/** * This program logs data from the Arduino ADC to a binary file. * * Samples are logged at regular intervals. Each Sample consists of the ADC * values for the analog pins defined in the PIN_LIST array. The pins numbers * may be in any order. * * Edit the configuration constants below to set the sample pins, sample rate, * and other configuration values. * * If your SD card has a long write latency, it may be necessary to use * slower sample rates. Using a Mega Arduino helps overcome latency * problems since 13 512 byte buffers will be used. * * Each 512 byte data block in the file has a four byte header followed by up * to 508 bytes of data. (508 values in 8-bit mode or 254 values in 10-bit mode) * Each block contains an integral number of samples with unused space at the * end of the block. * * Data is written to the file using a SD multiple block write command. */ #ifdef __AVR__ #include #include "SdFat.h" #include "FreeStack.h" #include "AnalogBinLogger.h" //------------------------------------------------------------------------------ // Analog pin number list for a sample. Pins may be in any order and pin // numbers may be repeated. const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4}; //------------------------------------------------------------------------------ // Sample rate in samples per second. const float SAMPLE_RATE = 5000; // Must be 0.25 or greater. // The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a // constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not // used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4 // will result in a 200 microsecond sample interval. const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE; // Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to // be rounded to a a multiple of the ADC clock period and will reduce sample // time jitter. #define ROUND_SAMPLE_INTERVAL 1 //------------------------------------------------------------------------------ // ADC clock rate. // The ADC clock rate is normally calculated from the pin count and sample // interval. The calculation attempts to use the lowest possible ADC clock // rate. // // You can select an ADC clock rate by defining the symbol ADC_PRESCALER to // one of these values. You must choose an appropriate ADC clock rate for // your sample interval. // #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno // #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno // #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno // #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno // #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only) //------------------------------------------------------------------------------ // Reference voltage. See the processor data-sheet for reference details. // uint8_t const ADC_REF = 0; // External Reference AREF pin. uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference. // uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega) // uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56 //------------------------------------------------------------------------------ // File definitions. // // Maximum file size in blocks. // The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks. // This file is flash erased using special SD commands. The file will be // truncated if logging is stopped early. const uint32_t FILE_BLOCK_COUNT = 256000; // log file base name. Must be six characters or less. #define FILE_BASE_NAME "analog" // Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC. #define RECORD_EIGHT_BITS 0 //------------------------------------------------------------------------------ // Pin definitions. // // Digital pin to indicate an error, set to -1 if not used. // The led blinks for fatal errors. The led goes on solid for SD write // overrun errors and logging continues. const int8_t ERROR_LED_PIN = 3; // SD chip select pin. const uint8_t SD_CS_PIN = SS; //------------------------------------------------------------------------------ // Buffer definitions. // // The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional // buffers. QUEUE_DIM must be a power of two larger than //(BUFFER_BLOCK_COUNT + 1). // #if RAMEND < 0X8FF #error Too little SRAM // #elif RAMEND < 0X10FF // Use total of two 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 1; // Dimension for queues of 512 byte SD blocks. const uint8_t QUEUE_DIM = 4; // Must be a power of two! // #elif RAMEND < 0X20FF // Use total of five 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 