Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 8 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
pirms 10 gadiem
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * SPI Master library for arduino.
  4. *
  5. * This file is free software; you can redistribute it and/or modify
  6. * it under the terms of either the GNU General Public License version 2
  7. * or the GNU Lesser General Public License version 2.1, both as
  8. * published by the Free Software Foundation.
  9. */
  10. #include "SPI.h"
  11. #include "pins_arduino.h"
  12. /**********************************************************/
  13. /* 8 bit AVR-based boards */
  14. /**********************************************************/
  15. #if defined(__AVR__)
  16. SPIClass SPI;
  17. uint8_t SPIClass::interruptMode = 0;
  18. uint8_t SPIClass::interruptMask = 0;
  19. uint8_t SPIClass::interruptSave = 0;
  20. #ifdef SPI_TRANSACTION_MISMATCH_LED
  21. uint8_t SPIClass::inTransactionFlag = 0;
  22. #endif
  23. void SPIClass::begin()
  24. {
  25. // Set SS to high so a connected chip will be "deselected" by default
  26. digitalWrite(SS, HIGH);
  27. // When the SS pin is set as OUTPUT, it can be used as
  28. // a general purpose output port (it doesn't influence
  29. // SPI operations).
  30. pinMode(SS, OUTPUT);
  31. // Warning: if the SS pin ever becomes a LOW INPUT then SPI
  32. // automatically switches to Slave, so the data direction of
  33. // the SS pin MUST be kept as OUTPUT.
  34. SPCR |= _BV(MSTR);
  35. SPCR |= _BV(SPE);
  36. // Set direction register for SCK and MOSI pin.
  37. // MISO pin automatically overrides to INPUT.
  38. // By doing this AFTER enabling SPI, we avoid accidentally
  39. // clocking in a single bit since the lines go directly
  40. // from "input" to SPI control.
  41. // http://code.google.com/p/arduino/issues/detail?id=888
  42. pinMode(SCK, OUTPUT);
  43. pinMode(MOSI, OUTPUT);
  44. }
  45. void SPIClass::end() {
  46. SPCR &= ~_BV(SPE);
  47. }
  48. // mapping of interrupt numbers to bits within SPI_AVR_EIMSK
  49. #if defined(__AVR_ATmega32U4__)
  50. #define SPI_INT0_MASK (1<<INT0)
  51. #define SPI_INT1_MASK (1<<INT1)
  52. #define SPI_INT2_MASK (1<<INT2)
  53. #define SPI_INT3_MASK (1<<INT3)
  54. #define SPI_INT4_MASK (1<<INT6)
  55. #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
  56. #define SPI_INT0_MASK (1<<INT0)
  57. #define SPI_INT1_MASK (1<<INT1)
  58. #define SPI_INT2_MASK (1<<INT2)
  59. #define SPI_INT3_MASK (1<<INT3)
  60. #define SPI_INT4_MASK (1<<INT4)
  61. #define SPI_INT5_MASK (1<<INT5)
  62. #define SPI_INT6_MASK (1<<INT6)
  63. #define SPI_INT7_MASK (1<<INT7)
  64. #elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
  65. #define SPI_INT0_MASK (1<<INT4)
  66. #define SPI_INT1_MASK (1<<INT5)
  67. #define SPI_INT2_MASK (1<<INT0)
  68. #define SPI_INT3_MASK (1<<INT1)
  69. #define SPI_INT4_MASK (1<<INT2)
  70. #define SPI_INT5_MASK (1<<INT3)
  71. #define SPI_INT6_MASK (1<<INT6)
  72. #define SPI_INT7_MASK (1<<INT7)
  73. #else
  74. #ifdef INT0
  75. #define SPI_INT0_MASK (1<<INT0)
  76. #endif
  77. #ifdef INT1
  78. #define SPI_INT1_MASK (1<<INT1)
  79. #endif
  80. #ifdef INT2
  81. #define SPI_INT2_MASK (1<<INT2)
  82. #endif
  83. #endif
  84. void SPIClass::usingInterrupt(uint8_t interruptNumber)
  85. {
  86. uint8_t stmp, mask;
  87. if (interruptMode > 1) return;
  88. stmp = SREG;
  89. noInterrupts();
  90. switch (interruptNumber) {
  91. #ifdef SPI_INT0_MASK
  92. case 0: mask = SPI_INT0_MASK; break;
  93. #endif
  94. #ifdef SPI_INT1_MASK
  95. case 1: mask = SPI_INT1_MASK; break;
  96. #endif
  97. #ifdef SPI_INT2_MASK
  98. case 2: mask = SPI_INT2_MASK; break;
  99. #endif
  100. #ifdef SPI_INT3_MASK
  101. case 3: mask = SPI_INT3_MASK; break;
  102. #endif
  103. #ifdef SPI_INT4_MASK
