK_COUNT; | ||||
// Start a multiple block write. | // Start a multiple block write. | ||||
if (!sd.card()->writeStart(binFile.firstBlock())) { | if (!sd.card()->writeStart(binFile.firstBlock())) { | ||||
error("writeStart failed"); | error("writeStart failed"); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
Serial.println(F("Logging - type any character to stop")); | Serial.println(F("Logging - type any character to stop")); | ||||
bool closeFile = false; | bool closeFile = false; | ||||
uint32_t bn = 0; | |||||
uint32_t bn = 0; | |||||
uint32_t maxLatency = 0; | uint32_t maxLatency = 0; | ||||
uint32_t overrun = 0; | uint32_t overrun = 0; | ||||
uint32_t overrunTotal = 0; | uint32_t overrunTotal = 0; | ||||
logTime += LOG_INTERVAL_USEC; | logTime += LOG_INTERVAL_USEC; | ||||
if (Serial.available()) { | if (Serial.available()) { | ||||
closeFile = true; | closeFile = true; | ||||
} | |||||
} | |||||
if (closeFile) { | if (closeFile) { | ||||
if (curBlock != 0) { | if (curBlock != 0) { | ||||
// Put buffer in full queue. | // Put buffer in full queue. | ||||
overrun = 0; | overrun = 0; | ||||
} | } | ||||
if ((int32_t)(logTime - micros()) < 0) { | if ((int32_t)(logTime - micros()) < 0) { | ||||
error("Rate too fast"); | |||||
error("Rate too fast"); | |||||
} | } | ||||
int32_t delta; | int32_t delta; | ||||
do { | do { | ||||
overrunTotal++; | overrunTotal++; | ||||
if (ERROR_LED_PIN >= 0) { | if (ERROR_LED_PIN >= 0) { | ||||
digitalWrite(ERROR_LED_PIN, HIGH); | digitalWrite(ERROR_LED_PIN, HIGH); | ||||
} | |||||
} | |||||
#if ABORT_ON_OVERRUN | #if ABORT_ON_OVERRUN | ||||
Serial.println(F("Overrun abort")); | Serial.println(F("Overrun abort")); | ||||
break; | break; | ||||
#endif // ABORT_ON_OVERRUN | |||||
#endif // ABORT_ON_OVERRUN | |||||
} else { | } else { | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStop(); | sd.card()->spiStop(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
acquireData(&curBlock->data[curBlock->count++]); | acquireData(&curBlock->data[curBlock->count++]); | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStart(); | sd.card()->spiStart(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
if (curBlock->count == DATA_DIM) { | if (curBlock->count == DATA_DIM) { | ||||
fullQueue[fullHead] = curBlock; | fullQueue[fullHead] = curBlock; | ||||
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | ||||
curBlock = 0; | curBlock = 0; | ||||
} | |||||
} | |||||
} | } | ||||
} | } | ||||
if (fullHead == fullTail) { | if (fullHead == fullTail) { | ||||
if (binFile.read(&count, 2) != 2) error("read"); | if (binFile.read(&count, 2) != 2) error("read"); | ||||
if (count == 0 || count > DATA_DIM) { | if (count == 0 || count > DATA_DIM) { | ||||
endBlock = midBlock - 1; | endBlock = midBlock - 1; | ||||
} else { | |||||
} else { | |||||
bgnBlock = midBlock; | bgnBlock = midBlock; | ||||
} | } | ||||
} | } | ||||
binName[BASE_NAME_SIZE]++; | binName[BASE_NAME_SIZE]++; | ||||
} | } | ||||
} | } | ||||
if (!binFile.rename(sd.vwd(), binName)) { | |||||
if (!binFile.rename(binName)) { | |||||
error("Can't rename file"); | error("Can't rename file"); | ||||
} | } | ||||
Serial.print(F("File renamed: ")); | Serial.print(F("File renamed: ")); | ||||
pinMode(ERROR_LED_PIN, OUTPUT); | pinMode(ERROR_LED_PIN, OUTPUT); | ||||
} | } | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
// Allow userSetup access to SPI bus. | // Allow userSetup access to SPI bus. | ||||
pinMode(SD_CS_PIN, OUTPUT); | pinMode(SD_CS_PIN, OUTPUT); | ||||
digitalWrite(SD_CS_PIN, HIGH); | digitalWrite(SD_CS_PIN, HIGH); | ||||
// Setup sensors. | // Setup sensors. | ||||
userSetup(); | userSetup(); | ||||
// Initialize at the highest speed supported by the board that is | // Initialize at the highest speed supported by the board that is | ||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | // not over 50 MHz. Try a lower speed if SPI errors occur. | ||||
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
Serial.println(); | Serial.println(); | ||||
Serial.println(F("type:")); | Serial.println(F("type:")); | ||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("c - convert file to csv")); | Serial.println(F("c - convert file to csv")); | ||||
Serial.println(F("d - dump data to Serial")); | Serial.println(F("d - dump data to Serial")); | ||||
Serial.println(F("e - overrun error details")); | Serial.println(F("e - overrun error details")); | ||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("r - record data")); | Serial.println(F("r - record data")); | ||||
Serial.println(F("t - test without logging")); | Serial.println(F("t - test without logging")); | ||||
while(!Serial.available()) { | while(!Serial.available()) { | ||||
Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | ||||
SysCall::halt(); | SysCall::halt(); | ||||
#endif | #endif | ||||
char c = tolower(Serial.read()); | char c = tolower(Serial.read()); | ||||
// Discard extra Serial data. | // Discard extra Serial data. | ||||
} else if (c == 'e') { | } else if (c == 'e') { | ||||
checkOverrun(); | checkOverrun(); | ||||
} else if (c == 'l') { | } else if (c == 'l') { | ||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
} else if (c == 'r') { | } else if (c == 'r') { | ||||
logData(); | logData(); | ||||
} else if (c == 't') { | } else if (c == 't') { | ||||
testSensor(); | |||||
testSensor(); | |||||
} else { | } else { | ||||
Serial.println(F("Invalid entry")); | Serial.println(F("Invalid entry")); | ||||
} | } |
Serial.println(); | Serial.println(); | ||||
Serial.print(F("FreeStack: ")); | Serial.print(F("FreeStack: ")); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
// Create a new csvFile. | // Create a new csvFile. | ||||
strcpy(csvName, binName); | strcpy(csvName, binName); | ||||
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); | ||||
// max number of blocks to erase per erase call | // max number of blocks to erase per erase call | ||||
const uint32_t ERASE_SIZE = 262144L; | const uint32_t ERASE_SIZE = 262144L; | ||||
uint32_t bgnBlock, endBlock; | uint32_t bgnBlock, endBlock; | ||||
// Delete old tmp file. | // Delete old tmp file. | ||||
if (sd.exists(TMP_FILE_NAME)) { | if (sd.exists(TMP_FILE_NAME)) { | ||||
Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | Serial.println(F("Deleting tmp file " TMP_FILE_NAME)); | ||||
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1; | ||||
// Index of last queue location. | // Index of last queue location. | ||||
const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | const uint8_t QUEUE_LAST = QUEUE_DIM - 1; | ||||
// Allocate extra buffer space. | // Allocate extra buffer space. | ||||
block_t block[BUFFER_BLOCK_COUNT - 1]; | block_t block[BUFFER_BLOCK_COUNT - 1]; | ||||
block_t* curBlock = 0; | block_t* curBlock = 0; | ||||
block_t* emptyStack[BUFFER_BLOCK_COUNT]; | block_t* emptyStack[BUFFER_BLOCK_COUNT]; | ||||
uint8_t emptyTop; | uint8_t emptyTop; | ||||
uint8_t minTop; | uint8_t minTop; | ||||
block_t* fullQueue[QUEUE_DIM]; | block_t* fullQueue[QUEUE_DIM]; | ||||
uint8_t fullHead = 0; | uint8_t fullHead = 0; | ||||
uint8_t fullTail = 0; | |||||
uint8_t fullTail = 0; | |||||
// Use SdFat's internal buffer. | // Use SdFat's internal buffer. | ||||
emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | emptyStack[0] = (block_t*)sd.vol()->cacheClear(); | ||||
} | } | ||||
emptyTop = BUFFER_BLOCK_COUNT; | emptyTop = BUFFER_BLOCK_COUNT; | ||||
minTop = BUFFER_BLOCK_COUNT; | minTop = BUFFER_BLOCK_COUNT; | ||||
// Start a multiple block write. | // Start a multiple block write. | ||||
if (!sd.card()->writeStart(binFile.firstBlock())) { | if (!sd.card()->writeStart(binFile.firstBlock())) { | ||||
error("writeStart failed"); | error("writeStart failed"); | ||||
Serial.println(FreeStack()); | Serial.println(FreeStack()); | ||||
Serial.println(F("Logging - type any character to stop")); | Serial.println(F("Logging - type any character to stop")); | ||||
bool closeFile = false; | bool closeFile = false; | ||||
uint32_t bn = 0; | |||||
uint32_t bn = 0; | |||||
uint32_t maxLatency = 0; | uint32_t maxLatency = 0; | ||||
uint32_t overrun = 0; | uint32_t overrun = 0; | ||||
uint32_t overrunTotal = 0; | uint32_t overrunTotal = 0; | ||||
logTime += LOG_INTERVAL_USEC; | logTime += LOG_INTERVAL_USEC; | ||||
if (Serial.available()) { | if (Serial.available()) { | ||||
closeFile = true; | closeFile = true; | ||||
} | |||||
} | |||||
if (closeFile) { | if (closeFile) { | ||||
if (curBlock != 0) { | if (curBlock != 0) { | ||||
// Put buffer in full queue. | // Put buffer in full queue. | ||||
overrun = 0; | overrun = 0; | ||||
} | } | ||||
if ((int32_t)(logTime - micros()) < 0) { | if ((int32_t)(logTime - micros()) < 0) { | ||||
error("Rate too fast"); | |||||
error("Rate too fast"); | |||||
} | } | ||||
int32_t delta; | int32_t delta; | ||||
do { | do { | ||||
overrunTotal++; | overrunTotal++; | ||||
if (ERROR_LED_PIN >= 0) { | if (ERROR_LED_PIN >= 0) { | ||||
digitalWrite(ERROR_LED_PIN, HIGH); | digitalWrite(ERROR_LED_PIN, HIGH); | ||||
} | |||||
} | |||||
#if ABORT_ON_OVERRUN | #if ABORT_ON_OVERRUN | ||||
Serial.println(F("Overrun abort")); | Serial.println(F("Overrun abort")); | ||||
break; | break; | ||||
#endif // ABORT_ON_OVERRUN | |||||
#endif // ABORT_ON_OVERRUN | |||||
} else { | } else { | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStop(); | sd.card()->spiStop(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
acquireData(&curBlock->data[curBlock->count++]); | acquireData(&curBlock->data[curBlock->count++]); | ||||
#if USE_SHARED_SPI | #if USE_SHARED_SPI | ||||
sd.card()->spiStart(); | sd.card()->spiStart(); | ||||
#endif // USE_SHARED_SPI | |||||
#endif // USE_SHARED_SPI | |||||
if (curBlock->count == DATA_DIM) { | if (curBlock->count == DATA_DIM) { | ||||
fullQueue[fullHead] = curBlock; | fullQueue[fullHead] = curBlock; | ||||
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0; | ||||
curBlock = 0; | curBlock = 0; | ||||
} | |||||
} | |||||
} | } | ||||
} | } | ||||
if (fullHead == fullTail) { | if (fullHead == fullTail) { | ||||
if (binFile.read(&count, 2) != 2) error("read"); | if (binFile.read(&count, 2) != 2) error("read"); | ||||
if (count == 0 || count > DATA_DIM) { | if (count == 0 || count > DATA_DIM) { | ||||
endBlock = midBlock - 1; | endBlock = midBlock - 1; | ||||