4; // Dimension for queues of 512 byte SD blocks. const uint8_t QUEUE_DIM = 8; // Must be a power of two! // #elif RAMEND < 0X40FF // Use total of 13 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 12; // Dimension for queues of 512 byte SD blocks. const uint8_t QUEUE_DIM = 16; // Must be a power of two! // #else // RAMEND // Use total of 29 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 28; // Dimension for queues of 512 byte SD blocks. const uint8_t QUEUE_DIM = 32; // Must be a power of two! #endif // RAMEND //============================================================================== // End of configuration constants. //============================================================================== // Temporary log file. Will be deleted if a reset or power failure occurs. #define TMP_FILE_NAME "tmp_log.bin" // Size of file base name. Must not be larger than six. const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1; // Number of analog pins to log. const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]); // Minimum ADC clock cycles per sample interval const uint16_t MIN_ADC_CYCLES = 15; // Extra cpu cycles to setup ADC with more than one pin per sample. const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0; // Maximum cycles for timer0 system interrupt, millis, micros. const uint16_t ISR_TIMER0 = 160; //============================================================================== SdFat sd; SdBaseFile binFile; char binName[13] = FILE_BASE_NAME "00.bin"; #if RECORD_EIGHT_BITS const size_t SAMPLES_PER_BLOCK = DATA_DIM8/PIN_COUNT; typedef block8_t block_t; #else // RECORD_EIGHT_BITS const size_t SAMPLES_PER_BLOCK = DATA_DIM16/PIN_COUNT; typedef block16_t block_t; #endif // RECORD_EIGHT_BITS block_t* emptyQueue[QUEUE_DIM]; uint8_t emptyHead; uint8_t emptyTail; block_t* fullQueue[QUEUE_DIM]; volatile uint8_t fullHead; // volatile insures non-interrupt code sees changes. uint8_t fullTail; // queueNext assumes QUEUE_DIM is a power of two inline uint8_t queueNext(uint8_t ht) { return (ht + 1) & (QUEUE_DIM -1); } //============================================================================== // Interrupt Service Routines // Pointer to current buffer. block_t* isrBuf; // Need new buffer if true. bool isrBufNeeded = true; // overrun count uint16_t isrOver = 0; // ADC configuration for each pin. uint8_t adcmux[PIN_COUNT]; uint8_t adcsra[PIN_COUNT]; uint8_t adcsrb[PIN_COUNT]; uint8_t adcindex = 1; // Insure no timer events are missed. volatile bool timerError = false; volatile bool timerFlag = false; //------------------------------------------------------------------------------ // ADC done interrupt. ISR(ADC_vect) { // Read ADC data. #if RECORD_EIGHT_BITS uint8_t d = ADCH; #else // RECORD_EIGHT_BITS // This will access ADCL first. uint16_t d = ADC; #endif // RECORD_EIGHT_BITS if (isrBufNeeded && emptyHead == emptyTail) { // no buffers - count overrun if (isrOver < 0XFFFF) { isrOver++; } // Avoid missed timer error. timerFlag = false; return; } // Start ADC if (PIN_COUNT > 1) { ADMUX = adcmux[adcindex]; ADCSRB = adcsrb[adcindex]; ADCSRA = adcsra[adcindex]; if (adcindex == 0) { timerFlag = false; } adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0; } else { timerFlag = false; } // Check for buffer needed. if (isrBufNeeded) { // Remove buffer from empty queue. isrBuf = emptyQueue[emptyTail]; emptyTail = queueNext(emptyTail); isrBuf->count = 0; isrBuf->overrun = isrOver; isrBufNeeded = false; } // Store ADC data. isrBuf->data[isrBuf->count++] = d; // Check for buffer full. if (isrBuf->count >= PIN_COUNT*SAMPLES_PER_BLOCK) { // Put buffer isrIn full queue. uint8_t tmp = fullHead; // Avoid extra fetch of volatile fullHead. fullQueue[tmp] = (block_t*)isrBuf; fullHead = queueNext(tmp); // Set buffer needed and clear overruns. isrBufNeeded = true; isrOver = 0; } } //------------------------------------------------------------------------------ // timer1 interrupt to clear OCF1B ISR(TIMER1_COMPB_vect) { // Make sure ADC ISR responded to timer event. if (timerFlag) { timerError = true; } timerFlag = true; } //============================================================================== // Error messages stored in flash. #define error(msg) {sd.errorPrint(F(msg));fatalBlink();} //------------------------------------------------------------------------------ // void fatalBlink() { while (true) { if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); delay(200); digitalWrite(ERROR_LED_PIN, LOW); delay(200); } } } //============================================================================== #if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2 #error unexpected ADC prescaler bits #endif //------------------------------------------------------------------------------ // initialize ADC and timer1 void adcInit(metadata_t* meta) { uint8_t adps; // prescaler bits for ADCSRA uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles. if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) { error("Invalid ADC reference"); } #ifdef ADC_PRESCALER if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) { error("Invalid ADC prescaler"); } adps = ADC_PRESCALER; #else // ADC_PRESCALER // Allow extra cpu cycles to change ADC settings if more than one pin. int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC; for (adps = 7; adps > 0; adps--) { if (adcCycles >= (MIN_ADC_CYCLES << adps)) { break; } } #endif // ADC_PRESCALER meta->adcFrequency = F_CPU >> adps; if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) { error("Sample Rate Too High"); } #if ROUND_SAMPLE_INTERVAL // Round so interval is multiple of ADC clock. ticks += 1 << (adps - 1); ticks >>= adps; ticks <<= adps; #endif // ROUND_SAMPLE_INTERVAL if (PIN_COUNT > sizeof(meta->pinNumber)/sizeof(meta->pinNumber[0])) { error("Too many pins"); } meta->pinCount = PIN_COUNT; meta->recordEightBits = RECORD_EIGHT_BITS; for (int i = 0; i < PIN_COUNT; i++) { uint8_t pin = PIN_LIST[i]; if (pin >= NUM_ANALOG_INPUTS) { error("Invalid Analog pin number"); } meta->pinNumber[i] = pin; // Set ADC reference and low three bits of analog pin number. adcmux[i] = (pin & 7) | ADC_REF; if (RECORD_EIGHT_BITS) { adcmux[i] |= 1 << ADLAR; } // If this is the first pin, trigger on timer/counter 1 compare match B. adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0; #ifdef MUX5 if (pin > 7) { adcsrb[i] |= (1 << MUX5); } #endif // MUX5 adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps; adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC; } // Setup timer1 TCCR1A = 0; uint8_t tshift; if (ticks < 0X10000) { // no prescale, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10); tshift = 0; } else if (ticks < 0X10000*8) { // prescale 8, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11); tshift = 3; } else if (ticks < 0X10000*64) { // prescale 64, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10); tshift = 6; } else if (ticks < 0X10000*256) { // prescale 256, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12); tshift = 8; } else if (ticks < 0X10000*1024) { // prescale 1024, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10); tshift = 10; } else { error("Sample Rate Too Slow"); } // divide by prescaler ticks >>= tshift; // set TOP for timer reset ICR1 = ticks - 1; // compare for ADC start OCR1B = 0; // multiply by prescaler ticks <<= tshift; // Sample interval in CPU clock ticks. meta->sampleInterval = ticks; meta->cpuFrequency = F_CPU; float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval; Serial.print(F("Sample pins:")); for (uint8_t i = 0; i < meta->pinCount; i++) { Serial.print(' '); Serial.print(meta->pinNumber[i], DEC); } Serial.println(); Serial.print(F("ADC bits: ")); Serial.println(meta->recordEightBits ? 8 : 10); Serial.print(F("ADC clock kHz: ")); Serial.println(meta->adcFrequency/1000); Serial.print(F("Sample Rate: ")); Serial.println(sampleRate); Serial.print(F("Sample interval usec: ")); Serial.println(1000000.0/sampleRate, 4); } //------------------------------------------------------------------------------ // enable ADC and timer1 interrupts void adcStart() { // initialize ISR isrBufNeeded = true; isrOver = 0; adcindex = 1; // Clear any pending interrupt. ADCSRA |= 1 << ADIF; // Setup for first pin. ADMUX = adcmux[0]; ADCSRB = adcsrb[0]; ADCSRA = adcsra[0]; // Enable timer1 interrupts. timerError = false; timerFlag = false; TCNT1 = 0; TIFR1 = 1 << OCF1B; TIMSK1 = 1 << OCIE1B; } //------------------------------------------------------------------------------ void adcStop() { TIMSK1 = 0; ADCSRA = 0; } //------------------------------------------------------------------------------ // Convert binary file to csv file. void binaryToCsv() { uint8_t lastPct = 0; block_t buf; metadata_t* pm; uint32_t t0 = millis(); char csvName[13]; StdioStream csvStream; if (!binFile.isOpen()) { Serial.println(F("No current binary file")); return; } binFile.rewind(); if (!binFile.read(&buf , 512) == 512) { error("Read metadata failed"); } // Create a new