/** * This program logs data to a binary file. Functions are included * to convert the binary file to a CSV text file. * * Samples are logged at regular intervals. The maximum logging rate * depends on the quality of your SD card and the time required to * read sensor data. This example has been tested at 500 Hz with * good SD card on an Uno. 4000 HZ is possible on a Due. * * If your SD card has a long write latency, it may be necessary to use * slower sample rates. Using a Mega Arduino helps overcome latency * problems since 13 512 byte buffers will be used. * * Data is written to the file using a SD multiple block write command. */ #include #include #include //------------------------------------------------------------------------------ // User data functions. Modify these functions for your data items. #include "UserDataType.h" // Edit this include file to change data_t. // Acquire a data record. void acquireData(data_t* data) { data->time = micros(); for (int i = 0; i < ADC_DIM; i++) { data->adc[i] = analogRead(i); } } // Print a data record. void printData(Print* pr, data_t* data) { pr->print(data->time); for (int i = 0; i < ADC_DIM; i++) { pr->write(','); pr->print(data->adc[i]); } pr->println(); } // Print data header. void printHeader(Print* pr) { pr->print(F("time")); for (int i = 0; i < ADC_DIM; i++) { pr->print(F(",adc")); pr->print(i); } pr->println(); } //============================================================================== // Start of configuration constants. //============================================================================== //Interval between data records in microseconds. const uint32_t LOG_INTERVAL_USEC = 2000; //------------------------------------------------------------------------------ // Pin definitions. // // SD chip select pin. const uint8_t SD_CS_PIN = SS; // // Digital pin to indicate an error, set to -1 if not used. // The led blinks for fatal errors. The led goes on solid for SD write // overrun errors and logging continues. const int8_t ERROR_LED_PIN = 3; //------------------------------------------------------------------------------ // File definitions. // // Maximum file size in blocks. // The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks. // This file is flash erased using special SD commands. The file will be // truncated if logging is stopped early. const uint32_t FILE_BLOCK_COUNT = 256000; // log file base name. Must be six characters or less. #define FILE_BASE_NAME "DATA" //------------------------------------------------------------------------------ // Buffer definitions. // // The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional // buffers. // #ifndef RAMEND // Assume ARM. Use total of nine 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 8; // #elif RAMEND < 0X8FF #error Too little SRAM // #elif RAMEND < 0X10FF // Use total of two 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 1; // #elif RAMEND < 0X20FF // Use total of five 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 4; // #else // RAMEND // Use total of 13 512 byte buffers. const uint8_t BUFFER_BLOCK_COUNT = 12; #endif // RAMEND //============================================================================== // End of configuration constants. //============================================================================== // Temporary log file. Will be deleted if a reset or power failure occurs. #define TMP_FILE_NAME "TMP_LOG.BIN" // Size of file base name. Must not be larger than six. const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1; SdFat sd; SdBaseFile binFile; char binName[13] = FILE_BASE_NAME "00.BIN"; // Number of data records in a block. const uint16_t DATA_DIM = (512 - 4)/sizeof(data_t); //Compute fill so block size is 512 bytes. FILL_DIM may be zero. const uint16_t FILL_DIM = 512 - 4 - DATA_DIM*sizeof(data_t); struct block_t { uint16_t count; uint16_t overrun; data_t data[DATA_DIM]; uint8_t fill[FILL_DIM]; }; const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 2; block_t* emptyQueue[QUEUE_DIM]; uint8_t emptyHead; uint8_t emptyTail; block_t* fullQueue[QUEUE_DIM]; uint8_t fullHead; uint8_t fullTail; // Advance queue index. inline uint8_t queueNext(uint8_t ht) {return ht < (QUEUE_DIM - 1) ? ht + 1 : 0;} //============================================================================== // Error messages stored in flash. #define error(msg) errorFlash(F(msg)) //------------------------------------------------------------------------------ void errorFlash(const __FlashStringHelper* msg) { sd.errorPrint(msg); fatalBlink(); } //------------------------------------------------------------------------------ // void