} else { | |||||
} else { | |||||
bgnBlock = midBlock; | bgnBlock = midBlock; | ||||
} | } | ||||
} | } | ||||
binName[BASE_NAME_SIZE]++; | binName[BASE_NAME_SIZE]++; | ||||
} | } | ||||
} | } | ||||
if (!binFile.rename(sd.vwd(), binName)) { | |||||
if (!binFile.rename(binName)) { | |||||
error("Can't rename file"); | error("Can't rename file"); | ||||
} | } | ||||
Serial.print(F("File renamed: ")); | Serial.print(F("File renamed: ")); | ||||
pinMode(ERROR_LED_PIN, OUTPUT); | pinMode(ERROR_LED_PIN, OUTPUT); | ||||
} | } | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
// Allow userSetup access to SPI bus. | // Allow userSetup access to SPI bus. | ||||
pinMode(SD_CS_PIN, OUTPUT); | pinMode(SD_CS_PIN, OUTPUT); | ||||
digitalWrite(SD_CS_PIN, HIGH); | digitalWrite(SD_CS_PIN, HIGH); | ||||
// Setup sensors. | // Setup sensors. | ||||
userSetup(); | userSetup(); | ||||
// Initialize at the highest speed supported by the board that is | // Initialize at the highest speed supported by the board that is | ||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | // not over 50 MHz. Try a lower speed if SPI errors occur. | ||||
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { | ||||
} while (Serial.available() && Serial.read() >= 0); | } while (Serial.available() && Serial.read() >= 0); | ||||
Serial.println(); | Serial.println(); | ||||
Serial.println(F("type:")); | Serial.println(F("type:")); | ||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("b - open existing bin file")); | |||||
Serial.println(F("c - convert file to csv")); | Serial.println(F("c - convert file to csv")); | ||||
Serial.println(F("d - dump data to Serial")); | Serial.println(F("d - dump data to Serial")); | ||||
Serial.println(F("e - overrun error details")); | Serial.println(F("e - overrun error details")); | ||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("l - list files")); | |||||
Serial.println(F("r - record data")); | Serial.println(F("r - record data")); | ||||
Serial.println(F("t - test without logging")); | Serial.println(F("t - test without logging")); | ||||
while(!Serial.available()) { | while(!Serial.available()) { | ||||
Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | Serial.println(F("LowLatencyLogger can not run with watchdog timer")); | ||||
SysCall::halt(); | SysCall::halt(); | ||||
#endif | #endif | ||||
char c = tolower(Serial.read()); | char c = tolower(Serial.read()); | ||||
// Discard extra Serial data. | // Discard extra Serial data. | ||||
} else if (c == 'e') { | } else if (c == 'e') { | ||||
checkOverrun(); | checkOverrun(); | ||||
} else if (c == 'l') { | } else if (c == 'l') { | ||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
Serial.println(F("\nls:")); | |||||
sd.ls(&Serial, LS_SIZE); | |||||
} else if (c == 'r') { | } else if (c == 'r') { | ||||
logData(); | logData(); | ||||
} else if (c == 't') { | } else if (c == 't') { | ||||
testSensor(); | |||||
testSensor(); | |||||
} else { | } else { | ||||
Serial.println(F("Invalid entry")); | Serial.println(F("Invalid entry")); | ||||
} | } |
/* | |||||
* Print size, modify date/time, and name for all files in root. | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
// SD default chip select pin. | |||||
const uint8_t chipSelect = SS; | |||||
// file system object | |||||
SdFat sd; | |||||
SdFile root; | |||||
SdFile file; | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
Serial.println("Type any character to start"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
if (!root.open("/")) { | |||||
sd.errorHalt("open root failed"); | |||||
} | |||||
// Open next file in root. | |||||
// Warning, openNext starts at the current directory position | |||||
// so a rewind of the directory may be required. | |||||
while (file.openNext(&root, O_RDONLY)) { | |||||
file.printFileSize(&Serial); | |||||
Serial.write(' '); | |||||
file.printModifyDateTime(&Serial); | |||||
Serial.write(' '); | |||||
file.printName(&Serial); | |||||
if (file.isDir()) { | |||||
// Indicate a directory. | |||||
Serial.write('/'); | |||||
} | |||||
Serial.println(); | |||||
file.close(); | |||||
} | |||||
if (root.getError()) { | |||||
Serial.println("openNext failed"); | |||||
} else { | |||||
Serial.println("Done!"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() {} |
// Quick hardware test for SPI card access. | |||||
// | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
// | |||||
// Set DISABLE_CHIP_SELECT to disable a second SPI device. | |||||
// For example, with the Ethernet shield, set DISABLE_CHIP_SELECT | |||||
// to 10 to disable the Ethernet controller. | |||||
const int8_t DISABLE_CHIP_SELECT = -1; | |||||
// | |||||
// Test with reduced SPI speed for breadboards. SD_SCK_MHZ(4) will select | |||||
// the highest speed supported by the board that is not over 4 MHz. | |||||
// Change SPI_SPEED to SD_SCK_MHZ(50) for best performance. | |||||
#define SPI_SPEED SD_SCK_MHZ(4) | |||||
//------------------------------------------------------------------------------ | |||||
// File system object. | |||||
SdFat sd; | |||||
// Serial streams | |||||
ArduinoOutStream cout(Serial); | |||||
// input buffer for line | |||||
char cinBuf[40]; | |||||
ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf)); | |||||
// SD card chip select | |||||
int chipSelect; | |||||
void cardOrSpeed() { | |||||
cout << F("Try another SD card or reduce the SPI bus speed.\n"); | |||||
cout << F("Edit SPI_SPEED in this program to change it.\n"); | |||||
} | |||||
void reformatMsg() { | |||||
cout << F("Try reformatting the card. For best results use\n"); | |||||
cout << F("the SdFormatter program in SdFat/examples or download\n"); | |||||
cout << F("and use SDFormatter from www.sdcard.org/downloads.\n"); | |||||
} | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
cout << F("\nSPI pins:\n"); | |||||
cout << F("MISO: ") << int(MISO) << endl; | |||||
cout << F("MOSI: ") << int(MOSI) << endl; | |||||
cout << F("SCK: ") << int(SCK) << endl; | |||||
cout << F("SS: ") << int(SS) << endl; | |||||
if (DISABLE_CHIP_SELECT < 0) { | |||||
cout << F( | |||||
"\nBe sure to edit DISABLE_CHIP_SELECT if you have\n" | |||||
"a second SPI device. For example, with the Ethernet\n" | |||||
"shield, DISABLE_CHIP_SELECT should be set to 10\n" | |||||
"to disable the Ethernet controller.\n"); | |||||
} | |||||
cout << F( | |||||
"\nSD chip select is the key hardware option.\n" | |||||
"Common values are:\n" | |||||
"Arduino Ethernet shield, pin 4\n" | |||||
"Sparkfun SD shield, pin 8\n" | |||||
"Adafruit SD shields and modules, pin 10\n"); | |||||
} | |||||
bool firstTry = true; | |||||
void loop() { | |||||
// Read any existing Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
if (!firstTry) { | |||||
cout << F("\nRestarting\n"); | |||||
} | |||||
firstTry = false; | |||||
cout << F("\nEnter the chip select pin number: "); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
cin.readline(); | |||||
if (cin >> chipSelect) { | |||||
cout << chipSelect << endl; | |||||
} else { | |||||
cout << F("\nInvalid pin number\n"); | |||||
return; | |||||
} | |||||
if (DISABLE_CHIP_SELECT < 0) { | |||||
cout << F( | |||||
"\nAssuming the SD is the only SPI device.\n" | |||||
"Edit DISABLE_CHIP_SELECT to disable another device.\n"); | |||||
} else { | |||||
cout << F("\nDisabling SPI device on pin "); | |||||
cout << int(DISABLE_CHIP_SELECT) << endl; | |||||
pinMode(DISABLE_CHIP_SELECT, OUTPUT); | |||||
digitalWrite(DISABLE_CHIP_SELECT, HIGH); | |||||
} | |||||
if (!sd.begin(chipSelect, SPI_SPEED)) { | |||||
if (sd.card()->errorCode()) { | |||||
cout << F( | |||||
"\nSD initialization failed.\n" | |||||
"Do not reformat the card!\n" | |||||
"Is the card correctly inserted?\n" | |||||
"Is chipSelect set to the correct value?\n" | |||||
"Does another SPI device need to be disabled?\n" | |||||
"Is there a wiring/soldering problem?\n"); | |||||
cout << F("\nerrorCode: ") << hex << showbase; | |||||
cout << int(sd.card()->errorCode()); | |||||
cout << F(", errorData: ") << int(sd.card()->errorData()); | |||||
cout << dec << noshowbase << endl; | |||||
return; | |||||
} | |||||
if (sd.vol()->fatType() == 0) { | |||||
cout << F("Can't find a valid FAT16/FAT32 partition.\n"); | |||||
reformatMsg(); | |||||
return; | |||||
} | |||||
cout << F("begin failed, can't determine error type\n"); | |||||
return; | |||||
} | |||||
cout << F("\nCard successfully initialized.\n"); | |||||
cout << endl; | |||||
uint32_t size = sd.card()->cardSize(); | |||||
if (size == 0) { | |||||
cout << F("Can't determine the card size.\n"); | |||||
cardOrSpeed(); | |||||
return; | |||||
} | |||||
uint32_t sizeMB = 0.000512 * size + 0.5; | |||||
cout << F("Card size: ") << sizeMB; | |||||
cout << F(" MB (MB = 1,000,000 bytes)\n"); | |||||
cout << endl; | |||||
cout << F("Volume is FAT") << int(sd.vol()->fatType()); | |||||
cout << F(", Cluster size (bytes): ") << 512L * sd.vol()->blocksPerCluster(); | |||||
cout << endl << endl; | |||||
cout << F("Files found (date time size name):\n"); | |||||
sd.ls(LS_R | LS_DATE | LS_SIZE); | |||||
if ((sizeMB > 1100 && sd.vol()->blocksPerCluster() < 64) | |||||
|| (sizeMB < 2200 && sd.vol()->fatType() == 32)) { | |||||
cout << F("\nThis card should be reformatted for best performance.\n"); | |||||
cout << F("Use a cluster size of 32 KB for cards larger than 1 GB.\n"); | |||||
cout << F("Only cards larger than 2 GB should be formatted FAT32.\n"); | |||||
reformatMsg(); | |||||
return; | |||||
} | |||||
// Read any extra Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
cout << F("\nSuccess! Type any character to restart.\n"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
} |
/* | |||||
* Example use of two SPI ports on an STM32 board. | |||||
* Note SPI speed is limited to 18 MHz. | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "FreeStack.h" | |||||
#error See new Version 2 STM32 example | |||||
// set ENABLE_EXTENDED_TRANSFER_CLASS non-zero to use faster EX classes | |||||
// Use first SPI port | |||||
SdFat sd1; | |||||
// SdFatEX sd1; | |||||
const uint8_t SD1_CS = PA4; // chip select for sd1 | |||||
// Use second SPI port | |||||
SPIClass SPI_2(2); | |||||
SdFat sd2(&SPI_2); | |||||
// SdFatEX sd2(&SPI_2); | |||||
const uint8_t SD2_CS = PB12; // chip select for sd2 | |||||
const uint8_t BUF_DIM = 100; | |||||
