Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

470 lines
13KB

  1. /* SerialFlash Library - for filesystem-like access to SPI Serial Flash memory
  2. * https://github.com/PaulStoffregen/SerialFlash
  3. * Copyright (C) 2015, Paul Stoffregen, paul@pjrc.com
  4. *
  5. * Development of this library was funded by PJRC.COM, LLC by sales of Teensy.
  6. * Please support PJRC's efforts to develop open source software by purchasing
  7. * Teensy or other genuine PJRC products.
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice, development funding notice, and this permission
  17. * notice shall be included in all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. */
  27. #include "SerialFlash.h"
  28. #include "util/SerialFlash_directwrite.h"
  29. #define CSCONFIG() pinMode(6, OUTPUT)
  30. #define CSASSERT() digitalWriteFast(6, LOW)
  31. #define CSRELEASE() digitalWriteFast(6, HIGH)
  32. #define SPICONFIG SPISettings(50000000, MSBFIRST, SPI_MODE0)
  33. #if !defined(__arm__) || !defined(CORE_TEENSY)
  34. #define digitalWriteFast(pin, state) digitalWrite((pin), (state))
  35. #endif
  36. uint16_t SerialFlashChip::dirindex = 0;
  37. uint8_t SerialFlashChip::flags = 0;
  38. uint8_t SerialFlashChip::busy = 0;
  39. #define FLAG_32BIT_ADDR 0x01 // larger than 16 MByte address
  40. #define FLAG_STATUS_CMD70 0x02 // requires special busy flag check
  41. #define FLAG_DIFF_SUSPEND 0x04 // uses 2 different suspend commands
  42. #define FLAG_MULTI_DIE 0x08 // multiple die, don't read cross 32M barrier
  43. #define FLAG_256K_BLOCKS 0x10 // has 256K erase blocks
  44. #define FLAG_DIE_MASK 0xC0 // top 2 bits count during multi-die erase
  45. void SerialFlashChip::wait(void)
  46. {
  47. uint32_t status;
  48. //Serial.print("wait-");
  49. while (1) {
  50. SPI.beginTransaction(SPICONFIG);
  51. CSASSERT();
  52. if (flags & FLAG_STATUS_CMD70) {
  53. // some Micron chips require this different
  54. // command to detect program and erase completion
  55. SPI.transfer(0x70);
  56. status = SPI.transfer(0);
  57. CSRELEASE();
  58. SPI.endTransaction();
  59. //Serial.printf("b=%02x.", status & 0xFF);
  60. if ((status & 0x80)) break;
  61. } else {
  62. // all others work by simply reading the status reg
  63. SPI.transfer(0x05);
  64. status = SPI.transfer(0);
  65. CSRELEASE();
  66. SPI.endTransaction();
  67. //Serial.printf("b=%02x.", status & 0xFF);
  68. if (!(status & 1)) break;
  69. }
  70. }
  71. busy = 0;
  72. //Serial.println();
  73. }
  74. void SerialFlashChip::read(uint32_t addr, void *buf, uint32_t len)
  75. {
  76. uint8_t *p = (uint8_t *)buf;
  77. uint8_t b, f, status, cmd;
  78. memset(p, 0, len);
  79. f = flags;
  80. SPI.beginTransaction(SPICONFIG);
  81. b = busy;
  82. if (b) {
  83. // read status register ... chip may no longer be busy
  84. CSASSERT();
  85. if (flags & FLAG_STATUS_CMD70) {
  86. SPI.transfer(0x70);
  87. status = SPI.transfer(0);
  88. if ((status & 0x80)) b = 0;
  89. } else {
  90. SPI.transfer(0x05);
  91. status = SPI.transfer(0);
  92. if (!(status & 1)) b = 0;
  93. }
  94. CSRELEASE();
  95. if (b == 0) {
  96. // chip is no longer busy :-)
  97. busy = 0;
  98. } else if (b < 3) {
  99. // TODO: this may not work on Spansion chips
  100. // which apparently have 2 different suspend
  101. // commands, for program vs erase
  102. CSASSERT();
  103. SPI.transfer(0x06); // write enable (Micron req'd)
  104. CSRELEASE();
  105. delayMicroseconds(1);
  106. cmd = 0x75; //Suspend program/erase for almost all chips
  107. // but Spansion just has to be different for program suspend!
