// Quick hardware test for SPI card access. // #include #include "SdFat.h" #include "sdios.h" // // Set DISABLE_CHIP_SELECT to disable a second SPI device. // For example, with the Ethernet shield, set DISABLE_CHIP_SELECT // to 10 to disable the Ethernet controller. const int8_t DISABLE_CHIP_SELECT = -1; // // Test with reduced SPI speed for breadboards. SD_SCK_MHZ(4) will select // the highest speed supported by the board that is not over 4 MHz. // Change SPI_SPEED to SD_SCK_MHZ(50) for best performance. #define SPI_SPEED SD_SCK_MHZ(4) //------------------------------------------------------------------------------ // File system object. SdFat sd; // Serial streams ArduinoOutStream cout(Serial); // input buffer for line char cinBuf[40]; ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf)); // SD card chip select int chipSelect; void cardOrSpeed() { cout << F("Try another SD card or reduce the SPI bus speed.\n"); cout << F("Edit SPI_SPEED in this program to change it.\n"); } void reformatMsg() { cout << F("Try reformatting the card. For best results use\n"); cout << F("the SdFormatter program in SdFat/examples or download\n"); cout << F("and use SDFormatter from www.sdcard.org/downloads.\n"); } void setup() { Serial.begin(9600); // Wait for USB Serial while (!Serial) { SysCall::yield(); } cout << F("\nSPI pins:\n"); cout << F("MISO: ") << int(MISO) << endl; cout << F("MOSI: ") << int(MOSI) << endl; cout << F("SCK: ") << int(SCK) << endl; cout << F("SS: ") << int(SS) << endl; if (DISABLE_CHIP_SELECT < 0) { cout << F( "\nBe sure to edit DISABLE_CHIP_SELECT if you have\n" "a second SPI device. For example, with the Ethernet\n" "shield, DISABLE_CHIP_SELECT should be set to 10\n" "to disable the Ethernet controller.\n"); } cout << F( "\nSD chip select is the key hardware option.\n" "Common values are:\n" "Arduino Ethernet shield, pin 4\n" "Sparkfun SD shield, pin 8\n" "Adafruit SD shields and modules, pin 10\n"); } bool firstTry = true; void loop() { // Read any existing Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); if (!firstTry) { cout << F("\nRestarting\n"); } firstTry = false; cout << F("\nEnter the chip select pin number: "); while (!Serial.available()) { SysCall::yield(); } cin.readline(); if (cin >> chipSelect) { cout << chipSelect << endl; } else { cout << F("\nInvalid pin number\n"); return; } if (DISABLE_CHIP_SELECT < 0) { cout << F( "\nAssuming the SD is the only SPI device.\n" "Edit DISABLE_CHIP_SELECT to disable another device.\n"); } else { cout << F("\nDisabling SPI device on pin "); cout << int(DISABLE_CHIP_SELECT) << endl; pinMode(DISABLE_CHIP_SELECT, OUTPUT); digitalWrite(DISABLE_CHIP_SELECT, HIGH); } if (!sd.begin(chipSelect, SPI_SPEED)) { if (sd.card()->errorCode()) { cout << F( "\nSD initialization failed.\n" "Do not reformat the card!\n" "Is the card correctly inserted?\n" "Is chipSelect set to the correct value?\n" "Does another SPI device need to be disabled?\n" "Is there a wiring/soldering problem?\n"); cout << F("\nerrorCode: ") << hex << showbase; cout << int(sd.card()->errorCode()); cout << F(", errorData: ") << int(sd.card()->errorData()); cout << dec << noshowbase << endl; return; } if (sd.vol()->fatType() == 0) { cout << F("Can't find a valid FAT16/FAT32 partition.\n"); reformatMsg(); return; } cout << F("begin failed, can't determine error type\n"); return; } cout << F("\nCard successfully initialized.\n"); cout << endl; uint32_t size = sd.card()->cardSize(); if (size == 0) { cout << F("Can't determine the card size.\n"); cardOrSpeed(); return; } uint32_t sizeMB = 0.000512 * size + 0.5; cout << F("Card size: ") << sizeMB; cout << F(" MB (MB = 1,000,000 bytes)\n"); cout << endl; cout << F("Volume is FAT") << int(sd.vol()->fatType()); cout << F(", Cluster size (bytes): ") << 512L * sd.vol()->blocksPerCluster(); cout << endl << endl; cout << F("Files found (date time size name):\n"); sd.ls(LS_R | LS_DATE | LS_SIZE); if ((sizeMB > 1100 && sd.vol()->blocksPerCluster() < 64) || (sizeMB < 2200 && sd.vol()->fatType() == 32)) { cout << F("\nThis card should be reformatted for best performance.\n"); cout << F("Use a cluster size of 32 KB for cards larger than 1 GB.\n"); cout << F("Only cards larger than 2 GB should be formatted FAT32.\n"); reformatMsg(); return; } // Read any extra Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); cout << F("\nSuccess! Type any character to restart.\n"); while (!Serial.available()) { SysCall::yield(); } }