uint8_t buf[BUF_DIM]; | |||||
const uint32_t FILE_SIZE = 1000000; | |||||
const uint16_t NWRITE = FILE_SIZE/BUF_DIM; | |||||
//------------------------------------------------------------------------------ | |||||
// print error msg, any SD error codes, and halt. | |||||
// store messages in flash | |||||
#define errorExit(msg) errorHalt(F(msg)) | |||||
#define initError(msg) initErrorHalt(F(msg)) | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
} | |||||
// fill buffer with known data | |||||
for (size_t i = 0; i < sizeof(buf); i++) { | |||||
buf[i] = i; | |||||
} | |||||
Serial.println(F("type any character to start")); | |||||
while (!Serial.available()) { | |||||
} | |||||
Serial.print(F("FreeStack: ")); | |||||
Serial.println(FreeStack()); | |||||
// initialize the first card | |||||
if (!sd1.begin(SD1_CS, SD_SCK_MHZ(18))) { | |||||
sd1.initError("sd1:"); | |||||
} | |||||
// create Dir1 on sd1 if it does not exist | |||||
if (!sd1.exists("/Dir1")) { | |||||
if (!sd1.mkdir("/Dir1")) { | |||||
sd1.errorExit("sd1.mkdir"); | |||||
} | |||||
} | |||||
// initialize the second card | |||||
if (!sd2.begin(SD2_CS, SD_SCK_MHZ(18))) { | |||||
sd2.initError("sd2:"); | |||||
} | |||||
// create Dir2 on sd2 if it does not exist | |||||
if (!sd2.exists("/Dir2")) { | |||||
if (!sd2.mkdir("/Dir2")) { | |||||
sd2.errorExit("sd2.mkdir"); | |||||
} | |||||
} | |||||
// list root directory on both cards | |||||
Serial.println(F("------sd1 root-------")); | |||||
sd1.ls(); | |||||
Serial.println(F("------sd2 root-------")); | |||||
sd2.ls(); | |||||
// make /Dir1 the default directory for sd1 | |||||
if (!sd1.chdir("/Dir1")) { | |||||
sd1.errorExit("sd1.chdir"); | |||||
} | |||||
// remove test.bin from /Dir1 directory of sd1 | |||||
if (sd1.exists("test.bin")) { | |||||
if (!sd1.remove("test.bin")) { | |||||
sd2.errorExit("remove test.bin"); | |||||
} | |||||
} | |||||
// make /Dir2 the default directory for sd2 | |||||
if (!sd2.chdir("/Dir2")) { | |||||
sd2.errorExit("sd2.chdir"); | |||||
} | |||||
// remove rename.bin from /Dir2 directory of sd2 | |||||
if (sd2.exists("rename.bin")) { | |||||
if (!sd2.remove("rename.bin")) { | |||||
sd2.errorExit("remove rename.bin"); | |||||
} | |||||
} | |||||
// list current directory on both cards | |||||
Serial.println(F("------sd1 Dir1-------")); | |||||
sd1.ls(); | |||||
Serial.println(F("------sd2 Dir2-------")); | |||||
sd2.ls(); | |||||
Serial.println(F("---------------------")); | |||||
// set the current working directory for open() to sd1 | |||||
sd1.chvol(); | |||||
// create or open /Dir1/test.bin and truncate it to zero length | |||||
SdFile file1; | |||||
if (!file1.open("test.bin", O_RDWR | O_CREAT | O_TRUNC)) { | |||||
sd1.errorExit("file1"); | |||||
} | |||||
Serial.println(F("Writing test.bin to sd1")); | |||||
// write data to /Dir1/test.bin on sd1 | |||||
for (uint16_t i = 0; i < NWRITE; i++) { | |||||
if (file1.write(buf, sizeof(buf)) != sizeof(buf)) { | |||||
sd1.errorExit("sd1.write"); | |||||
} | |||||
} | |||||
// set the current working directory for open() to sd2 | |||||
sd2.chvol(); | |||||
// create or open /Dir2/copy.bin and truncate it to zero length | |||||
SdFile file2; | |||||
if (!file2.open("copy.bin", O_WRONLY | O_CREAT | O_TRUNC)) { | |||||
sd2.errorExit("file2"); | |||||
} | |||||
Serial.println(F("Copying test.bin to copy.bin")); | |||||
// copy file1 to file2 | |||||
file1.rewind(); | |||||
uint32_t t = millis(); | |||||
while (1) { | |||||
int n = file1.read(buf, sizeof(buf)); | |||||
if (n < 0) { | |||||
sd1.errorExit("read1"); | |||||
} | |||||
if (n == 0) { | |||||
break; | |||||
} | |||||
if ((int)file2.write(buf, n) != n) { | |||||
sd2.errorExit("write2"); | |||||
} | |||||
} | |||||
t = millis() - t; | |||||
Serial.print(F("File size: ")); | |||||
Serial.println(file2.fileSize()); | |||||
Serial.print(F("Copy time: ")); | |||||
Serial.print(t); | |||||
Serial.println(F(" millis")); | |||||
// close test.bin | |||||
file1.close(); | |||||
file2.close(); | |||||
// list current directory on both cards | |||||
Serial.println(F("------sd1 -------")); | |||||
sd1.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
Serial.println(F("------sd2 -------")); | |||||
sd2.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
Serial.println(F("---------------------")); | |||||
Serial.println(F("Renaming copy.bin")); | |||||
// rename the copy | |||||
if (!sd2.rename("copy.bin", "rename.bin")) { | |||||
sd2.errorExit("sd2.rename"); | |||||
} | |||||
// list current directory on both cards | |||||
Serial.println(F("------sd1 -------")); | |||||
sd1.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
Serial.println(F("------sd2 -------")); | |||||
sd2.ls("/", LS_R | LS_DATE | LS_SIZE); | |||||
Serial.println(F("---------------------")); | |||||
Serial.println(F("Done")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() {} |
/* | |||||
* This program will format an SD or SDHC card. | |||||
* Warning all data will be deleted! | |||||
* | |||||
* For SD/SDHC cards larger than 64 MB this | |||||
* program attempts to match the format | |||||
* generated by SDFormatter available here: | |||||
* | |||||
* http://www.sdcard.org/consumers/formatter/ | |||||
* | |||||
* For smaller cards this program uses FAT16 | |||||
* and SDFormatter uses FAT12. | |||||
*/ | |||||
#error use new Version 2 SdFormatter | |||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
// | |||||
// Change the value of chipSelect if your hardware does | |||||
// not use the default value, SS. Common values are: | |||||
// Arduino Ethernet shield: pin 4 | |||||
// Sparkfun SD shield: pin 8 | |||||
// Adafruit SD shields and modules: pin 10 | |||||
const uint8_t chipSelect = SS; | |||||
// Initialize at highest supported speed not over 50 MHz. | |||||
// Reduce max speed if errors occur. | |||||
#define SPI_SPEED SD_SCK_MHZ(50) | |||||
// Print extra info for debug if DEBUG_PRINT is nonzero | |||||
#define DEBUG_PRINT 0 | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
#if DEBUG_PRINT | |||||
#include "FreeStack.h" | |||||
#endif // DEBUG_PRINT | |||||
// Serial output stream | |||||
ArduinoOutStream cout(Serial); | |||||
#if USE_SDIO | |||||
// Use faster SdioCardEX | |||||
SdioCardEX card; | |||||
// SdioCard card; | |||||
#else // USE_SDIO | |||||
Sd2Card card; | |||||
#endif // USE_SDIO | |||||
uint32_t cardSizeBlocks; | |||||
uint32_t cardCapacityMB; | |||||
// cache for SD block | |||||
cache_t cache; | |||||
// MBR information | |||||
uint8_t partType; | |||||
uint32_t relSector; | |||||
uint32_t partSize; | |||||
// Fake disk geometry | |||||
uint8_t numberOfHeads; | |||||
uint8_t sectorsPerTrack; | |||||
// FAT parameters | |||||
uint16_t reservedSectors; | |||||
uint8_t sectorsPerCluster; | |||||
uint32_t fatStart; | |||||
uint32_t fatSize; | |||||
uint32_t dataStart; | |||||
// constants for file system structure | |||||
uint16_t const BU16 = 128; | |||||
uint16_t const BU32 = 8192; | |||||
// strings needed in file system structures | |||||
char noName[] = "NO NAME "; | |||||
char fat16str[] = "FAT16 "; | |||||
char fat32str[] = "FAT32 "; | |||||
//------------------------------------------------------------------------------ | |||||
#define sdError(msg) {cout << F("error: ") << F(msg) << endl; sdErrorHalt();} | |||||
//------------------------------------------------------------------------------ | |||||
void sdErrorHalt() { | |||||
if (card.errorCode()) { | |||||
cout << F("SD error: ") << hex << int(card.errorCode()); | |||||
cout << ',' << int(card.errorData()) << dec << endl; | |||||
} | |||||
SysCall::halt(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
#if DEBUG_PRINT | |||||
void debugPrint() { | |||||
cout << F("FreeStack: ") << FreeStack() << endl; | |||||
cout << F("partStart: ") << relSector << endl; | |||||
cout << F("partSize: ") << partSize << endl; | |||||
cout << F("reserved: ") << reservedSectors << endl; | |||||
cout << F("fatStart: ") << fatStart << endl; | |||||
cout << F("fatSize: ") << fatSize << endl; | |||||
cout << F("dataStart: ") << dataStart << endl; | |||||
cout << F("clusterCount: "); | |||||
cout << ((relSector + partSize - dataStart)/sectorsPerCluster) << endl; | |||||
cout << endl; | |||||
cout << F("Heads: ") << int(numberOfHeads) << endl; | |||||
cout << F("Sectors: ") << int(sectorsPerTrack) << endl; | |||||
cout << F("Cylinders: "); | |||||
cout << cardSizeBlocks/(numberOfHeads*sectorsPerTrack) << endl; | |||||
} | |||||
#endif // DEBUG_PRINT | |||||
//------------------------------------------------------------------------------ | |||||
// write cached block to the card | |||||
uint8_t writeCache(uint32_t lbn) { | |||||
return card.writeBlock(lbn, cache.data); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// initialize appropriate sizes for SD capacity | |||||
void initSizes() { | |||||
if (cardCapacityMB <= 6) { | |||||
sdError("Card is too small."); | |||||
} else if (cardCapacityMB <= 16) { | |||||
sectorsPerCluster = 2; | |||||
} else if (cardCapacityMB <= 32) { | |||||
sectorsPerCluster = 4; | |||||
} else if (cardCapacityMB <= 64) { | |||||
sectorsPerCluster = 8; | |||||
} else if (cardCapacityMB <= 128) { | |||||
sectorsPerCluster = 16; | |||||
} else if (cardCapacityMB <= 1024) { | |||||
sectorsPerCluster = 32; | |||||
} else if (cardCapacityMB <= 32768) { | |||||
sectorsPerCluster = 64; | |||||
} else { | |||||
// SDXC cards | |||||
sectorsPerCluster = 128; | |||||
} | |||||
cout << F("Blocks/Cluster: ") << int(sectorsPerCluster) << endl; | |||||
// set fake disk geometry | |||||
sectorsPerTrack = cardCapacityMB <= 256 ? 32 : 63; | |||||
if (cardCapacityMB <= 16) { | |||||
numberOfHeads = 2; | |||||
} else if (cardCapacityMB <= 32) { | |||||
numberOfHeads = 4; | |||||
} else if (cardCapacityMB <= 128) { | |||||
numberOfHeads = 8; | |||||
} else if (cardCapacityMB <= 504) { | |||||
numberOfHeads = 16; | |||||
} else if (cardCapacityMB <= 1008) { | |||||
numberOfHeads = 32; | |||||
} else if (cardCapacityMB <= 2016) { | |||||
numberOfHeads = 64; | |||||
} else if (cardCapacityMB <= 4032) { | |||||
numberOfHeads = 128; | |||||
} else { | |||||
numberOfHeads = 255; | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// zero cache and optionally set the sector signature | |||||
void clearCache(uint8_t addSig) { | |||||