  104. case 4: mask = SPI_INT4_MASK; break;
  105. #endif
  106. #ifdef SPI_INT5_MASK
  107. case 5: mask = SPI_INT5_MASK; break;
  108. #endif
  109. #ifdef SPI_INT6_MASK
  110. case 6: mask = SPI_INT6_MASK; break;
  111. #endif
  112. #ifdef SPI_INT7_MASK
  113. case 7: mask = SPI_INT7_MASK; break;
  114. #endif
  115. default:
  116. interruptMode = 2;
  117. SREG = stmp;
  118. return;
  119. }
  120. interruptMode = 1;
  121. interruptMask |= mask;
  122. SREG = stmp;
  123. }
  124. /**********************************************************/
  125. /* 32 bit Teensy 3.0 and 3.1 */
  126. /**********************************************************/
  127. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  128. SPIClass SPI;
  129. uint8_t SPIClass::interruptMasksUsed = 0;
  130. uint32_t SPIClass::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  131. uint32_t SPIClass::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  132. #ifdef SPI_TRANSACTION_MISMATCH_LED
  133. uint8_t SPIClass::inTransactionFlag = 0;
  134. #endif
  135. void SPIClass::begin()
  136. {
  137. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  138. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  139. SPI0_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  140. SPI0_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  141. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  142. SPCR.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  143. }
  144. void SPIClass::end() {
  145. SPCR.disable_pins();
  146. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  147. }
  148. void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName)
  149. {
  150. uint32_t n = (uint32_t)interruptName;
  151. if (n >= NVIC_NUM_INTERRUPTS) return;
  152. //Serial.print("usingInterrupt ");
  153. //Serial.println(n);
  154. interruptMasksUsed |= (1 << (n >> 5));
  155. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  156. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  157. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  158. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  159. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  160. }
  161. void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  162. {
  163. uint32_t n = (uint32_t)interruptName;
  164. if (n >= NVIC_NUM_INTERRUPTS) return;
  165. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  166. if (interruptMask[n >> 5] == 0) {
  167. interruptMasksUsed &= ~(1 << (n >> 5));
  168. }
  169. }
  170. const uint16_t SPISettings::ctar_div_table[23] = {
  171. 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40,
  172. 56, 64, 96, 128, 192, 256, 384, 512, 640, 768
  173. };
  174. const uint32_t SPISettings::ctar_clock_table[23] = {
  175. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  176. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  177. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  178. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  179. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  180. SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  181. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  182. SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  183. SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  184. SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0),
  185. SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  186. SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3),
  187. SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  188. SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  189. SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  190. SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  191. SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  192. SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  193. SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  194. SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  195. SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7),