fatalBlink() { while (true) { if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); delay(200); digitalWrite(ERROR_LED_PIN, LOW); delay(200); } } } //============================================================================== // Convert binary file to CSV file. void binaryToCsv() { uint8_t lastPct = 0; block_t block; uint32_t t0 = millis(); uint32_t syncCluster = 0; SdFile csvFile; char csvName[13]; if (!binFile.isOpen()) { Serial.println(); Serial.println(F("No current binary file")); return; } binFile.rewind(); // Create a new csvFile. strcpy(csvName, binName); strcpy_P(&csvName[BASE_NAME_SIZE + 3], PSTR("CSV")); if (!csvFile.open(csvName, O_WRITE | O_CREAT | O_TRUNC)) { error("open csvFile failed"); } Serial.println(); Serial.print(F("Writing: ")); Serial.print(csvName); Serial.println(F(" - type any character to stop")); printHeader(&csvFile); uint32_t tPct = millis(); while (!Serial.available() && binFile.read(&block, 512) == 512) { uint16_t i; if (block.count == 0) break; if (block.overrun) { csvFile.print(F("OVERRUN,")); csvFile.println(block.overrun); } for (i = 0; i < block.count; i++) { printData(&csvFile, &block.data[i]); } if (csvFile.curCluster() != syncCluster) { csvFile.sync(); syncCluster = csvFile.curCluster(); } if ((millis() - tPct) > 1000) { uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100); if (pct != lastPct) { tPct = millis(); lastPct = pct; Serial.print(pct, DEC); Serial.println('%'); } } if (Serial.available()) break; } csvFile.close(); Serial.print(F("Done: ")); Serial.print(0.001*(millis() - t0)); Serial.println(F(" Seconds")); } //------------------------------------------------------------------------------ // read data file and check for overruns void checkOverrun() { bool headerPrinted = false; block_t block; uint32_t bgnBlock, endBlock; uint32_t bn = 0; if (!binFile.isOpen()) { Serial.println(); Serial.println(F("No current binary file")); return; } if (!binFile.contiguousRange(&bgnBlock, &endBlock)) { error("contiguousRange failed"); } binFile.rewind(); Serial.println(); Serial.println(F("Checking overrun errors - type any character to stop")); while (binFile.read(&block, 512) == 512) { if (block.count == 0) break; if (block.overrun) { if (!headerPrinted) { Serial.println(); Serial.println(F("Overruns:")); Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount")); headerPrinted = true; } Serial.print(bn); Serial.print(','); Serial.print(bgnBlock + bn); Serial.print(','); Serial.println(block.overrun); } bn++; } if (!headerPrinted) { Serial.println(F("No errors found")); } else { Serial.println(F("Done")); } } //------------------------------------------------------------------------------ // dump data file to Serial void dumpData() { block_t block; if (!binFile.isOpen()) { Serial.println(); Serial.println(F("No current binary file")); return; } binFile.rewind(); Serial.println(); Serial.println(F("Type any character to stop")); delay(1000); printHeader(&Serial); while (!Serial.available() && binFile.read(&block , 512) == 512) { if (block.count == 0) break; if (block.overrun) { Serial.print(F("OVERRUN,")); Serial.println(block.overrun); } for (uint16_t i = 0; i < block.count; i++) { printData(&Serial, &block.data[i]); } } Serial.println(F("Done")); } //------------------------------------------------------------------------------ // log data // max number of blocks to erase per erase call uint32_t const ERASE_SIZE = 262144L; void logData() { uint32_t bgnBlock, endBlock; // Allocate extra buffer space. block_t block[BUFFER_BLOCK_COUNT]; block_t* curBlock = 0; Serial.println(); // Find unused file name. if (BASE_NAME_SIZE > 6) { error("FILE_BASE_NAME too long"); } while (sd.exists(binName)) { if (binName[BASE_NAME_SIZE + 1] != '9') { binName[BASE_NAME_SIZE + 1]++; } else { binName[BASE_NAME_SIZE + 1] = '0'; if (binName[BASE_NAME_SIZE] == '9') { error("Can't create file name"); } binName[BASE_NAME_SIZE]++; } } // Delete old tmp file. if (sd.exists(TMP_FILE_NAME)) { Serial.println(F("Deleting tmp file")); if (!sd.remove(TMP_FILE_NAME)) { error("Can't remove tmp file"); } } // Create new file. Serial.println(F("Creating new file")); binFile.close(); if (!binFile.createContiguous(sd.vwd(), TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) { error("createContiguous failed"); } // Get the address of the file on the SD. if (!binFile.contiguousRange(&bgnBlock, &endBlock)) { error("contiguousRange failed"); } // Use SdFat's internal buffer. uint8_t* cache = (uint8_t*)sd.vol()->cacheClear(); if (cache == 0) error("cacheClear failed"); // Flash erase all data in the file. Serial.println(F("Erasing all data")); uint32_t bgnErase = bgnBlock; uint32_t