/* Arduino SdSpi Library
* Copyright (C) 2013 by William Greiman
*
* This file is part of the Arduino SdSpi Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdSpi Library. If not, see
* .
*/
#include
#if USE_NATIVE_SAM3X_SPI
/** Use SAM3X DMAC if nonzero */
#define USE_SAM3X_DMAC 1
/** Use extra Bus Matrix arbitration fix if nonzero */
#define USE_SAM3X_BUS_MATRIX_FIX 0
/** Time in ms for DMA receive timeout */
#define SAM3X_DMA_TIMEOUT 100
/** chip select register number */
#define SPI_CHIP_SEL 3
/** DMAC receive channel */
#define SPI_DMAC_RX_CH 1
/** DMAC transmit channel */
#define SPI_DMAC_TX_CH 0
/** DMAC Channel HW Interface Number for SPI TX. */
#define SPI_TX_IDX 1
/** DMAC Channel HW Interface Number for SPI RX. */
#define SPI_RX_IDX 2
//------------------------------------------------------------------------------
/** Disable DMA Controller. */
static void dmac_disable() {
DMAC->DMAC_EN &= (~DMAC_EN_ENABLE);
}
/** Enable DMA Controller. */
static void dmac_enable() {
DMAC->DMAC_EN = DMAC_EN_ENABLE;
}
/** Disable DMA Channel. */
static void dmac_channel_disable(uint32_t ul_num) {
DMAC->DMAC_CHDR = DMAC_CHDR_DIS0 << ul_num;
}
/** Enable DMA Channel. */
static void dmac_channel_enable(uint32_t ul_num) {
DMAC->DMAC_CHER = DMAC_CHER_ENA0 << ul_num;
}
/** Poll for transfer complete. */
static bool dmac_channel_transfer_done(uint32_t ul_num) {
return (DMAC->DMAC_CHSR & (DMAC_CHSR_ENA0 << ul_num)) ? false : true;
}
//------------------------------------------------------------------------------
void SdSpi::begin() {
PIO_Configure(
g_APinDescription[PIN_SPI_MOSI].pPort,
g_APinDescription[PIN_SPI_MOSI].ulPinType,
g_APinDescription[PIN_SPI_MOSI].ulPin,
g_APinDescription[PIN_SPI_MOSI].ulPinConfiguration);
PIO_Configure(
g_APinDescription[PIN_SPI_MISO].pPort,
g_APinDescription[PIN_SPI_MISO].ulPinType,
g_APinDescription[PIN_SPI_MISO].ulPin,
g_APinDescription[PIN_SPI_MISO].ulPinConfiguration);
PIO_Configure(
g_APinDescription[PIN_SPI_SCK].pPort,
g_APinDescription[PIN_SPI_SCK].ulPinType,
g_APinDescription[PIN_SPI_SCK].ulPin,
g_APinDescription[PIN_SPI_SCK].ulPinConfiguration);
pmc_enable_periph_clk(ID_SPI0);
#if USE_SAM3X_DMAC
pmc_enable_periph_clk(ID_DMAC);
dmac_disable();
DMAC->DMAC_GCFG = DMAC_GCFG_ARB_CFG_FIXED;
dmac_enable();
#if USE_SAM3X_BUS_MATRIX_FIX
MATRIX->MATRIX_WPMR = 0x4d415400;
MATRIX->MATRIX_MCFG[1] = 1;
MATRIX->MATRIX_MCFG[2] = 1;
MATRIX->MATRIX_SCFG[0] = 0x01000010;
MATRIX->MATRIX_SCFG[1] = 0x01000010;
MATRIX->MATRIX_SCFG[7] = 0x01000010;
#endif // USE_SAM3X_BUS_MATRIX_FIX
#endif // USE_SAM3X_DMAC
}
//------------------------------------------------------------------------------
// start RX DMA
static void spiDmaRX(uint8_t* dst, uint16_t count) {
dmac_channel_disable(SPI_DMAC_RX_CH);
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_SADDR = (uint32_t)&SPI0->SPI_RDR;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DADDR = (uint32_t)dst;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DSCR = 0;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLA = count |
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_PER2MEM_DMA_FC |
DMAC_CTRLB_SRC_INCR_FIXED | DMAC_CTRLB_DST_INCR_INCREMENTING;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CFG = DMAC_CFG_SRC_PER(SPI_RX_IDX) |
DMAC_CFG_SRC_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ASAP_CFG;
dmac_channel_enable(SPI_DMAC_RX_CH);