  196. SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  197. SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7)
  198. };
  199. static void updateCTAR(uint32_t ctar)
  200. {
  201. if (SPI0_CTAR0 != ctar) {
  202. uint32_t mcr = SPI0_MCR;
  203. if (mcr & SPI_MCR_MDIS) {
  204. SPI0_CTAR0 = ctar;
  205. SPI0_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  206. } else {
  207. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  208. SPI0_CTAR0 = ctar;
  209. SPI0_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  210. SPI0_MCR = mcr;
  211. }
  212. }
  213. }
  214. void SPIClass::setBitOrder(uint8_t bitOrder)
  215. {
  216. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  217. uint32_t ctar = SPI0_CTAR0;
  218. if (bitOrder == LSBFIRST) {
  219. ctar |= SPI_CTAR_LSBFE;
  220. } else {
  221. ctar &= ~SPI_CTAR_LSBFE;
  222. }
  223. updateCTAR(ctar);
  224. }
  225. void SPIClass::setDataMode(uint8_t dataMode)
  226. {
  227. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  228. // TODO: implement with native code
  229. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  230. }
  231. void SPIClass::setClockDivider_noInline(uint32_t clk)
  232. {
  233. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  234. uint32_t ctar = SPI0_CTAR0;
  235. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  236. if (ctar & SPI_CTAR_CPHA) {
  237. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  238. }
  239. ctar |= clk;
  240. updateCTAR(ctar);
  241. }
  242. uint8_t SPIClass::pinIsChipSelect(uint8_t pin)
  243. {
  244. switch (pin) {
  245. case 10: return 0x01; // PTC4
  246. case 2: return 0x01; // PTD0
  247. case 9: return 0x02; // PTC3
  248. case 6: return 0x02; // PTD4
  249. case 20: return 0x04; // PTD5
  250. case 23: return 0x04; // PTC2
  251. case 21: return 0x08; // PTD6
  252. case 22: return 0x08; // PTC1
  253. case 15: return 0x10; // PTC0
  254. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  255. case 26: return 0x01;
  256. #endif
  257. }
  258. return 0;
  259. }
  260. bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  261. {
  262. uint8_t pin1_mask, pin2_mask;
  263. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  264. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  265. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  266. if ((pin1_mask & pin2_mask) != 0) return false;
  267. return true;
  268. }
  269. uint8_t SPIClass::setCS(uint8_t pin)
  270. {
  271. switch (pin) {
  272. case 10: CORE_PIN10_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTC4
  273. case 2: CORE_PIN2_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD0
  274. case 9: CORE_PIN9_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTC3
  275. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTD4
  276. case 20: CORE_PIN20_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTD5
  277. case 23: CORE_PIN23_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTC2
  278. case 21: CORE_PIN21_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTD6
  279. case 22: CORE_PIN22_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTC1
  280. case 15: CORE_PIN15_CONFIG = PORT_PCR_MUX(2); return 0x10; // PTC0
  281. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  282. case 26: CORE_PIN26_CONFIG = PORT_PCR_MUX(2);return 0x01;
  283. #endif
  284. }
  285. return 0;
  286. }
  287. /**********************************************************/
  288. /* 32 bit Teensy-3.5/3.6 */
  289. /**********************************************************/
  290. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  291. SPI1Class SPI1;