memset(&cache, 0, sizeof(cache)); | |||||
if (addSig) { | |||||
cache.mbr.mbrSig0 = BOOTSIG0; | |||||
cache.mbr.mbrSig1 = BOOTSIG1; | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// zero FAT and root dir area on SD | |||||
void clearFatDir(uint32_t bgn, uint32_t count) { | |||||
clearCache(false); | |||||
#if USE_SDIO | |||||
for (uint32_t i = 0; i < count; i++) { | |||||
if (!card.writeBlock(bgn + i, cache.data)) { | |||||
sdError("Clear FAT/DIR writeBlock failed"); | |||||
} | |||||
if ((i & 0XFF) == 0) { | |||||
cout << '.'; | |||||
} | |||||
} | |||||
#else // USE_SDIO | |||||
if (!card.writeStart(bgn, count)) { | |||||
sdError("Clear FAT/DIR writeStart failed"); | |||||
} | |||||
for (uint32_t i = 0; i < count; i++) { | |||||
if ((i & 0XFF) == 0) { | |||||
cout << '.'; | |||||
} | |||||
if (!card.writeData(cache.data)) { | |||||
sdError("Clear FAT/DIR writeData failed"); | |||||
} | |||||
} | |||||
if (!card.writeStop()) { | |||||
sdError("Clear FAT/DIR writeStop failed"); | |||||
} | |||||
#endif // USE_SDIO | |||||
cout << endl; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return cylinder number for a logical block number | |||||
uint16_t lbnToCylinder(uint32_t lbn) { | |||||
return lbn / (numberOfHeads * sectorsPerTrack); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return head number for a logical block number | |||||
uint8_t lbnToHead(uint32_t lbn) { | |||||
return (lbn % (numberOfHeads * sectorsPerTrack)) / sectorsPerTrack; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// return sector number for a logical block number | |||||
uint8_t lbnToSector(uint32_t lbn) { | |||||
return (lbn % sectorsPerTrack) + 1; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// format and write the Master Boot Record | |||||
void writeMbr() { | |||||
clearCache(true); | |||||
part_t* p = cache.mbr.part; | |||||
p->boot = 0; | |||||
uint16_t c = lbnToCylinder(relSector); | |||||
if (c > 1023) { | |||||
sdError("MBR CHS"); | |||||
} | |||||
p->beginCylinderHigh = c >> 8; | |||||
p->beginCylinderLow = c & 0XFF; | |||||
p->beginHead = lbnToHead(relSector); | |||||
p->beginSector = lbnToSector(relSector); | |||||
p->type = partType; | |||||
uint32_t endLbn = relSector + partSize - 1; | |||||
c = lbnToCylinder(endLbn); | |||||
if (c <= 1023) { | |||||
p->endCylinderHigh = c >> 8; | |||||
p->endCylinderLow = c & 0XFF; | |||||
p->endHead = lbnToHead(endLbn); | |||||
p->endSector = lbnToSector(endLbn); | |||||
} else { | |||||
// Too big flag, c = 1023, h = 254, s = 63 | |||||
p->endCylinderHigh = 3; | |||||
p->endCylinderLow = 255; | |||||
p->endHead = 254; | |||||
p->endSector = 63; | |||||
} | |||||
p->firstSector = relSector; | |||||
p->totalSectors = partSize; | |||||
if (!writeCache(0)) { | |||||
sdError("write MBR"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// generate serial number from card size and micros since boot | |||||
uint32_t volSerialNumber() { | |||||
return (cardSizeBlocks << 8) + micros(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// format the SD as FAT16 | |||||
void makeFat16() { | |||||
uint32_t nc; | |||||
for (dataStart = 2 * BU16;; dataStart += BU16) { | |||||
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster; | |||||
fatSize = (nc + 2 + 255)/256; | |||||
uint32_t r = BU16 + 1 + 2 * fatSize + 32; | |||||
if (dataStart < r) { | |||||
continue; | |||||
} | |||||
relSector = dataStart - r + BU16; | |||||
break; | |||||
} | |||||
// check valid cluster count for FAT16 volume | |||||
if (nc < 4085 || nc >= 65525) { | |||||
sdError("Bad cluster count"); | |||||
} | |||||
reservedSectors = 1; | |||||
fatStart = relSector + reservedSectors; | |||||
partSize = nc * sectorsPerCluster + 2 * fatSize + reservedSectors + 32; | |||||
if (partSize < 32680) { | |||||
partType = 0X01; | |||||
} else if (partSize < 65536) { | |||||
partType = 0X04; | |||||
} else { | |||||
partType = 0X06; | |||||
} | |||||
// write MBR | |||||
writeMbr(); | |||||
clearCache(true); | |||||
fat_boot_t* pb = &cache.fbs; | |||||
pb->jump[0] = 0XEB; | |||||
pb->jump[1] = 0X00; | |||||
pb->jump[2] = 0X90; | |||||
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) { | |||||
pb->oemId[i] = ' '; | |||||
} | |||||
pb->bytesPerSector = 512; | |||||
pb->sectorsPerCluster = sectorsPerCluster; | |||||
pb->reservedSectorCount = reservedSectors; | |||||
pb->fatCount = 2; | |||||
pb->rootDirEntryCount = 512; | |||||
pb->mediaType = 0XF8; | |||||
pb->sectorsPerFat16 = fatSize; | |||||
pb->sectorsPerTrack = sectorsPerTrack; | |||||
pb->headCount = numberOfHeads; | |||||
pb->hidddenSectors = relSector; | |||||
pb->totalSectors32 = partSize; | |||||
pb->driveNumber = 0X80; | |||||
pb->bootSignature = EXTENDED_BOOT_SIG; | |||||
pb->volumeSerialNumber = volSerialNumber(); | |||||
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel)); | |||||
memcpy(pb->fileSystemType, fat16str, sizeof(pb->fileSystemType)); | |||||
// write partition boot sector | |||||
if (!writeCache(relSector)) { | |||||
sdError("FAT16 write PBS failed"); | |||||
} | |||||
// clear FAT and root directory | |||||
clearFatDir(fatStart, dataStart - fatStart); | |||||
clearCache(false); | |||||
cache.fat16[0] = 0XFFF8; | |||||
cache.fat16[1] = 0XFFFF; | |||||
// write first block of FAT and backup for reserved clusters | |||||
if (!writeCache(fatStart) | |||||
|| !writeCache(fatStart + fatSize)) { | |||||
sdError("FAT16 reserve failed"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// format the SD as FAT32 | |||||
void makeFat32() { | |||||
uint32_t nc; | |||||
relSector = BU32; | |||||
for (dataStart = 2 * BU32;; dataStart += BU32) { | |||||
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster; | |||||
fatSize = (nc + 2 + 127)/128; | |||||
uint32_t r = relSector + 9 + 2 * fatSize; | |||||
if (dataStart >= r) { | |||||
break; | |||||
} | |||||
} | |||||
// error if too few clusters in FAT32 volume | |||||
if (nc < 65525) { | |||||
sdError("Bad cluster count"); | |||||
} | |||||
reservedSectors = dataStart - relSector - 2 * fatSize; | |||||
fatStart = relSector + reservedSectors; | |||||
partSize = nc * sectorsPerCluster + dataStart - relSector; | |||||
// type depends on address of end sector | |||||
// max CHS has lbn = 16450560 = 1024*255*63 | |||||
if ((relSector + partSize) <= 16450560) { | |||||
// FAT32 | |||||
partType = 0X0B; | |||||
} else { | |||||
// FAT32 with INT 13 | |||||
partType = 0X0C; | |||||
} | |||||
writeMbr(); | |||||
clearCache(true); | |||||
fat32_boot_t* pb = &cache.fbs32; | |||||
pb->jump[0] = 0XEB; | |||||
pb->jump[1] = 0X00; | |||||
pb->jump[2] = 0X90; | |||||
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) { | |||||
pb->oemId[i] = ' '; | |||||
} | |||||
pb->bytesPerSector = 512; | |||||
pb->sectorsPerCluster = sectorsPerCluster; | |||||
pb->reservedSectorCount = reservedSectors; | |||||
pb->fatCount = 2; | |||||
pb->mediaType = 0XF8; | |||||
pb->sectorsPerTrack = sectorsPerTrack; | |||||
pb->headCount = numberOfHeads; | |||||
pb->hidddenSectors = relSector; | |||||
pb->totalSectors32 = partSize; | |||||
pb->sectorsPerFat32 = fatSize; | |||||
pb->fat32RootCluster = 2; | |||||
pb->fat32FSInfo = 1; | |||||
pb->fat32BackBootBlock = 6; | |||||
pb->driveNumber = 0X80; | |||||
pb->bootSignature = EXTENDED_BOOT_SIG; | |||||
pb->volumeSerialNumber = volSerialNumber(); | |||||
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel)); | |||||
memcpy(pb->fileSystemType, fat32str, sizeof(pb->fileSystemType)); | |||||
// write partition boot sector and backup | |||||
if (!writeCache(relSector) | |||||
|| !writeCache(relSector + 6)) { | |||||
sdError("FAT32 write PBS failed"); | |||||
} | |||||
clearCache(true); | |||||
// write extra boot area and backup | |||||
if (!writeCache(relSector + 2) | |||||
|| !writeCache(relSector + 8)) { | |||||
sdError("FAT32 PBS ext failed"); | |||||
} | |||||
fat32_fsinfo_t* pf = &cache.fsinfo; | |||||
pf->leadSignature = FSINFO_LEAD_SIG; | |||||
pf->structSignature = FSINFO_STRUCT_SIG; | |||||
pf->freeCount = 0XFFFFFFFF; | |||||
pf->nextFree = 0XFFFFFFFF; | |||||
// write FSINFO sector and backup | |||||
if (!writeCache(relSector + 1) | |||||
|| !writeCache(relSector + 7)) { | |||||
sdError("FAT32 FSINFO failed"); | |||||
} | |||||
clearFatDir(fatStart, 2 * fatSize + sectorsPerCluster); | |||||
clearCache(false); | |||||
cache.fat32[0] = 0x0FFFFFF8; | |||||
cache.fat32[1] = 0x0FFFFFFF; | |||||
cache.fat32[2] = 0x0FFFFFFF; | |||||
// write first block of FAT and backup for reserved clusters | |||||
if (!writeCache(fatStart) | |||||
|| !writeCache(fatStart + fatSize)) { | |||||
sdError("FAT32 reserve failed"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// flash erase all data | |||||
uint32_t const ERASE_SIZE = 262144L; | |||||
void eraseCard() { | |||||
cout << endl << F("Erasing\n"); | |||||
uint32_t firstBlock = 0; | |||||
uint32_t lastBlock; | |||||
uint16_t n = 0; | |||||
do { | |||||
lastBlock = firstBlock + ERASE_SIZE - 1; | |||||
if (lastBlock >= cardSizeBlocks) { | |||||
lastBlock = cardSizeBlocks - 1; | |||||
} | |||||
if (!card.erase(firstBlock, lastBlock)) { | |||||
sdError("erase failed"); | |||||
} | |||||
cout << '.'; | |||||
if ((n++)%32 == 31) { | |||||
cout << endl; | |||||
} | |||||
firstBlock += ERASE_SIZE; | |||||
} while (firstBlock < cardSizeBlocks); | |||||
cout << endl; | |||||
if (!card.readBlock(0, cache.data)) { | |||||
sdError("readBlock"); | |||||
} | |||||
cout << hex << showbase << setfill('0') << internal; | |||||
cout << F("All data set to ") << setw(4) << int(cache.data[0]) << endl; | |||||
cout << dec << noshowbase << setfill(' ') << right; | |||||
cout << F("Erase done\n"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void formatCard() { | |||||
cout << endl; | |||||
cout << F("Formatting\n"); | |||||
initSizes(); | |||||
if (card.type() != SD_CARD_TYPE_SDHC) { | |||||
cout << F("FAT16\n"); | |||||
makeFat16(); | |||||
} else { | |||||
cout << F("FAT32\n"); | |||||
makeFat32(); | |||||
} | |||||
#if DEBUG_PRINT | |||||
debugPrint(); | |||||
#endif // DEBUG_PRINT | |||||
cout << F("Format done\n"); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
char c; | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
cout << F("Type any character to start\n"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
// Discard any extra characters. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