csv file. strcpy(csvName, binName); strcpy(&csvName[BASE_NAME_SIZE + 3], "csv"); if (!csvStream.fopen(csvName, "w")) { error("open csvStream failed"); } Serial.println(); Serial.print(F("Writing: ")); Serial.print(csvName); Serial.println(F(" - type any character to stop")); pm = (metadata_t*)&buf; csvStream.print(F("Interval,")); float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency; csvStream.print(intervalMicros, 4); csvStream.println(F(",usec")); for (uint8_t i = 0; i < pm->pinCount; i++) { if (i) { csvStream.putc(','); } csvStream.print(F("pin")); csvStream.print(pm->pinNumber[i]); } csvStream.println(); uint32_t tPct = millis(); while (!Serial.available() && binFile.read(&buf, 512) == 512) { if (buf.count == 0) { break; } if (buf.overrun) { csvStream.print(F("OVERRUN,")); csvStream.println(buf.overrun); } for (uint16_t j = 0; j < buf.count; j += PIN_COUNT) { for (uint16_t i = 0; i < PIN_COUNT; i++) { if (i) { csvStream.putc(','); } csvStream.print(buf.data[i + j]); } csvStream.println(); } if ((millis() - tPct) > 1000) { uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100); if (pct != lastPct) { tPct = millis(); lastPct = pct; Serial.print(pct, DEC); Serial.println('%'); } } if (Serial.available()) { break; } } csvStream.fclose(); Serial.print(F("Done: ")); Serial.print(0.001*(millis() - t0)); Serial.println(F(" Seconds")); } //------------------------------------------------------------------------------ // read data file and check for overruns void checkOverrun() { bool headerPrinted = false; block_t buf; uint32_t bgnBlock, endBlock; uint32_t bn = 0; if (!binFile.isOpen()) { Serial.println(F("No current binary file")); return; } if (!binFile.contiguousRange(&bgnBlock, &endBlock)) { error("contiguousRange failed"); } binFile.rewind(); Serial.println(); Serial.println(F("Checking overrun errors - type any character to stop")); if (!binFile.read(&buf , 512) == 512) { error("Read metadata failed"); } bn++; while (binFile.read(&buf, 512) == 512) { if (buf.count == 0) { break; } if (buf.overrun) { if (!headerPrinted) { Serial.println(); Serial.println(F("Overruns:")); Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount")); headerPrinted = true; } Serial.print(bn); Serial.print(','); Serial.print(bgnBlock + bn); Serial.print(','); Serial.println(buf.overrun); } bn++; } if (!headerPrinted) { Serial.println(F("No errors found")); } else { Serial.println(F("Done")); } } //------------------------------------------------------------------------------ // dump data file to Serial void dumpData() { block_t buf; if (!binFile.isOpen()) { Serial.println(F("No current binary file")); return; } binFile.rewind(); if (binFile.read(&buf , 512) != 512) { error("Read metadata failed"); } Serial.println(); Serial.println(F("Type any character to stop")); delay(1000); while (!Serial.available() && binFile.read(&buf , 512) == 512) { if (buf.count == 0) { break; } if (buf.overrun) { Serial.print(F("OVERRUN,")); Serial.println(buf.overrun); } for (uint16_t i = 0; i < buf.count; i++) { Serial.print(buf.data[i], DEC); if ((i+1)%PIN_COUNT) { Serial.print(','); } else { Serial.println(); } } } Serial.println(F("Done")); } //------------------------------------------------------------------------------ // log data // max number of blocks to erase per erase call uint32_t const ERASE_SIZE = 262144L; void logData() { uint32_t bgnBlock, endBlock; // Allocate extra buffer space. block_t block[BUFFER_BLOCK_COUNT]; Serial.println(); // Initialize ADC and timer1. adcInit((metadata_t*) &block[0]); // Find unused file name. if (BASE_NAME_SIZE > 6) { error("FILE_BASE_NAME too long"); } while (sd.exists(binName)) { if (binName[BASE_NAME_SIZE + 1] != '9') { binName[BASE_NAME_SIZE + 1]++; } else { binName[BASE_NAME_SIZE + 1] = '0'; if (binName[BASE_NAME_SIZE] == '9') { error("Can't create file name"); } binName[BASE_NAME_SIZE]++; } } // Delete old tmp file. if (sd.exists(TMP_FILE_NAME)) { Serial.println(F("Deleting tmp file")); if (!sd.remove(TMP_FILE_NAME)) { error("Can't remove tmp file"); } } // Create new file. Serial.println(F("Creating new file")); binFile.close(); if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) { error("createContiguous failed"); } // Get the address of the file on the SD. if (!binFile.contiguousRange(&bgnBlock, &endBlock)) { error("contiguousRange failed"); } // Use SdFat's internal buffer. uint8_t* cache = (uint8_t*)sd.vol()->cacheClear(); if (cache == 0) { error("cacheClear failed"); } // Flash erase all data