  292. uint8_t SPI1Class::interruptMasksUsed = 0;
  293. uint32_t SPI1Class::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  294. uint32_t SPI1Class::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  295. #ifdef SPI_TRANSACTION_MISMATCH_LED
  296. uint8_t SPI1Class::inTransactionFlag = 0;
  297. #endif
  298. void SPI1Class::begin()
  299. {
  300. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  301. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  302. SPI1_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  303. SPI1_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  304. SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  305. SPCR1.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  306. }
  307. void SPI1Class::end() {
  308. SPCR1.disable_pins();
  309. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  310. }
  311. void SPI1Class::usingInterrupt(IRQ_NUMBER_t interruptName)
  312. {
  313. uint32_t n = (uint32_t)interruptName;
  314. if (n >= NVIC_NUM_INTERRUPTS) return;
  315. //Serial.print("usingInterrupt ");
  316. //Serial.println(n);
  317. interruptMasksUsed |= (1 << (n >> 5));
  318. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  319. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  320. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  321. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  322. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  323. }
  324. void SPI1Class::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  325. {
  326. uint32_t n = (uint32_t)interruptName;
  327. if (n >= NVIC_NUM_INTERRUPTS) return;
  328. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  329. if (interruptMask[n >> 5] == 0) {
  330. interruptMasksUsed &= ~(1 << (n >> 5));
  331. }
  332. }
  333. static void updateCTAR1(uint32_t ctar)
  334. {
  335. if (SPI1_CTAR0 != ctar) {
  336. uint32_t mcr = SPI1_MCR;
  337. if (mcr & SPI_MCR_MDIS) {
  338. SPI1_CTAR0 = ctar;
  339. SPI1_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  340. } else {
  341. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  342. SPI1_CTAR0 = ctar;
  343. SPI1_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  344. SPI1_MCR = mcr;
  345. }
  346. }
  347. }
  348. void SPI1Class::setBitOrder(uint8_t bitOrder)
  349. {
  350. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  351. uint32_t ctar = SPI1_CTAR0;
  352. if (bitOrder == LSBFIRST) {
  353. ctar |= SPI_CTAR_LSBFE;
  354. } else {
  355. ctar &= ~SPI_CTAR_LSBFE;
  356. }
  357. updateCTAR1(ctar);
  358. }
  359. void SPI1Class::setDataMode(uint8_t dataMode)
  360. {
  361. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  362. // TODO: implement with native code
  363. SPCR1 = (SPCR1 & ~SPI_MODE_MASK) | dataMode;
  364. }
  365. void SPI1Class::setClockDivider_noInline(uint32_t clk)
  366. {
  367. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  368. uint32_t ctar = SPI1_CTAR0;
  369. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  370. if (ctar & SPI_CTAR_CPHA) {
  371. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  372. }
  373. ctar |= clk;
  374. updateCTAR1(ctar);
  375. }
  376. uint8_t SPI1Class::pinIsChipSelect(uint8_t pin)
  377. {
  378. switch (pin) {
  379. case 6: return 0x01; // CS0
  380. case 31: return 0x01; // CS0
  381. #ifdef USE_SDCARD_PINS
  382. case 58: return 0x02; //CS1
  383. case 62: return 0x01; //CS0
  384. case 63: return 0x04; //CS2
  385. #endif
  386. }
  387. return 0;
  388. }
  389. bool SPI1Class::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  390. {
  391. uint8_t pin1_mask, pin2_mask;
  392. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  393. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  394. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  395. if ((pin1_mask & pin2_mask) != 0) return false;