cout << F( | |||||
"\n" | |||||
"This program can erase and/or format SD/SDHC cards.\n" | |||||
"\n" | |||||
"Erase uses the card's fast flash erase command.\n" | |||||
"Flash erase sets all data to 0X00 for most cards\n" | |||||
"and 0XFF for a few vendor's cards.\n" | |||||
"\n" | |||||
"Cards larger than 2 GB will be formatted FAT32 and\n" | |||||
"smaller cards will be formatted FAT16.\n" | |||||
"\n" | |||||
"Warning, all data on the card will be erased.\n" | |||||
"Enter 'Y' to continue: "); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
c = Serial.read(); | |||||
cout << c << endl; | |||||
if (c != 'Y') { | |||||
cout << F("Quiting, you did not enter 'Y'.\n"); | |||||
return; | |||||
} | |||||
// Read any existing Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
cout << F( | |||||
"\n" | |||||
"Options are:\n" | |||||
"E - erase the card and skip formatting.\n" | |||||
"F - erase and then format the card. (recommended)\n" | |||||
"Q - quick format the card without erase.\n" | |||||
"\n" | |||||
"Enter option: "); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
c = Serial.read(); | |||||
cout << c << endl; | |||||
if (!strchr("EFQ", c)) { | |||||
cout << F("Quiting, invalid option entered.") << endl; | |||||
return; | |||||
} | |||||
#if USE_SDIO | |||||
if (!card.begin()) { | |||||
sdError("card.begin failed"); | |||||
} | |||||
#else // USE_SDIO | |||||
if (!card.begin(chipSelect, SPI_SPEED)) { | |||||
cout << F( | |||||
"\nSD initialization failure!\n" | |||||
"Is the SD card inserted correctly?\n" | |||||
"Is chip select correct at the top of this program?\n"); | |||||
sdError("card.begin failed"); | |||||
} | |||||
#endif | |||||
cardSizeBlocks = card.cardSize(); | |||||
if (cardSizeBlocks == 0) { | |||||
sdError("cardSize"); | |||||
} | |||||
cardCapacityMB = (cardSizeBlocks + 2047)/2048; | |||||
cout << F("Card Size: ") << setprecision(0) << 1.048576*cardCapacityMB; | |||||
cout << F(" MB, (MB = 1,000,000 bytes)") << endl; | |||||
if (c == 'E' || c == 'F') { | |||||
eraseCard(); | |||||
} | |||||
if (c == 'F' || c == 'Q') { | |||||
formatCard(); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() {} |
/* | |||||
* This program attempts to initialize an SD card and analyze its structure. | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
#error Use new Version 2 SdInfo | |||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
/* | |||||
* SD chip select pin. Common values are: | |||||
* | |||||
* Arduino Ethernet shield, pin 4. | |||||
* SparkFun SD shield, pin 8. | |||||
* Adafruit SD shields and modules, pin 10. | |||||
* Default SD chip select is the SPI SS pin. | |||||
*/ | |||||
const uint8_t SD_CHIP_SELECT = SS; | |||||
/* | |||||
* Set DISABLE_CHIP_SELECT to disable a second SPI device. | |||||
* For example, with the Ethernet shield, set DISABLE_CHIP_SELECT | |||||
* to 10 to disable the Ethernet controller. | |||||
*/ | |||||
const int8_t DISABLE_CHIP_SELECT = -1; | |||||
#if USE_SDIO | |||||
// Use faster SdioCardEX | |||||
SdFatSdioEX sd; | |||||
// SdFatSdio sd; | |||||
#else // USE_SDIO | |||||
SdFat sd; | |||||
#endif // USE_SDIO | |||||
// serial output steam | |||||
ArduinoOutStream cout(Serial); | |||||
// global for card size | |||||
uint32_t cardSize; | |||||
// global for card erase size | |||||
uint32_t eraseSize; | |||||
//------------------------------------------------------------------------------ | |||||
// store error strings in flash | |||||
#define sdErrorMsg(msg) sd.errorPrint(F(msg)); | |||||
//------------------------------------------------------------------------------ | |||||
uint8_t cidDmp() { | |||||
cid_t cid; | |||||
if (!sd.card()->readCID(&cid)) { | |||||
sdErrorMsg("readCID failed"); | |||||
return false; | |||||
} | |||||
cout << F("\nManufacturer ID: "); | |||||
cout << hex << int(cid.mid) << dec << endl; | |||||
cout << F("OEM ID: ") << cid.oid[0] << cid.oid[1] << endl; | |||||
cout << F("Product: "); | |||||
for (uint8_t i = 0; i < 5; i++) { | |||||
cout << cid.pnm[i]; | |||||
} | |||||
cout << F("\nVersion: "); | |||||
cout << int(cid.prv_n) << '.' << int(cid.prv_m) << endl; | |||||
cout << F("Serial number: ") << hex << cid.psn << dec << endl; | |||||
cout << F("Manufacturing date: "); | |||||
cout << int(cid.mdt_month) << '/'; | |||||
cout << (2000 + cid.mdt_year_low + 10 * cid.mdt_year_high) << endl; | |||||
cout << endl; | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
uint8_t csdDmp() { | |||||
csd_t csd; | |||||
uint8_t eraseSingleBlock; | |||||
if (!sd.card()->readCSD(&csd)) { | |||||
sdErrorMsg("readCSD failed"); | |||||
return false; | |||||
} | |||||
if (csd.v1.csd_ver == 0) { | |||||
eraseSingleBlock = csd.v1.erase_blk_en; | |||||
eraseSize = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low; | |||||
} else if (csd.v2.csd_ver == 1) { | |||||
eraseSingleBlock = csd.v2.erase_blk_en; | |||||
eraseSize = (csd.v2.sector_size_high << 1) | csd.v2.sector_size_low; | |||||
} else { | |||||
cout << F("csd version error\n"); | |||||
return false; | |||||
} | |||||
eraseSize++; | |||||
cout << F("cardSize: ") << 0.000512*cardSize; | |||||
cout << F(" MB (MB = 1,000,000 bytes)\n"); | |||||
cout << F("flashEraseSize: ") << int(eraseSize) << F(" blocks\n"); | |||||
cout << F("eraseSingleBlock: "); | |||||
if (eraseSingleBlock) { | |||||
cout << F("true\n"); | |||||
} else { | |||||
cout << F("false\n"); | |||||
} | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// print partition table | |||||
uint8_t partDmp() { | |||||
mbr_t mbr; | |||||
if (!sd.card()->readBlock(0, (uint8_t*)&mbr)) { | |||||
sdErrorMsg("read MBR failed"); | |||||
return false; | |||||
} | |||||
for (uint8_t ip = 1; ip < 5; ip++) { | |||||
part_t *pt = &mbr.part[ip - 1]; | |||||
if ((pt->boot & 0X7F) != 0 || pt->firstSector > cardSize) { | |||||
cout << F("\nNo MBR. Assuming Super Floppy format.\n"); | |||||
return true; | |||||
} | |||||
} | |||||
cout << F("\nSD Partition Table\n"); | |||||
cout << F("part,boot,type,start,length\n"); | |||||
for (uint8_t ip = 1; ip < 5; ip++) { | |||||
part_t *pt = &mbr.part[ip - 1]; | |||||
cout << int(ip) << ',' << hex << int(pt->boot) << ',' << int(pt->type); | |||||
cout << dec << ',' << pt->firstSector <<',' << pt->totalSectors << endl; | |||||
} | |||||
return true; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void volDmp() { | |||||
cout << F("\nVolume is FAT") << int(sd.vol()->fatType()) << endl; | |||||
cout << F("blocksPerCluster: ") << int(sd.vol()->blocksPerCluster()) << endl; | |||||
cout << F("clusterCount: ") << sd.vol()->clusterCount() << endl; | |||||
cout << F("freeClusters: "); | |||||
uint32_t volFree = sd.vol()->freeClusterCount(); | |||||
cout << volFree << endl; | |||||
float fs = 0.000512*volFree*sd.vol()->blocksPerCluster(); | |||||
cout << F("freeSpace: ") << fs << F(" MB (MB = 1,000,000 bytes)\n"); | |||||
cout << F("fatStartBlock: ") << sd.vol()->fatStartBlock() << endl; | |||||
cout << F("fatCount: ") << int(sd.vol()->fatCount()) << endl; | |||||
cout << F("blocksPerFat: ") << sd.vol()->blocksPerFat() << endl; | |||||
cout << F("rootDirStart: ") << sd.vol()->rootDirStart() << endl; | |||||
cout << F("dataStartBlock: ") << sd.vol()->dataStartBlock() << endl; | |||||
if (sd.vol()->dataStartBlock() % eraseSize) { | |||||
cout << F("Data area is not aligned on flash erase boundaries!\n"); | |||||
cout << F("Download and use formatter from www.sdcard.org!\n"); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
// use uppercase in hex and use 0X base prefix | |||||
cout << uppercase << showbase << endl; | |||||
// F stores strings in flash to save RAM | |||||
cout << F("SdFat version: ") << SD_FAT_VERSION << endl; | |||||
#if !USE_SDIO | |||||
if (DISABLE_CHIP_SELECT < 0) { | |||||
cout << F( | |||||
"\nAssuming the SD is the only SPI device.\n" | |||||
"Edit DISABLE_CHIP_SELECT to disable another device.\n"); | |||||
} else { | |||||
cout << F("\nDisabling SPI device on pin "); | |||||
cout << int(DISABLE_CHIP_SELECT) << endl; | |||||
pinMode(DISABLE_CHIP_SELECT, OUTPUT); | |||||
digitalWrite(DISABLE_CHIP_SELECT, HIGH); | |||||
} | |||||
cout << F("\nAssuming the SD chip select pin is: ") <<int(SD_CHIP_SELECT); | |||||
cout << F("\nEdit SD_CHIP_SELECT to change the SD chip select pin.\n"); | |||||
#endif // !USE_SDIO | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
// Read any existing Serial data. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
// F stores strings in flash to save RAM | |||||
cout << F("\ntype any character to start\n"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
uint32_t t = millis(); | |||||
#if USE_SDIO | |||||
if (!sd.cardBegin()) { | |||||
sdErrorMsg("\ncardBegin failed"); | |||||
return; | |||||
} | |||||
#else // USE_SDIO | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.cardBegin(SD_CHIP_SELECT, SD_SCK_MHZ(50))) { | |||||
sdErrorMsg("cardBegin failed"); | |||||
return; | |||||
} | |||||
#endif // USE_SDIO | |||||
t = millis() - t; | |||||
cardSize = sd.card()->cardSize(); | |||||
if (cardSize == 0) { | |||||
sdErrorMsg("cardSize failed"); | |||||
return; | |||||
} | |||||
cout << F("\ninit time: ") << t << " ms" << endl; | |||||
cout << F("\nCard type: "); | |||||
switch (sd.card()->type()) { | |||||
case SD_CARD_TYPE_SD1: | |||||
cout << F("SD1\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SD2: | |||||
cout << F("SD2\n"); | |||||
break; | |||||
case SD_CARD_TYPE_SDHC: | |||||
if (cardSize < 70000000) { | |||||
cout << F("SDHC\n"); | |||||
} else { | |||||
cout << F("SDXC\n"); | |||||
} | |||||
break; | |||||
default: | |||||
cout << F("Unknown\n"); | |||||
} | |||||
if (!cidDmp()) { | |||||
return; | |||||
} | |||||
if (!csdDmp()) { | |||||
return; | |||||
} | |||||
uint32_t ocr; | |||||
if (!sd.card()->readOCR(&ocr)) { | |||||
sdErrorMsg("\nreadOCR failed"); | |||||
return; | |||||
} | |||||
cout << F("OCR: ") << hex << ocr << dec << endl; | |||||
if (!partDmp()) { | |||||
return; | |||||
} | |||||
if (!sd.fsBegin()) { | |||||
sdErrorMsg("\nFile System initialization failed.\n"); | |||||
return; | |||||
} | |||||
volDmp(); | |||||
} |
// An example of the SdFatSoftSpi template class. | |||||
// This example is for an Adafruit Data Logging Shield on a Mega. | |||||
// Software SPI is required on Mega since this shield connects to pins 10-13. | |||||