}
//------------------------------------------------------------------------------
// start TX DMA
static void spiDmaTX(const uint8_t* src, uint16_t count) {
static uint8_t ff = 0XFF;
uint32_t src_incr = DMAC_CTRLB_SRC_INCR_INCREMENTING;
if (!src) {
src = &ff;
src_incr = DMAC_CTRLB_SRC_INCR_FIXED;
}
dmac_channel_disable(SPI_DMAC_TX_CH);
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_SADDR = (uint32_t)src;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DADDR = (uint32_t)&SPI0->SPI_TDR;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DSCR = 0;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLA = count |
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_MEM2PER_DMA_FC |
src_incr | DMAC_CTRLB_DST_INCR_FIXED;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CFG = DMAC_CFG_DST_PER(SPI_TX_IDX) |
DMAC_CFG_DST_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ALAP_CFG;
dmac_channel_enable(SPI_DMAC_TX_CH);
}
//------------------------------------------------------------------------------
// initialize SPI controller
void SdSpi::init(uint8_t sckDivisor) {
uint8_t scbr = sckDivisor;
Spi* pSpi = SPI0;
// disable SPI
pSpi->SPI_CR = SPI_CR_SPIDIS;
// reset SPI
pSpi->SPI_CR = SPI_CR_SWRST;
// no mode fault detection, set master mode
pSpi->SPI_MR = SPI_PCS(SPI_CHIP_SEL) | SPI_MR_MODFDIS | SPI_MR_MSTR;
// mode 0, 8-bit,
pSpi->SPI_CSR[SPI_CHIP_SEL] = SPI_CSR_SCBR(scbr) | SPI_CSR_NCPHA;
// enable SPI
pSpi->SPI_CR |= SPI_CR_SPIEN;
}
//------------------------------------------------------------------------------
static inline uint8_t spiTransfer(uint8_t b) {
Spi* pSpi = SPI0;
pSpi->SPI_TDR = b;
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
b = pSpi->SPI_RDR;
return b;
}
//------------------------------------------------------------------------------
/** SPI receive a byte */
uint8_t SdSpi::receive() {
return spiTransfer(0XFF);
}
//------------------------------------------------------------------------------
/** SPI receive multiple bytes */
uint8_t SdSpi::receive(uint8_t* buf, size_t n) {
Spi* pSpi = SPI0;
int rtn = 0;
#if USE_SAM3X_DMAC
// clear overrun error
uint32_t s = pSpi->SPI_SR;
spiDmaRX(buf, n);
spiDmaTX(0, n);
uint32_t m = millis();
while (!dmac_channel_transfer_done(SPI_DMAC_RX_CH)) {
if ((millis() - m) > SAM3X_DMA_TIMEOUT) {
dmac_channel_disable(SPI_DMAC_RX_CH);
dmac_channel_disable(SPI_DMAC_TX_CH);
rtn = 2;
break;
}
}
if (pSpi->SPI_SR & SPI_SR_OVRES) rtn |= 1;
#else // USE_SAM3X_DMAC
for (size_t i = 0; i < n; i++) {
pSpi->SPI_TDR = 0XFF;
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
buf[i] = pSpi->SPI_RDR;
}
#endif // USE_SAM3X_DMAC
return rtn;
}
//------------------------------------------------------------------------------
/** SPI send a byte */
void SdSpi::send(uint8_t b) {
spiTransfer(b);
}
//------------------------------------------------------------------------------
void SdSpi::send(const uint8_t* buf , size_t n) {
Spi* pSpi = SPI0;
#if USE_SAM3X_DMAC
spiDmaTX(buf, n);
while (!dmac_channel_transfer_done(SPI_DMAC_TX_CH)) {}
#else // #if USE_SAM3X_DMAC
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
for (size_t i = 0; i < n; i++) {
pSpi->SPI_TDR = buf[i];
while ((pSpi->SPI_SR & SPI_SR_TDRE) == 0) {}
}
#endif // #if USE_SAM3X_DMAC
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
// leave RDR empty
uint8_t b = pSpi->SPI_RDR;
}
#endif // USE_NATIVE_SAM3X_SPI