  396. return true;
  397. }
  398. uint8_t SPI1Class::setCS(uint8_t pin)
  399. {
  400. switch (pin) {
  401. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(7); return 0x01; // PTD4
  402. case 31: CORE_PIN31_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD5
  403. #ifdef USE_SDCARD_PINS
  404. case 58: CORE_PIN58_CONFIG = PORT_PCR_MUX(2); return 0x02; //CS1
  405. case 62: CORE_PIN62_CONFIG = PORT_PCR_MUX(2); return 0x01; //CS0
  406. case 63: CORE_PIN63_CONFIG = PORT_PCR_MUX(2); return 0x04; //CS2
  407. #endif
  408. }
  409. return 0;
  410. }
  411. // SPI2 Class
  412. SPI2Class SPI2;
  413. uint8_t SPI2Class::interruptMasksUsed = 0;
  414. uint32_t SPI2Class::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  415. uint32_t SPI2Class::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  416. #ifdef SPI_TRANSACTION_MISMATCH_LED
  417. uint8_t SPI2Class::inTransactionFlag = 0;
  418. #endif
  419. void SPI2Class::begin()
  420. {
  421. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  422. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  423. SPI2_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  424. SPI2_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  425. SPI2_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  426. SPCR2.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  427. }
  428. void SPI2Class::end() {
  429. SPCR2.disable_pins();
  430. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  431. }
  432. void SPI2Class::usingInterrupt(IRQ_NUMBER_t interruptName)
  433. {
  434. uint32_t n = (uint32_t)interruptName;
  435. if (n >= NVIC_NUM_INTERRUPTS) return;
  436. //Serial.print("usingInterrupt ");
  437. //Serial.println(n);
  438. interruptMasksUsed |= (1 << (n >> 5));
  439. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  440. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  441. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  442. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  443. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  444. }
  445. void SPI2Class::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  446. {
  447. uint32_t n = (uint32_t)interruptName;
  448. if (n >= NVIC_NUM_INTERRUPTS) return;
  449. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  450. if (interruptMask[n >> 5] == 0) {
  451. interruptMasksUsed &= ~(1 << (n >> 5));
  452. }
  453. }
  454. static void updateCTAR2(uint32_t ctar)
  455. {
  456. if (SPI2_CTAR0 != ctar) {
  457. uint32_t mcr = SPI2_MCR;
  458. if (mcr & SPI_MCR_MDIS) {
  459. SPI2_CTAR0 = ctar;
  460. SPI2_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  461. } else {
  462. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  463. SPI2_CTAR0 = ctar;
  464. SPI2_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  465. SPI2_MCR = mcr;
  466. }
  467. }
  468. }
  469. void SPI2Class::setBitOrder(uint8_t bitOrder)
  470. {
  471. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  472. uint32_t ctar = SPI2_CTAR0;
  473. if (bitOrder == LSBFIRST) {
  474. ctar |= SPI_CTAR_LSBFE;
  475. } else {
  476. ctar &= ~SPI_CTAR_LSBFE;
  477. }
  478. updateCTAR2(ctar);
  479. }
  480. void SPI2Class::setDataMode(uint8_t dataMode)
  481. {
  482. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  483. // TODO: implement with native code
  484. SPCR2 = (SPCR2 & ~SPI_MODE_MASK) | dataMode;
  485. }
  486. void SPI2Class::setClockDivider_noInline(uint32_t clk)
  487. {
  488. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  489. uint32_t ctar = SPI2_CTAR0;
  490. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  491. if (ctar & SPI_CTAR_CPHA) {
  492. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  493. }
  494. ctar |= clk;
  495. updateCTAR2(ctar);
  496. }