// This example will also run on an Uno and other boards using software SPI. | |||||
// | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#error See Version 2 software SPI example | |||||
#if ENABLE_SOFTWARE_SPI_CLASS // Must be set in SdFat/SdFatConfig.h | |||||
// | |||||
// Pin numbers in templates must be constants. | |||||
const uint8_t SOFT_MISO_PIN = 12; | |||||
const uint8_t SOFT_MOSI_PIN = 11; | |||||
const uint8_t SOFT_SCK_PIN = 13; | |||||
// | |||||
// Chip select may be constant or RAM variable. | |||||
const uint8_t SD_CHIP_SELECT_PIN = 10; | |||||
// SdFat software SPI template | |||||
SdFatSoftSpi<SOFT_MISO_PIN, SOFT_MOSI_PIN, SOFT_SCK_PIN> sd; | |||||
// Test file. | |||||
SdFile file; | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
Serial.println("Type any character to start"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
if (!sd.begin(SD_CHIP_SELECT_PIN)) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
if (!file.open("SoftSPI.txt", O_RDWR | O_CREAT)) { | |||||
sd.errorHalt(F("open failed")); | |||||
} | |||||
file.println(F("This line was printed using software SPI.")); | |||||
file.rewind(); | |||||
while (file.available()) { | |||||
Serial.write(file.read()); | |||||
} | |||||
file.close(); | |||||
Serial.println(F("Done.")); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() {} | |||||
#else // ENABLE_SOFTWARE_SPI_CLASS | |||||
#error ENABLE_SOFTWARE_SPI_CLASS must be set non-zero in SdFat/SdFatConfig.h | |||||
#endif //ENABLE_SOFTWARE_SPI_CLASS |
// Benchmark comparing SdFile and StdioStream. | // Benchmark comparing SdFile and StdioStream. | ||||
#include <SPI.h> | #include <SPI.h> | ||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | |||||
// Define PRINT_FIELD nonzero to use printField. | // Define PRINT_FIELD nonzero to use printField. | ||||
#define PRINT_FIELD 0 | #define PRINT_FIELD 0 | ||||
}; | }; | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
uint32_t printSize; | |||||
uint32_t printSize = 0; | |||||
uint32_t stdioSize = 0; | uint32_t stdioSize = 0; | ||||
uint32_t printTime; | |||||
uint32_t printTime = 0; | |||||
uint32_t stdioTime = 0; | uint32_t stdioTime = 0; | ||||
Serial.begin(9600); | Serial.begin(9600); |
// Simple performance test for Teensy 3.5/3.6 SDHC. | |||||
// Demonstrates yield() efficiency. | |||||
// Warning SdFatSdio and SdFatSdioEX normally should | |||||
// not both be used in a program. | |||||
// Each has its own cache and member variables. | |||||
#include "SdFat.h" | |||||
#error See Version 2 SDIO example | |||||
// 32 KiB buffer. | |||||
const size_t BUF_DIM = 32768; | |||||
// 8 MiB file. | |||||
const uint32_t FILE_SIZE = 256UL*BUF_DIM; | |||||
SdFatSdio sd; | |||||
SdFatSdioEX sdEx; | |||||
File file; | |||||
uint8_t buf[BUF_DIM]; | |||||
// buffer as uint32_t | |||||
uint32_t* buf32 = (uint32_t*)buf; | |||||
// Total usec in read/write calls. | |||||
uint32_t totalMicros = 0; | |||||
// Time in yield() function. | |||||
uint32_t yieldMicros = 0; | |||||
// Number of yield calls. | |||||
uint32_t yieldCalls = 0; | |||||
// Max busy time for single yield call. | |||||
uint32_t yieldMaxUsec = 0; | |||||
// Control access to the two versions of SdFat. | |||||
bool useEx = false; | |||||
//----------------------------------------------------------------------------- | |||||
bool sdBusy() { | |||||
return useEx ? sdEx.card()->isBusy() : sd.card()->isBusy(); | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void errorHalt(const char* msg) { | |||||
if (useEx) { | |||||
sdEx.errorHalt(msg); | |||||
} else { | |||||
sd.errorHalt(msg); | |||||
} | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
uint32_t kHzSdClk() { | |||||
return useEx ? sdEx.card()->kHzSdClk() : sd.card()->kHzSdClk(); | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
// Replace "weak" system yield() function. | |||||
void yield() { | |||||
// Only count cardBusy time. | |||||
if (!sdBusy()) { | |||||
return; | |||||
} | |||||
uint32_t m = micros(); | |||||
yieldCalls++; | |||||
while (sdBusy()) { | |||||
// Do something here. | |||||
} | |||||
m = micros() - m; | |||||
if (m > yieldMaxUsec) { | |||||
yieldMaxUsec = m; | |||||
} | |||||
yieldMicros += m; | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void runTest() { | |||||
// Zero Stats | |||||
totalMicros = 0; | |||||
yieldMicros = 0; | |||||
yieldCalls = 0; | |||||
yieldMaxUsec = 0; | |||||
if (!file.open("TeensyDemo.bin", O_RDWR | O_CREAT)) { | |||||
errorHalt("open failed"); | |||||
} | |||||
Serial.println("\nsize,write,read"); | |||||
Serial.println("bytes,KB/sec,KB/sec"); | |||||
for (size_t nb = 512; nb <= BUF_DIM; nb *= 2) { | |||||
file.truncate(0); | |||||
uint32_t nRdWr = FILE_SIZE/nb; | |||||
Serial.print(nb); | |||||
Serial.print(','); | |||||
uint32_t t = micros(); | |||||
for (uint32_t n = 0; n < nRdWr; n++) { | |||||
// Set start and end of buffer. | |||||
buf32[0] = n; | |||||
buf32[nb/4 - 1] = n; | |||||
if (nb != file.write(buf, nb)) { | |||||
errorHalt("write failed"); | |||||
} | |||||
} | |||||
t = micros() - t; | |||||
totalMicros += t; | |||||
Serial.print(1000.0*FILE_SIZE/t); | |||||
Serial.print(','); | |||||
file.rewind(); | |||||
t = micros(); | |||||
for (uint32_t n = 0; n < nRdWr; n++) { | |||||
if ((int)nb != file.read(buf, nb)) { | |||||
errorHalt("read failed"); | |||||
} | |||||
// crude check of data. | |||||
if (buf32[0] != n || buf32[nb/4 - 1] != n) { | |||||
errorHalt("data check"); | |||||
} | |||||
} | |||||
t = micros() - t; | |||||
totalMicros += t; | |||||
Serial.println(1000.0*FILE_SIZE/t); | |||||
} | |||||
file.close(); | |||||
Serial.print("\ntotalMicros "); | |||||
Serial.println(totalMicros); | |||||
Serial.print("yieldMicros "); | |||||
Serial.println(yieldMicros); | |||||
Serial.print("yieldCalls "); | |||||
Serial.println(yieldCalls); | |||||
Serial.print("yieldMaxUsec "); | |||||
Serial.println(yieldMaxUsec); | |||||
Serial.print("kHzSdClk "); | |||||
Serial.println(kHzSdClk()); | |||||
Serial.println("Done"); | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
while (!Serial) { | |||||
} | |||||
Serial.println("SdFatSdioEX uses extended multi-block transfers without DMA."); | |||||
Serial.println("SdFatSdio uses a traditional DMA SDIO implementation."); | |||||
Serial.println("Note the difference is speed and busy yield time.\n"); | |||||
} | |||||
//----------------------------------------------------------------------------- | |||||
void loop() { | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read()); | |||||
Serial.println("Type '1' for SdFatSdioEX or '2' for SdFatSdio"); | |||||
while (!Serial.available()) { | |||||
} | |||||
char c = Serial.read(); | |||||
if (c != '1' && c != '2') { | |||||
Serial.println("Invalid input"); | |||||
return; | |||||
} | |||||
if (c =='1') { | |||||
useEx = true; | |||||
if (!sdEx.begin()) { | |||||
sd.initErrorHalt("SdFatSdioEX begin() failed"); | |||||
} | |||||
// make sdEx the current volume. | |||||
sdEx.chvol(); | |||||
} else { | |||||
useEx = false; | |||||
if (!sd.begin()) { | |||||
sd.initErrorHalt("SdFatSdio begin() failed"); | |||||
} | |||||
// make sd the current volume. | |||||
sd.chvol(); | |||||
} | |||||
runTest(); | |||||
} |
#include <SPI.h> | #include <SPI.h> | ||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
SdFat sd; | SdFat sd; | ||||
SdFile file; | SdFile file; | ||||
* Function to print all timestamps. | * Function to print all timestamps. | ||||
*/ | */ | ||||
void printTimestamps(SdFile& f) { | void printTimestamps(SdFile& f) { | ||||
dir_t d; | |||||
if (!f.dirEntry(&d)) { | |||||
error("f.dirEntry failed"); | |||||
} | |||||
cout << F("Creation: "); | cout << F("Creation: "); | ||||
f.printFatDate(d.creationDate); | |||||
cout << ' '; | |||||
f.printFatTime(d.creationTime); | |||||
cout << endl; | |||||
cout << F("Modify: "); | |||||
f.printFatDate(d.lastWriteDate); | |||||
cout <<' '; | |||||
f.printFatTime(d.lastWriteTime); | |||||
cout << endl; | |||||
cout << F("Access: "); | |||||
f.printFatDate(d.lastAccessDate); | |||||
f.printCreateDateTime(&Serial); | |||||
cout << endl << F("Modify: "); | |||||
f.printModifyDateTime(&Serial); | |||||
cout << endl << F("Access: "); | |||||
f.printAccessDateTime(&Serial); | |||||
cout << endl; | cout << endl; | ||||
} | } | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ |
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | ||||
sd.initErrorHalt(); | sd.initErrorHalt(); | ||||
} | } | ||||
// Insure no TEST_FILE. | |||||
// Insure no TEST_FILE. | |||||
sd.remove(TEST_FILE); | sd.remove(TEST_FILE); | ||||
cout << F("\nFirst call to freeClusterCount scans the FAT.\n\n"); | cout << F("\nFirst call to freeClusterCount scans the FAT.\n\n"); | ||||
printFreeSpace(); | printFreeSpace(); | ||||
cout << F("Create and write to ") << TEST_FILE << endl; | cout << F("Create and write to ") << TEST_FILE << endl; | ||||
if (!file.open(TEST_FILE, O_WRONLY | O_CREAT)) { | if (!file.open(TEST_FILE, O_WRONLY | O_CREAT)) { | ||||
sd.errorHalt(F("Create failed")); | sd.errorHalt(F("Create failed")); | ||||
} | } | ||||
file.print(F("Cause a cluster to be allocated")); | file.print(F("Cause a cluster to be allocated")); | ||||
file.close(); | file.close(); | ||||
cout << F("\nSecond freeClusterCount call is faster if\n"); | cout << F("\nSecond freeClusterCount call is faster if\n"); | ||||
cout << F("MAINTAIN_FREE_CLUSTER_COUNT is nonzero.\n\n"); | cout << F("MAINTAIN_FREE_CLUSTER_COUNT is nonzero.\n\n"); | ||||
printFreeSpace(); | printFreeSpace(); | ||||
cout << F("Remove ") << TEST_FILE << endl << endl; | cout << F("Remove ") << TEST_FILE << endl << endl; |
/* | |||||
* This program is a simple binary write/read benchmark. | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
#include "FreeStack.h" | |||||
// Set USE_SDIO to zero for SPI card access. | |||||
#define USE_SDIO 0 | |||||
// SD chip select pin | |||||
const uint8_t chipSelect = SS; | |||||
// Size of read/write. | |||||
const size_t BUF_SIZE = 512; | |||||
// File size in MB where MB = 1,000,000 bytes. | |||||
const uint32_t FILE_SIZE_MB = 5; | |||||
// Write pass count. | |||||
const uint8_t WRITE_COUNT = 2; | |||||
// Read pass count. | |||||
const uint8_t READ_COUNT = 2; | |||||
//============================================================================== | |||||