endErase; while (bgnErase < endBlock) { endErase = bgnErase + ERASE_SIZE; if (endErase > endBlock) endErase = endBlock; if (!sd.card()->erase(bgnErase, endErase)) { error("erase failed"); } bgnErase = endErase + 1; } // Start a multiple block write. if (!sd.card()->writeStart(bgnBlock, FILE_BLOCK_COUNT)) { error("writeBegin failed"); } // Initialize queues. emptyHead = emptyTail = 0; fullHead = fullTail = 0; // Use SdFat buffer for one block. emptyQueue[emptyHead] = (block_t*)cache; emptyHead = queueNext(emptyHead); // Put rest of buffers in the empty queue. for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) { emptyQueue[emptyHead] = &block[i]; emptyHead = queueNext(emptyHead); } Serial.println(F("Logging - type any character to stop")); // Wait for Serial Idle. Serial.flush(); delay(10); uint32_t bn = 0; uint32_t t0 = millis(); uint32_t t1 = t0; uint32_t overrun = 0; uint32_t overrunTotal = 0; uint32_t count = 0; uint32_t maxLatency = 0; int32_t diff; // Start at a multiple of interval. uint32_t logTime = micros()/LOG_INTERVAL_USEC + 1; logTime *= LOG_INTERVAL_USEC; bool closeFile = false; while (1) { // Time for next data record. logTime += LOG_INTERVAL_USEC; if (Serial.available()) closeFile = true; if (closeFile) { if (curBlock != 0 && curBlock->count >= 0) { // Put buffer in full queue. fullQueue[fullHead] = curBlock; fullHead = queueNext(fullHead); curBlock = 0; } } else { if (curBlock == 0 && emptyTail != emptyHead) { curBlock = emptyQueue[emptyTail]; emptyTail = queueNext(emptyTail); curBlock->count = 0; curBlock->overrun = overrun; overrun = 0; } do { diff = logTime - micros(); } while(diff > 0); if (diff < -10) error("LOG_INTERVAL_USEC too small"); if (curBlock == 0) { overrun++; } else { acquireData(&curBlock->data[curBlock->count++]); if (curBlock->count == DATA_DIM) { fullQueue[fullHead] = curBlock; fullHead = queueNext(fullHead); curBlock = 0; } } } if (fullHead == fullTail) { // Exit loop if done. if (closeFile) break; } else if (!sd.card()->isBusy()) { // Get address of block to write. block_t* pBlock = fullQueue[fullTail]; fullTail = queueNext(fullTail); // Write block to SD. uint32_t usec = micros(); if (!sd.card()->writeData((uint8_t*)pBlock)) { error("write data failed"); } usec = micros() - usec; t1 = millis(); if (usec > maxLatency) maxLatency = usec; count += pBlock->count; // Add overruns and possibly light LED. if (pBlock->overrun) { overrunTotal += pBlock->overrun; if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); } } // Move block to empty queue. emptyQueue[emptyHead] = pBlock; emptyHead = queueNext(emptyHead); bn++; if (bn == FILE_BLOCK_COUNT) { // File full so stop break; } } } if (!sd.card()->writeStop()) { error("writeStop failed"); } // Truncate file if recording stopped early. if (bn != FILE_BLOCK_COUNT) { Serial.println(F("Truncating file")); if (!binFile.truncate(512L * bn)) { error("Can't truncate file"); } } if (!binFile.rename(sd.vwd(), binName)) { error("Can't rename file"); } Serial.print(F("File renamed: ")); Serial.println(binName); Serial.print(F("Max block write usec: ")); Serial.println(maxLatency); Serial.print(F("Record time sec: ")); Serial.println(0.001*(t1 - t0), 3); Serial.print(F("Sample count: ")); Serial.println(count); Serial.print(F("Samples/sec: ")); Serial.println((1000.0)*count/(t1-t0)); Serial.print(F("Overruns: ")); Serial.println(overrunTotal); Serial.println(F("Done")); } //------------------------------------------------------------------------------ void setup(void) { if (ERROR_LED_PIN >= 0) { pinMode(ERROR_LED_PIN, OUTPUT); } Serial.begin(9600); while (!Serial) {} Serial.print(F("FreeRam: ")); Serial.println(FreeRam()); Serial.print(F("Records/block: ")); Serial.println(DATA_DIM); if (sizeof(block_t) != 512) error("Invalid block size"); // initialize file system. if (!sd.begin(SD_CS_PIN, SPI_FULL_SPEED)) { sd.initErrorPrint(); fatalBlink(); } } //------------------------------------------------------------------------------ void loop(void) { // discard any input while (Serial.read() >= 0) {} Serial.println(); Serial.println(F("type:")); Serial.println(F("c - convert file to CSV")); Serial.println(F("d - dump data to Serial")); Serial.println(F("e - overrun error details")); Serial.println(F("r - record data")); while(!Serial.available()) {} char c = tolower(Serial.read()); // Discard extra Serial data. do { delay(10); } while (Serial.read() >= 0); if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, LOW); } if (c == 'c') { binaryToCsv(); } else if (c == 'd') { dumpData(); } else if (c == 'e') { checkOverrun(); } else if (c == 'r') { logData(); } else { Serial.println(F("Invalid entry")); } }