  497. uint8_t SPI2Class::pinIsChipSelect(uint8_t pin)
  498. {
  499. switch (pin) {
  500. case 43: return 0x01; // CS0
  501. case 54: return 0x02; // CS1
  502. case 55: return 0x01; // CS0
  503. }
  504. return 0;
  505. }
  506. bool SPI2Class::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  507. {
  508. uint8_t pin1_mask, pin2_mask;
  509. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  510. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  511. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  512. if ((pin1_mask & pin2_mask) != 0) return false;
  513. return true;
  514. }
  515. uint8_t SPI2Class::setCS(uint8_t pin)
  516. {
  517. switch (pin) {
  518. case 43: CORE_PIN43_CONFIG = PORT_PCR_MUX(2); return 0x01; // CS0
  519. case 54: CORE_PIN54_CONFIG = PORT_PCR_MUX(2); return 0x02; // CS1
  520. case 55: CORE_PIN55_CONFIG = PORT_PCR_MUX(2); return 0x01; // CS0
  521. }
  522. return 0;
  523. }
  524. #endif
  525. /**********************************************************/
  526. /* 32 bit Teensy-LC */
  527. /**********************************************************/
  528. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  529. SPIClass SPI;
  530. SPI1Class SPI1;
  531. uint32_t SPIClass::interruptMask = 0;
  532. uint32_t SPIClass::interruptSave = 0;
  533. uint32_t SPI1Class::interruptMask = 0;
  534. uint32_t SPI1Class::interruptSave = 0;
  535. #ifdef SPI_TRANSACTION_MISMATCH_LED
  536. uint8_t SPIClass::inTransactionFlag = 0;
  537. uint8_t SPI1Class::inTransactionFlag = 0;
  538. #endif
  539. void SPIClass::begin()
  540. {
  541. SIM_SCGC4 |= SIM_SCGC4_SPI0;
  542. SPI0_C1 = SPI_C1_SPE | SPI_C1_MSTR;
  543. SPI0_C2 = 0;
  544. uint8_t tmp __attribute__((unused)) = SPI0_S;
  545. SPCR.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  546. }
  547. void SPIClass::end() {
  548. SPCR.disable_pins();
  549. SPI0_C1 = 0;
  550. }
  551. const uint16_t SPISettings::br_div_table[30] = {
  552. 2, 4, 6, 8, 10, 12, 14, 16, 20, 24,
  553. 28, 32, 40, 48, 56, 64, 80, 96, 112, 128,
  554. 160, 192, 224, 256, 320, 384, 448, 512, 640, 768,
  555. };
  556. const uint8_t SPISettings::br_clock_table[30] = {
  557. SPI_BR_SPPR(0) | SPI_BR_SPR(0),
  558. SPI_BR_SPPR(1) | SPI_BR_SPR(0),
  559. SPI_BR_SPPR(2) | SPI_BR_SPR(0),
  560. SPI_BR_SPPR(3) | SPI_BR_SPR(0),
  561. SPI_BR_SPPR(4) | SPI_BR_SPR(0),
  562. SPI_BR_SPPR(5) | SPI_BR_SPR(0),
  563. SPI_BR_SPPR(6) | SPI_BR_SPR(0),
  564. SPI_BR_SPPR(7) | SPI_BR_SPR(0),
  565. SPI_BR_SPPR(4) | SPI_BR_SPR(1),
  566. SPI_BR_SPPR(5) | SPI_BR_SPR(1),
  567. SPI_BR_SPPR(6) | SPI_BR_SPR(1),
  568. SPI_BR_SPPR(7) | SPI_BR_SPR(1),
  569. SPI_BR_SPPR(4) | SPI_BR_SPR(2),
  570. SPI_BR_SPPR(5) | SPI_BR_SPR(2),
  571. SPI_BR_SPPR(6) | SPI_BR_SPR(2),
  572. SPI_BR_SPPR(7) | SPI_BR_SPR(2),
  573. SPI_BR_SPPR(4) | SPI_BR_SPR(3),
  574. SPI_BR_SPPR(5) | SPI_BR_SPR(3),
  575. SPI_BR_SPPR(6) | SPI_BR_SPR(3),
  576. SPI_BR_SPPR(7) | SPI_BR_SPR(3),
  577. SPI_BR_SPPR(4) | SPI_BR_SPR(4),
  578. SPI_BR_SPPR(5) | SPI_BR_SPR(4),
  579. SPI_BR_SPPR(6) | SPI_BR_SPR(4),
  580. SPI_BR_SPPR(7) | SPI_BR_SPR(4),
  581. SPI_BR_SPPR(4) | SPI_BR_SPR(5),
  582. SPI_BR_SPPR(5) | SPI_BR_SPR(5),
  583. SPI_BR_SPPR(6) | SPI_BR_SPR(5),
  584. SPI_BR_SPPR(7) | SPI_BR_SPR(5),
  585. SPI_BR_SPPR(4) | SPI_BR_SPR(6),
  586. SPI_BR_SPPR(5) | SPI_BR_SPR(6)
  587. };
  588. uint8_t SPIClass::setCS(uint8_t pin)
  589. {
  590. switch (pin) {
  591. case 10: CORE_PIN10_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTC4
  592. case 2: CORE_PIN2_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD0
  593. }
  594. return 0;
  595. }
  596. void SPI1Class::begin()
  597. {
  598. SIM_SCGC4 |= SIM_SCGC4_SPI1;
  599. SPI1_C1 = SPI_C1_SPE | SPI_C1_MSTR;
  600. SPI1_C2 = 0;
  601. uint8_t tmp __attribute__((unused)) = SPI1_S;
  602. SPCR1.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  603. }