// End of configuration constants. | |||||
//------------------------------------------------------------------------------ | |||||
// File size in bytes. | |||||
const uint32_t FILE_SIZE = 1000000UL*FILE_SIZE_MB; | |||||
uint8_t buf[BUF_SIZE]; | |||||
// file system | |||||
#if USE_SDIO | |||||
// Traditional DMA version. | |||||
// SdFatSdio sd; | |||||
// Faster version. | |||||
SdFatSdioEX sd; | |||||
#else // USE_SDIO | |||||
SdFat sd; | |||||
#endif // USE_SDIO | |||||
// Set ENABLE_EXTENDED_TRANSFER_CLASS to use extended SD I/O. | |||||
// Requires dedicated use of the SPI bus. | |||||
// SdFatEX sd; | |||||
// Set ENABLE_SOFTWARE_SPI_CLASS to use software SPI. | |||||
// Args are misoPin, mosiPin, sckPin. | |||||
// SdFatSoftSpi<6, 7, 5> sd; | |||||
// test file | |||||
SdFile file; | |||||
// Serial output stream | |||||
ArduinoOutStream cout(Serial); | |||||
//------------------------------------------------------------------------------ | |||||
// Store error strings in flash to save RAM. | |||||
#define error(s) sd.errorHalt(F(s)) | |||||
//------------------------------------------------------------------------------ | |||||
void cidDmp() { | |||||
cid_t cid; | |||||
if (!sd.card()->readCID(&cid)) { | |||||
error("readCID failed"); | |||||
} | |||||
cout << F("\nManufacturer ID: "); | |||||
cout << hex << int(cid.mid) << dec << endl; | |||||
cout << F("OEM ID: ") << cid.oid[0] << cid.oid[1] << endl; | |||||
cout << F("Product: "); | |||||
for (uint8_t i = 0; i < 5; i++) { | |||||
cout << cid.pnm[i]; | |||||
} | |||||
cout << F("\nVersion: "); | |||||
cout << int(cid.prv_n) << '.' << int(cid.prv_m) << endl; | |||||
cout << F("Serial number: ") << hex << cid.psn << dec << endl; | |||||
cout << F("Manufacturing date: "); | |||||
cout << int(cid.mdt_month) << '/'; | |||||
cout << (2000 + cid.mdt_year_low + 10 * cid.mdt_year_high) << endl; | |||||
cout << endl; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
delay(1000); | |||||
cout << F("\nUse a freshly formatted SD for best performance.\n"); | |||||
// use uppercase in hex and use 0X base prefix | |||||
cout << uppercase << showbase << endl; | |||||
} | |||||
//------------------------------------------------------------------------------ | |||||
void loop() { | |||||
float s; | |||||
uint32_t t; | |||||
uint32_t maxLatency; | |||||
uint32_t minLatency; | |||||
uint32_t totalLatency; | |||||
// Discard any input. | |||||
do { | |||||
delay(10); | |||||
} while (Serial.available() && Serial.read() >= 0); | |||||
// F( stores strings in flash to save RAM | |||||
cout << F("Type any character to start\n"); | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
cout << F("chipSelect: ") << int(chipSelect) << endl; | |||||
cout << F("FreeStack: ") << FreeStack() << endl; | |||||
#if USE_SDIO | |||||
if (!sd.begin()) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
#else // USE_SDIO | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
#endif // USE_SDIO | |||||
cout << F("Type is FAT") << int(sd.vol()->fatType()) << endl; | |||||
cout << F("Card size: ") << sd.card()->cardSize()*512E-9; | |||||
cout << F(" GB (GB = 1E9 bytes)") << endl; | |||||
cidDmp(); | |||||
// open or create file - truncate existing file. | |||||
if (!file.open("bench.dat", O_RDWR | O_CREAT | O_TRUNC)) { | |||||
error("open failed"); | |||||
} | |||||
// fill buf with known data | |||||
for (size_t i = 0; i < (BUF_SIZE-2); i++) { | |||||
buf[i] = 'A' + (i % 26); | |||||
} | |||||
buf[BUF_SIZE-2] = '\r'; | |||||
buf[BUF_SIZE-1] = '\n'; | |||||
cout << F("File size ") << FILE_SIZE_MB << F(" MB\n"); | |||||
cout << F("Buffer size ") << BUF_SIZE << F(" bytes\n"); | |||||
cout << F("Starting write test, please wait.") << endl << endl; | |||||
// do write test | |||||
uint32_t n = FILE_SIZE/sizeof(buf); | |||||
cout <<F("write speed and latency") << endl; | |||||
cout << F("speed,max,min,avg") << endl; | |||||
cout << F("KB/Sec,usec,usec,usec") << endl; | |||||
for (uint8_t nTest = 0; nTest < WRITE_COUNT; nTest++) { | |||||
file.truncate(0); | |||||
maxLatency = 0; | |||||
minLatency = 9999999; | |||||
totalLatency = 0; | |||||
t = millis(); | |||||
for (uint32_t i = 0; i < n; i++) { | |||||
uint32_t m = micros(); | |||||
if (file.write(buf, sizeof(buf)) != sizeof(buf)) { | |||||
sd.errorPrint("write failed"); | |||||
file.close(); | |||||
return; | |||||
} | |||||
m = micros() - m; | |||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
totalLatency += m; | |||||
} | |||||
file.sync(); | |||||
t = millis() - t; | |||||
s = file.fileSize(); | |||||
cout << s/t <<',' << maxLatency << ',' << minLatency; | |||||
cout << ',' << totalLatency/n << endl; | |||||
} | |||||
cout << endl << F("Starting read test, please wait.") << endl; | |||||
cout << endl <<F("read speed and latency") << endl; | |||||
cout << F("speed,max,min,avg") << endl; | |||||
cout << F("KB/Sec,usec,usec,usec") << endl; | |||||
// do read test | |||||
for (uint8_t nTest = 0; nTest < READ_COUNT; nTest++) { | |||||
file.rewind(); | |||||
maxLatency = 0; | |||||
minLatency = 9999999; | |||||
totalLatency = 0; | |||||
t = millis(); | |||||
for (uint32_t i = 0; i < n; i++) { | |||||
buf[BUF_SIZE-1] = 0; | |||||
uint32_t m = micros(); | |||||
int32_t nr = file.read(buf, sizeof(buf)); | |||||
if (nr != sizeof(buf)) { | |||||
sd.errorPrint("read failed"); | |||||
file.close(); | |||||
return; | |||||
} | |||||
m = micros() - m; | |||||
if (maxLatency < m) { | |||||
maxLatency = m; | |||||
} | |||||
if (minLatency > m) { | |||||
minLatency = m; | |||||
} | |||||
totalLatency += m; | |||||
if (buf[BUF_SIZE-1] != '\n') { | |||||
error("data check"); | |||||
} | |||||
} | |||||
s = file.fileSize(); | |||||
t = millis() - t; | |||||
cout << s/t <<',' << maxLatency << ',' << minLatency; | |||||
cout << ',' << totalLatency/n << endl; | |||||
} | |||||
cout << endl << F("Done") << endl; | |||||
file.close(); | |||||
} |
/* | |||||
* This program demonstrates use of SdFile::rename() | |||||
* and SdFat::rename(). | |||||
*/ | |||||
#include <SPI.h> | |||||
#include "SdFat.h" | |||||
#include "sdios.h" | |||||
// SD chip select pin | |||||
const uint8_t chipSelect = SS; | |||||
// file system | |||||
SdFat sd; | |||||
// Serial print stream | |||||
ArduinoOutStream cout(Serial); | |||||
//------------------------------------------------------------------------------ | |||||
// store error strings in flash to save RAM | |||||
#define error(s) sd.errorHalt(F(s)) | |||||
//------------------------------------------------------------------------------ | |||||
void setup() { | |||||
Serial.begin(9600); | |||||
// Wait for USB Serial | |||||
while (!Serial) { | |||||
SysCall::yield(); | |||||
} | |||||
cout << F("Insert an empty SD. Type any character to start.") << endl; | |||||
while (!Serial.available()) { | |||||
SysCall::yield(); | |||||
} | |||||
// Initialize at the highest speed supported by the board that is | |||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | |||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
} | |||||
// Remove file/dirs from previous run. | |||||
if (sd.exists("dir2/DIR3/NAME3.txt")) { | |||||
cout << F("Removing /dir2/DIR3/NAME3.txt") << endl; | |||||
if (!sd.remove("dir2/DIR3/NAME3.txt") || | |||||
!sd.rmdir("dir2/DIR3/") || | |||||
!sd.rmdir("dir2/")) { | |||||
error("remove/rmdir failed"); | |||||
} | |||||
} | |||||
// create a file and write one line to the file | |||||
SdFile file("Name1.txt", O_WRONLY | O_CREAT); | |||||
if (!file.isOpen()) { | |||||
error("Name1.txt"); | |||||
} | |||||
file.println("A test line for Name1.txt"); | |||||
// rename the file name2.txt and add a line. | |||||
if (!file.rename("name2.txt")) { | |||||
error("name2.txt"); | |||||
} | |||||
file.println("A test line for name2.txt"); | |||||
// list files | |||||
cout << F("------") << endl; | |||||
sd.ls(LS_R); | |||||
// make a new directory - "Dir1" | |||||
if (!sd.mkdir("Dir1")) { | |||||
error("Dir1"); | |||||
} | |||||
// move file into Dir1, rename it NAME3.txt and add a line | |||||
if (!file.rename("Dir1/NAME3.txt")) { | |||||
error("NAME3.txt"); | |||||
} | |||||
file.println("A line for Dir1/NAME3.txt"); | |||||
// list files | |||||
cout << F("------") << endl; | |||||
sd.ls(LS_R); | |||||
// make directory "dir2" | |||||
if (!sd.mkdir("dir2")) { | |||||
error("dir2"); | |||||
} | |||||
// close file before rename(oldPath, newPath) | |||||
file.close(); | |||||
// move Dir1 into dir2 and rename it DIR3 | |||||
if (!sd.rename("Dir1", "dir2/DIR3")) { | |||||
error("dir2/DIR3"); | |||||
} | |||||
// open file for append in new location and add a line | |||||
if (!file.open("dir2/DIR3/NAME3.txt", O_WRONLY | O_APPEND)) { | |||||
error("dir2/DIR3/NAME3.txt"); | |||||
} | |||||
file.println("A line for dir2/DIR3/NAME3.txt"); | |||||
file.close(); | |||||
// list files | |||||
cout << F("------") << endl; | |||||
sd.ls(LS_R); | |||||
cout << F("Done") << endl; | |||||
} | |||||
void loop() {} |
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/STM32Test/STM32Test.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/STM32Test/STM32Test.ino" | |||||
8c8 | |||||
< | |||||
--- | |||||
> #error See new Version 2 STM32 example | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/SdFormatter/SdFormatter.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/SdFormatter/SdFormatter.ino" | |||||
14c14 | |||||
< | |||||
--- | |||||
> #error use new Version 2 SdFormatter | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/SdInfo/SdInfo.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/SdInfo/SdInfo.ino" | |||||
7c7 | |||||
< | |||||
--- | |||||
> #error Use new Version 2 SdInfo | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/SoftwareSpi/SoftwareSpi.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/SoftwareSpi/SoftwareSpi.ino" | |||||
7a8 | |||||
> #error See Version 2 software SPI example | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/StdioBench/StdioBench.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/StdioBench/StdioBench.ino" | |||||
3a4 | |||||
> #include "sdios.h" | |||||
27c28 | |||||
< uint32_t printSize; | |||||
--- | |||||
> uint32_t printSize = 0; | |||||
29c30 | |||||
< uint32_t printTime; | |||||
--- | |||||