  108. if ((f & FLAG_DIFF_SUSPEND) && (b == 1)) cmd = 0x85;
  109. CSASSERT();
  110. SPI.transfer(cmd); // Suspend command
  111. CSRELEASE();
  112. if (f & FLAG_STATUS_CMD70) {
  113. // Micron chips don't actually suspend until flags read
  114. CSASSERT();
  115. SPI.transfer(0x70);
  116. do {
  117. status = SPI.transfer(0);
  118. } while (!(status & 0x80));
  119. CSRELEASE();
  120. } else {
  121. CSASSERT();
  122. SPI.transfer(0x05);
  123. do {
  124. status = SPI.transfer(0);
  125. } while ((status & 0x01));
  126. CSRELEASE();
  127. }
  128. } else {
  129. // chip is busy with an operation that can not suspend
  130. SPI.endTransaction(); // is this a good idea?
  131. wait(); // should we wait without ending
  132. b = 0; // the transaction??
  133. SPI.beginTransaction(SPICONFIG);
  134. }
  135. }
  136. do {
  137. uint32_t rdlen = len;
  138. if (f & FLAG_MULTI_DIE) {
  139. if ((addr & 0xFE000000) != ((addr + len - 1) & 0xFE000000)) {
  140. rdlen = 0x2000000 - (addr & 0x1FFFFFF);
  141. }
  142. }
  143. CSASSERT();
  144. // TODO: FIFO optimize....
  145. if (f & FLAG_32BIT_ADDR) {
  146. SPI.transfer(0x03);
  147. SPI.transfer16(addr >> 16);
  148. SPI.transfer16(addr);
  149. } else {
  150. SPI.transfer16(0x0300 | ((addr >> 16) & 255));
  151. SPI.transfer16(addr);
  152. }
  153. SPI.transfer(p, rdlen);
  154. CSRELEASE();
  155. p += rdlen;
  156. addr += rdlen;
  157. len -= rdlen;
  158. } while (len > 0);
  159. if (b) {
  160. CSASSERT();
  161. SPI.transfer(0x06); // write enable (Micron req'd)
  162. CSRELEASE();
  163. delayMicroseconds(1);
  164. cmd = 0x7A;
  165. if ((f & FLAG_DIFF_SUSPEND) && (b == 1)) cmd = 0x8A;
  166. CSASSERT();
  167. SPI.transfer(cmd); // Resume program/erase
  168. CSRELEASE();
  169. }
  170. SPI.endTransaction();
  171. }
  172. void SerialFlashChip::write(uint32_t addr, const void *buf, uint32_t len)
  173. {
  174. const uint8_t *p = (const uint8_t *)buf;
  175. uint32_t max, pagelen;
  176. //Serial.printf("WR: addr %08X, len %d\n", addr, len);
  177. do {
  178. if (busy) wait();
  179. SPI.beginTransaction(SPICONFIG);
  180. CSASSERT();
  181. // write enable command
  182. SPI.transfer(0x06);
  183. CSRELEASE();
  184. max = 256 - (addr & 0xFF);
  185. pagelen = (len <= max) ? len : max;
  186. //Serial.printf("WR: addr %08X, pagelen %d\n", addr, pagelen);
  187. CSASSERT();
  188. if (flags & FLAG_32BIT_ADDR) {
  189. SPI.transfer(0x02); // program page command
  190. SPI.transfer16(addr >> 16);
  191. SPI.transfer16(addr);
  192. } else {
  193. SPI.transfer16(0x0200 | ((addr >> 16) & 255));
  194. SPI.transfer16(addr);
  195. }
  196. addr += pagelen;
  197. len -= pagelen;
  198. do {
  199. SPI.transfer(*p++);
  200. } while (--pagelen > 0);
  201. CSRELEASE();
  202. busy = 1;
  203. SPI.endTransaction();
  204. } while (len > 0);
  205. }
  206. void SerialFlashChip::eraseAll()
  207. {
  208. if (busy) wait();
  209. uint8_t id[3];
  210. readID(id);
  211. //Serial.printf("ID: %02X %02X %02X\n", id[0], id[1], id[2]);
  212. if (id[0] == 0x20 && id[2] >= 0x20 && id[2] <= 0x22) {
  213. // Micron's multi-die chips require special die erase commands
  214. // N25Q512A 20 BA 20 2 dies 32 Mbyte/die 65 nm transitors
  215. // N25Q00AA 20 BA 21 4 dies 32 Mbyte/die 65 nm transitors
  216. // MT25QL02GC 20 BA 22 2 dies 128 Mbyte/die 45 nm transitors
  217. uint8_t die_count = 2;
  218. if (id[2] == 0x21) die_count = 4;
  219. uint8_t die_index = flags >> 6;
  220. //Serial.printf("Micron die erase %d\n", die_index);
  221. flags &= 0x3F;
  222. if (die_index >= die_count) return; // all dies erased :-)
  223. uint8_t die_size = 2; // in 16 Mbyte units
  224. if (id[2] == 0x22) die_size = 8;
  225. SPI.beginTransaction(SPICONFIG);
  226. CSASSERT();
  227. SPI.transfer(0x06); // write enable command
  228. CSRELEASE();
  229. delayMicroseconds(1);
  230. CSASSERT();
  231. // die erase command