in the file. Serial.println(F("Erasing all data")); uint32_t bgnErase = bgnBlock; uint32_t endErase; while (bgnErase < endBlock) { endErase = bgnErase + ERASE_SIZE; if (endErase > endBlock) { endErase = endBlock; } if (!sd.card()->erase(bgnErase, endErase)) { error("erase failed"); } bgnErase = endErase + 1; } // Start a multiple block write. if (!sd.card()->writeStart(bgnBlock, FILE_BLOCK_COUNT)) { error("writeBegin failed"); } // Write metadata. if (!sd.card()->writeData((uint8_t*)&block[0])) { error("Write metadata failed"); } // Initialize queues. emptyHead = emptyTail = 0; fullHead = fullTail = 0; // Use SdFat buffer for one block. emptyQueue[emptyHead] = (block_t*)cache; emptyHead = queueNext(emptyHead); // Put rest of buffers in the empty queue. for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) { emptyQueue[emptyHead] = &block[i]; emptyHead = queueNext(emptyHead); } // Give SD time to prepare for big write. delay(1000); Serial.println(F("Logging - type any character to stop")); // Wait for Serial Idle. Serial.flush(); delay(10); uint32_t bn = 1; uint32_t t0 = millis(); uint32_t t1 = t0; uint32_t overruns = 0; uint32_t count = 0; uint32_t maxLatency = 0; // Start logging interrupts. adcStart(); while (1) { if (fullHead != fullTail) { // Get address of block to write. block_t* pBlock = fullQueue[fullTail]; // Write block to SD. uint32_t usec = micros(); if (!sd.card()->writeData((uint8_t*)pBlock)) { error("write data failed"); } usec = micros() - usec; t1 = millis(); if (usec > maxLatency) { maxLatency = usec; } count += pBlock->count; // Add overruns and possibly light LED. if (pBlock->overrun) { overruns += pBlock->overrun; if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); } } // Move block to empty queue. emptyQueue[emptyHead] = pBlock; emptyHead = queueNext(emptyHead); fullTail = queueNext(fullTail); bn++; if (bn == FILE_BLOCK_COUNT) { // File full so stop ISR calls. adcStop(); break; } } if (timerError) { error("Missed timer event - rate too high"); } if (Serial.available()) { // Stop ISR calls. adcStop(); if (isrBuf != 0 && isrBuf->count >= PIN_COUNT) { // Truncate to last complete sample. isrBuf->count = PIN_COUNT*(isrBuf->count/PIN_COUNT); // Put buffer in full queue. fullQueue[fullHead] = isrBuf; fullHead = queueNext(fullHead); isrBuf = 0; } if (fullHead == fullTail) { break; } } } if (!sd.card()->writeStop()) { error("writeStop failed"); } // Truncate file if recording stopped early. if (bn != FILE_BLOCK_COUNT) { Serial.println(F("Truncating file")); if (!binFile.truncate(512L * bn)) { error("Can't truncate file"); } } if (!binFile.rename(sd.vwd(), binName)) { error("Can't rename file"); } Serial.print(F("File renamed: ")); Serial.println(binName); Serial.print(F("Max block write usec: ")); Serial.println(maxLatency); Serial.print(F("Record time sec: ")); Serial.println(0.001*(t1 - t0), 3); Serial.print(F("Sample count: ")); Serial.println(count/PIN_COUNT); Serial.print(F("Samples/sec: ")); Serial.println((1000.0/PIN_COUNT)*count/(t1-t0)); Serial.print(F("Overruns: ")); Serial.println(overruns); Serial.println(F("Done")); } //------------------------------------------------------------------------------ void setup(void) { if (ERROR_LED_PIN >= 0) { pinMode(ERROR_LED_PIN, OUTPUT); } Serial.begin(9600); // Read the first sample pin to init the ADC. analogRead(PIN_LIST[0]); Serial.print(F("FreeStack: ")); Serial.println(FreeStack()); // Initialize at the highest speed supported by the board that is // not over 50 MHz. Try a lower speed if SPI errors occur. if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) { sd.initErrorPrint(); fatalBlink(); } } //------------------------------------------------------------------------------ void loop(void) { // Read any Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); Serial.println(); Serial.println(F("type:")); Serial.println(F("c - convert file to csv")); Serial.println(F("d - dump data to Serial")); Serial.println(F("e - overrun error details")); Serial.println(F("r - record ADC data")); while(!Serial.available()) { SysCall::yield(); } char c = tolower(Serial.read()); if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, LOW); } // Read any Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); if (c == 'c') { binaryToCsv(); } else if (c == 'd') { dumpData(); } else if (c == 'e') { checkOverrun(); } else if (c == 'r') { logData(); } else { Serial.println(F("Invalid entry")); } } #else // __AVR__ #error This program is only for AVR. #endif // __AVR__