> uint32_t printTime = 0; | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/TeensySdioDemo/TeensySdioDemo.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/TeensySdioDemo/TeensySdioDemo.ino" | |||||
9c9 | |||||
< | |||||
--- | |||||
> #error See Version 2 SDIO example | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/Timestamp/Timestamp.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/Timestamp/Timestamp.ino" | |||||
8d7 | |||||
< | |||||
55,59d53 | |||||
< dir_t d; | |||||
< if (!f.dirEntry(&d)) { | |||||
< error("f.dirEntry failed"); | |||||
< } | |||||
< | |||||
61,73c55,59 | |||||
< f.printFatDate(d.creationDate); | |||||
< cout << ' '; | |||||
< f.printFatTime(d.creationTime); | |||||
< cout << endl; | |||||
< | |||||
< cout << F("Modify: "); | |||||
< f.printFatDate(d.lastWriteDate); | |||||
< cout <<' '; | |||||
< f.printFatTime(d.lastWriteTime); | |||||
< cout << endl; | |||||
< | |||||
< cout << F("Access: "); | |||||
< f.printFatDate(d.lastAccessDate); | |||||
--- | |||||
> f.printCreateDateTime(&Serial); | |||||
> cout << endl << F("Modify: "); | |||||
> f.printModifyDateTime(&Serial); | |||||
> cout << endl << F("Access: "); | |||||
> f.printAccessDateTime(&Serial); | |||||
diff -rb "C:\\Users\\bill\\Documents\\Arduino\\libraries\\SdFat\\examples/wipe/wipe.ino" "C:\\Users\\bill\\Documents\\ArduinoSdFat\\libraries\\SdFat\\examples\\examplesV1/wipe/wipe.ino" | |||||
1a2 | |||||
> #error wipe is not supported in SdFat V2. Use bool format(print_t* pr = nullptr). |
// Example to wipe all data from an already formatted SD. | // Example to wipe all data from an already formatted SD. | ||||
#error wipe is not supported in SdFat V2. Use bool format(print_t* pr = nullptr). | |||||
#include <SPI.h> | #include <SPI.h> | ||||
#include "SdFat.h" | #include "SdFat.h" | ||||
const int chipSelect = SS; | const int chipSelect = SS; | ||||
} | } | ||||
void loop() { | void loop() { | ||||
} | |||||
} |
/* | /* | ||||
* This program demonstrates use of SdFile::rename() | |||||
* and SdFat::rename(). | |||||
* This program demonstrates use of rename(). | |||||
*/ | */ | ||||
#include <SPI.h> | |||||
#include "SdFat.h" | #include "SdFat.h" | ||||
#include "sdios.h" | #include "sdios.h" | ||||
// SD chip select pin | |||||
const uint8_t chipSelect = SS; | |||||
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h, | |||||
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. | |||||
#define SD_FAT_TYPE 0 | |||||
// file system | |||||
/* | |||||
Change the value of SD_CS_PIN if you are using SPI and | |||||
your hardware does not use the default value, SS. | |||||
Common values are: | |||||
Arduino Ethernet shield: pin 4 | |||||
Sparkfun SD shield: pin 8 | |||||
Adafruit SD shields and modules: pin 10 | |||||
*/ | |||||
// SDCARD_SS_PIN is defined for the built-in SD on some boards. | |||||
#ifndef SDCARD_SS_PIN | |||||
const uint8_t SD_CS_PIN = SS; | |||||
#else // SDCARD_SS_PIN | |||||
// Assume built-in SD is used. | |||||
const uint8_t SD_CS_PIN = SDCARD_SS_PIN; | |||||
#endif // SDCARD_SS_PIN | |||||
// Try to select the best SD card configuration. | |||||
#if HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdioConfig(FIFO_SDIO) | |||||
#elif ENABLE_DEDICATED_SPI | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) | |||||
#else // HAS_SDIO_CLASS | |||||
#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) | |||||
#endif // HAS_SDIO_CLASS | |||||
#if SD_FAT_TYPE == 0 | |||||
SdFat sd; | SdFat sd; | ||||
File file; | |||||
#elif SD_FAT_TYPE == 1 | |||||
SdFat32 sd; | |||||
File32 file; | |||||
#elif SD_FAT_TYPE == 2 | |||||
SdExFat sd; | |||||
ExFile file; | |||||
#elif SD_FAT_TYPE == 3 | |||||
SdFs sd; | |||||
FsFile file; | |||||
#else // SD_FAT_TYPE | |||||
#error Invalid SD_FAT_TYPE | |||||
#endif // SD_FAT_TYPE | |||||
// Serial print stream | // Serial print stream | ||||
ArduinoOutStream cout(Serial); | ArduinoOutStream cout(Serial); | ||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
// store error strings in flash to save RAM | // store error strings in flash to save RAM | ||||
#define error(s) sd.errorHalt(F(s)) | |||||
#define error(s) sd.errorHalt(&Serial, F(s)) | |||||
//------------------------------------------------------------------------------ | //------------------------------------------------------------------------------ | ||||
void setup() { | void setup() { | ||||
Serial.begin(9600); | Serial.begin(9600); | ||||
// Wait for USB Serial | |||||
// Wait for USB Serial | |||||
while (!Serial) { | while (!Serial) { | ||||
SysCall::yield(); | SysCall::yield(); | ||||
} | } | ||||
// Initialize at the highest speed supported by the board that is | // Initialize at the highest speed supported by the board that is | ||||
// not over 50 MHz. Try a lower speed if SPI errors occur. | // not over 50 MHz. Try a lower speed if SPI errors occur. | ||||
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { | |||||
sd.initErrorHalt(); | |||||
if (!sd.begin(SD_CONFIG)) { | |||||
sd.initErrorHalt(&Serial); | |||||
} | } | ||||
// Remove file/dirs from previous run. | // Remove file/dirs from previous run. | ||||
} | } | ||||
} | } | ||||
// create a file and write one line to the file | // create a file and write one line to the file | ||||
SdFile file("Name1.txt", O_WRONLY | O_CREAT); | |||||
if (!file.isOpen()) { | |||||
if (!file.open("Name1.txt", O_WRONLY | O_CREAT)) { | |||||
error("Name1.txt"); | error("Name1.txt"); | ||||
} | } | ||||
file.println("A test line for Name1.txt"); | file.println("A test line for Name1.txt"); | ||||
// rename the file name2.txt and add a line. | // rename the file name2.txt and add a line. | ||||
// sd.vwd() is the volume working directory, root. | |||||
if (!file.rename(sd.vwd(), "name2.txt")) { | |||||
if (!file.rename("name2.txt")) { | |||||
error("name2.txt"); | error("name2.txt"); | ||||
} | } | ||||
file.println("A test line for name2.txt"); | file.println("A test line for name2.txt"); | ||||
} | } | ||||
// move file into Dir1, rename it NAME3.txt and add a line | // move file into Dir1, rename it NAME3.txt and add a line | ||||
if (!file.rename(sd.vwd(), "Dir1/NAME3.txt")) { | |||||
if (!file.rename("Dir1/NAME3.txt")) { | |||||
error("NAME3.txt"); | error("NAME3.txt"); | ||||
} | } | ||||
file.println("A line for Dir1/NAME3.txt"); | file.println("A line for Dir1/NAME3.txt"); | ||||
cout << F("Done") << endl; | cout << F("Done") << endl; | ||||
} | } | ||||
void loop() {} | |||||
void loop() {} |
Static Tests of the Arduino Internal ADC. | |||||
Several people have asked about the DC accuracy of the Arduino ADC when used in my data logging applications at slow sample rates. | |||||
Here are my results of some "hobby level" measurements of the Arduino ADC. | |||||
One question is how important is the ADC clock rate. I did measurents for an ADC clock rate of 125 kHz to 2MHz. | |||||
Another question is how much does Noise Reduction Mode help. I did a series of measurements using this mode. | |||||
Noise Reduction Mode only reduced the mean absolute error slightly. | |||||
I do calibration to remove Offset Error and Gain Error. Calibration is very important for good accuracy. | |||||
These tests depend on the Arduino voltage regulator providing a stable voltage during the tests. The Arduino ADC reference voltage is Vcc for these tests. This may not be realistic for practical applications | |||||
Integral Non-linearity (INL) is the main remaining source of error. | |||||
Here are my results for static (DC) tests of the internal ADC for three UNOs. | |||||
The Arduinos are powered by a high quality nine volt power supply. | |||||
These tests measure a DC level so do not include problems due to time jitter, S/H time, and other dynamic errors. | |||||
There are several studies of the dynamic behavior of the Arduino ADC that determine ENOB (Effective Number Of Bits). | |||||
I used a shield with a 12-bit MCP4921 DAC to generate voltage levels. This ADC has an output buffer so it provides a very low impedance source. | |||||
I measured the voltage of the DAC with a calibrated 18-bit MCP3422 ADC on the shield. | |||||
I used DAC levels from 20 to 4075 to avoid zero offset errors at low voltages and DAC buffer problems at high voltages. | |||||
Each series of measurements has 4056 data points. | |||||
This is a voltage range of about 0.023 to 4.972 volts. | |||||
I calibrated the Arduino ADC for each series of measurements with a linear fit of the form. | |||||
v = a + b*adcValue | |||||
Errors are the difference between the value measured with the 18-bit ADC and the calibrated value measured with the AVR ADC. | |||||
I also show the results for no calibration, the NoCal column, using the datasheet formula. | |||||
Vin = Vref*adcValue/1024 | |||||
The rows in the tables tables are. | |||||
Min - minimum error in millivolts | |||||
Max - maximum error in millivolts | |||||
MAE - mean absolute error in millivolts | |||||
The columns in the tables are: | |||||
Ideal - results for a perfect 10-bit ADC for comparison. | |||||
NoCal - datasheet formula (5/1024)*adcValue with Noise Reduction Mode. | |||||
NR128 - Noise Reduction mode with Prescaler of 128 (ADC clock of 125 kHz). | |||||
PS128 - analogRead with Prescaler of 128 (ADC clock of 125 kHz). | |||||
PS64 - analogRead with Prescaler of 64 (ADC clock of 250 kHz). | |||||
PS32 - analogRead with Prescaler of 32 (ADC clock of 500 kHz). | |||||
PS16 - analogRead with Prescaler of 16 (ADC clock of 1 MHz). | |||||
PS8 - analogRead with Prescaler of 8 (ADC clock of 2 MHz). | |||||
Results for three UNO Arduinos | |||||
First Arduino - Error Millivolts | |||||
Ideal NoCal NR128 PS128 PS64 PS32 PS16 PS8 | |||||
Min -2.44 -2.43 -3.72 -4.01 -3.88 -4.53 -6.57 -27.18 | |||||
Max 2.44 11.69 3.74 4.24 4.15 5.17 8.69 23.21 | |||||
MAE 1.22 5.02 1.33 1.38 1.37 1.44 1.96 4.11 | |||||
Second Arduino - Error Millivolts | |||||
Ideal NoCal NR128 PS128 PS64 PS32 PS16 PS8 | |||||
Min -2.44 -9.24 -4.87 -4.86 -5.05 -5.34 -6.52 -24.04 | |||||
Max 2.44 11.62 3.95 4.64 4.69 5.71 8.41 21.29 | |||||
MAE 1.22 5.33 1.41 1.43 1.44 1.53 2.02 4.05 | |||||
Third Arduino - Error Millivolts | |||||
Ideal NoCal NR128 PS128 PS64 PS32 PS16 PS8 | |||||
Min -2.44 -7.88 -4.12 -4.40 -4.32 -4.41 -6.97 -26.93 | |||||
Max 2.44 12.53 3.80 4.04 4.18 5.27 8.84 24.59 | |||||
MAE 1.22 4.85 1.29 1.33 1.34 1.42 1.91 4.10 | |||||