  232. SPI.transfer(0xC4);
  233. SPI.transfer16((die_index * die_size) << 8);
  234. SPI.transfer16(0x0000);
  235. CSRELEASE();
  236. //Serial.printf("Micron erase begin\n");
  237. flags |= (die_index + 1) << 6;
  238. } else {
  239. // All other chips support the bulk erase command
  240. SPI.beginTransaction(SPICONFIG);
  241. CSASSERT();
  242. // write enable command
  243. SPI.transfer(0x06);
  244. CSRELEASE();
  245. delayMicroseconds(1);
  246. CSASSERT();
  247. // bulk erase command
  248. SPI.transfer(0xC7);
  249. CSRELEASE();
  250. SPI.endTransaction();
  251. }
  252. busy = 3;
  253. }
  254. void SerialFlashChip::eraseBlock(uint32_t addr)
  255. {
  256. uint8_t f = flags;
  257. if (busy) wait();
  258. SPI.beginTransaction(SPICONFIG);
  259. CSASSERT();
  260. SPI.transfer(0x06); // write enable command
  261. CSRELEASE();
  262. delayMicroseconds(1);
  263. CSASSERT();
  264. if (f & FLAG_32BIT_ADDR) {
  265. SPI.transfer(0xD8);
  266. SPI.transfer16(addr >> 16);
  267. SPI.transfer16(addr);
  268. } else {
  269. SPI.transfer16(0xD800 | ((addr >> 16) & 255));
  270. SPI.transfer16(addr);
  271. }
  272. CSRELEASE();
  273. SPI.endTransaction();
  274. busy = 2;
  275. }
  276. bool SerialFlashChip::ready()
  277. {
  278. uint32_t status;
  279. if (!busy) return true;
  280. SPI.beginTransaction(SPICONFIG);
  281. CSASSERT();
  282. if (flags & FLAG_STATUS_CMD70) {
  283. // some Micron chips require this different
  284. // command to detect program and erase completion
  285. SPI.transfer(0x70);
  286. status = SPI.transfer(0);
  287. CSRELEASE();
  288. SPI.endTransaction();
  289. //Serial.printf("ready=%02x\n", status & 0xFF);
  290. if ((status & 0x80) == 0) return false;
  291. } else {
  292. // all others work by simply reading the status reg
  293. SPI.transfer(0x05);
  294. status = SPI.transfer(0);
  295. CSRELEASE();
  296. SPI.endTransaction();
  297. //Serial.printf("ready=%02x\n", status & 0xFF);
  298. if ((status & 1)) return false;
  299. }
  300. busy = 0;
  301. if (flags & 0xC0) {
  302. // continue a multi-die erase
  303. eraseAll();
  304. return false;
  305. }
  306. return true;
  307. }
  308. #define ID0_WINBOND 0xEF
  309. #define ID0_SPANSION 0x01
  310. #define ID0_MICRON 0x20
  311. #define ID0_MACRONIX 0xC2
  312. #define ID0_SST 0xBF
  313. //#define FLAG_32BIT_ADDR 0x01 // larger than 16 MByte address
  314. //#define FLAG_STATUS_CMD70 0x02 // requires special busy flag check
  315. //#define FLAG_DIFF_SUSPEND 0x04 // uses 2 different suspend commands
  316. //#define FLAG_256K_BLOCKS 0x10 // has 256K erase blocks
  317. bool SerialFlashChip::begin()
  318. {
  319. uint8_t id[3];
  320. uint8_t f;
  321. uint32_t size;
  322. SPI.begin();
  323. CSCONFIG();
  324. CSRELEASE();
  325. readID(id);
  326. f = 0;
  327. size = capacity(id);
  328. if (size > 16777216) {
  329. // more than 16 Mbyte requires 32 bit addresses
  330. f |= FLAG_32BIT_ADDR;
  331. SPI.beginTransaction(SPICONFIG);
  332. if (id[0] == ID0_SPANSION) {
  333. // spansion uses MSB of bank register
  334. CSASSERT();
  335. SPI.transfer16(0x1780); // bank register write
  336. CSRELEASE();
  337. } else {
  338. // micron & winbond & macronix use command
  339. CSASSERT();
  340. SPI.transfer(0x06); // write enable
  341. CSRELEASE();
  342. delayMicroseconds(1);
  343. CSASSERT();
  344. SPI.transfer(0xB7); // enter 4 byte addr mode
  345. CSRELEASE();
  346. }
  347. SPI.endTransaction();
  348. if (id[0] == ID0_MICRON) f |= FLAG_MULTI_DIE;
  349. }
  350. if (id[0] == ID0_SPANSION) {
  351. // Spansion has separate suspend commands
  352. f |= FLAG_DIFF_SUSPEND;
  353. if (size >= 67108864) {
  354. // Spansion chips >= 512 mbit use 256K sectors
  355. f |= FLAG_256K_BLOCKS;
  356. }
  357. }
  358. if (id[0] == ID0_MICRON) {
  359. // Micron requires busy checks with a different command
  360. f |= FLAG_STATUS_CMD70; // TODO: all or just multi-die chips?
  361. }
  362. flags = f;
  363. readID(id);
  364. return true;
  365. }
  366. void SerialFlashChip::readID(uint8_t *buf)
  367. {
  368. if (busy) wait();
  369. SPI.beginTransaction(SPICONFIG);
  370. CSASSERT();
  371. SPI.transfer(0x9F);
  372. buf[0] = SPI.transfer(0); // manufacturer ID
  373. buf[1] = SPI.transfer(0); // memory type
  374. buf[2] = SPI.transfer(0); // capacity
  375. CSRELEASE();
  376. SPI.endTransaction();
  377. //Serial.printf("ID: %02X %02X %02X\n", buf[0], buf[1], buf[2]);
  378. }
  379. uint32_t SerialFlashChip::capacity(const uint8_t *id)
  380. {
  381. uint32_t n = 1048576; // unknown chips, default to 1 MByte
  382. if (id[2] >= 16 && id[2] <= 31) {
  383. n = 1ul << id[2];
  384. } else
  385. if (id[2] >= 32 && id[2] <= 37) {
  386. n = 1ul << (id[2] - 6);
  387. }
  388. //Serial.printf("capacity %lu\n", n);
  389. return n;
  390. }
  391. uint32_t SerialFlashChip::blockSize()
  392. {
  393. // Spansion chips >= 512 mbit use 256K sectors
  394. if (flags & FLAG_256K_BLOCKS) return 262144;
  395. // everything else seems to have 64K sectors
  396. return 65536;
  397. }
  398. /*
  399. Chip Uniform Sector Erase
  400. 20/21 52 D8/DC
  401. ----- -- -----
  402. W25Q64CV 4 32 64
  403. W25Q128FV 4 32 64
  404. S25FL127S 64
  405. N25Q512A 4 64
  406. N25Q00AA 4 64
  407. S25FL512S 256
  408. SST26VF032 4
  409. */
  410. // size sector busy pgm/erase chip
  411. // Part Mbyte kbyte ID bytes cmd suspend erase
  412. // ---- ---- ----- -------- --- ------- -----
  413. // Winbond W25Q64CV 8 64 EF 40 17
  414. // Winbond W25Q128FV 16 64 EF 40 18 05 single 60 & C7
  415. // Winbond W25Q256FV 32 64 EF 40 19
  416. // Spansion S25FL064A 8 ? 01 02 16
  417. // Spansion S25FL127S 16 64 01 20 18 05
  418. // Spansion S25FL128P 16 64 01 20 18
  419. // Spansion S25FL256S 32 64 01 02 19 05 60 & C7
  420. // Spansion S25FL512S 64 256 01 02 20
  421. // Macronix MX25L12805D 16 ? C2 20 18
  422. // Macronix MX66L51235F 64 C2 20 1A
  423. // Numonyx M25P128 16 ? 20 20 18
  424. // Micron M25P80 1 ? 20 20 14
  425. // Micron N25Q128A 16 64 20 BA 18
  426. // Micron N25Q512A 64 ? 20 BA 20 70 single C4 x2
  427. // Micron N25Q00AA 128 64 20 BA 21 single C4 x4
  428. // Micron MT25QL02GC 256 64 20 BA 22 70 C4 x2
  429. // SST SST25WF010 1/8 ? BF 25 02
  430. // SST SST25WF020 1/4 ? BF 25 03
  431. // SST SST25WF040 1/2 ? BF 25 04
  432. // SST SST25VF016B 1 ? BF 25 41
  433. // SST26VF016 ? BF 26 01
  434. // SST26VF032 ? BF 26 02
  435. // SST25VF032 4 64 BF 25 4A
  436. // SST26VF064 8 ? BF 26 43
  437. // LE25U40CMC 1/2 64 62 06 13
  438. SerialFlashChip SerialFlash;