  604. void SPI1Class::end() {
  605. SPCR1.disable_pins();
  606. SPI1_C1 = 0;
  607. }
  608. uint8_t SPI1Class::setCS(uint8_t pin)
  609. {
  610. switch (pin) {
  611. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD4
  612. }
  613. return 0;
  614. }
  615. /**********************************************************/
  616. /* 32 bit Arduino Due */
  617. /**********************************************************/
  618. #elif defined(__arm__) && defined(__SAM3X8E__)
  619. #include "SPI.h"
  620. SPIClass::SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void)) :
  621. spi(_spi), id(_id), initCb(_initCb), initialized(false)
  622. {
  623. // Empty
  624. }
  625. void SPIClass::begin() {
  626. init();
  627. // NPCS control is left to the user
  628. // Default speed set to 4Mhz
  629. setClockDivider(BOARD_SPI_DEFAULT_SS, 21);
  630. setDataMode(BOARD_SPI_DEFAULT_SS, SPI_MODE0);
  631. setBitOrder(BOARD_SPI_DEFAULT_SS, MSBFIRST);
  632. }
  633. void SPIClass::begin(uint8_t _pin) {
  634. init();
  635. uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin);
  636. PIO_Configure(
  637. g_APinDescription[spiPin].pPort,
  638. g_APinDescription[spiPin].ulPinType,
  639. g_APinDescription[spiPin].ulPin,
  640. g_APinDescription[spiPin].ulPinConfiguration);
  641. // Default speed set to 4Mhz
  642. setClockDivider(_pin, 21);
  643. setDataMode(_pin, SPI_MODE0);
  644. setBitOrder(_pin, MSBFIRST);
  645. }
  646. void SPIClass::init() {
  647. if (initialized)
  648. return;
  649. interruptMode = 0;
  650. interruptMask = 0;
  651. interruptSave = 0;
  652. initCb();
  653. SPI_Configure(spi, id, SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS);
  654. SPI_Enable(spi);
  655. initialized = true;
  656. }
  657. #ifndef interruptsStatus
  658. #define interruptsStatus() __interruptsStatus()
  659. static inline unsigned char __interruptsStatus(void) __attribute__((always_inline, unused));
  660. static inline unsigned char __interruptsStatus(void) {
  661. unsigned int primask;
  662. asm volatile ("mrs %0, primask" : "=r" (primask));
  663. if (primask) return 0;
  664. return 1;
  665. }
  666. #endif
  667. void SPIClass::usingInterrupt(uint8_t interruptNumber)
  668. {
  669. uint8_t irestore;
  670. irestore = interruptsStatus();
  671. noInterrupts();
  672. if (interruptMode < 2) {
  673. if (interruptNumber > NUM_DIGITAL_PINS) {
  674. interruptMode = 2;
  675. } else {
  676. uint8_t imask = interruptMask;
  677. Pio *pio = g_APinDescription[interruptNumber].pPort;
  678. if (pio == PIOA) {
  679. imask |= 1;
  680. } else if (pio == PIOB) {
  681. imask |= 2;
  682. } else if (pio == PIOC) {
  683. imask |= 4;
  684. } else if (pio == PIOD) {
  685. imask |= 8;
  686. }
  687. interruptMask = imask;
  688. interruptMode = 1;
  689. }
  690. }
  691. if (irestore) interrupts();
  692. }
  693. void SPIClass::beginTransaction(uint8_t pin, SPISettings settings)
  694. {
  695. if (interruptMode > 0) {
  696. if (interruptMode == 1) {
  697. uint8_t imask = interruptMask;
  698. if (imask & 1) NVIC_DisableIRQ(PIOA_IRQn);
  699. if (imask & 2) NVIC_DisableIRQ(PIOB_IRQn);
  700. if (imask & 4) NVIC_DisableIRQ(PIOC_IRQn);
  701. if (imask & 8) NVIC_DisableIRQ(PIOD_IRQn);
  702. } else {
  703. interruptSave = interruptsStatus();
  704. noInterrupts();
  705. }
  706. }
  707. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(pin);
  708. bitOrder[ch] = settings.border;
  709. SPI_ConfigureNPCS(spi, ch, settings.config);
  710. }
  711. void SPIClass::endTransaction(void)
  712. {
  713. if (interruptMode > 0) {
  714. if (interruptMode == 1) {
  715. uint8_t imask = interruptMask;
  716. if (imask & 1) NVIC_EnableIRQ(PIOA_IRQn);
  717. if (imask & 2) NVIC_EnableIRQ(PIOB_IRQn);
  718. if (imask & 4) NVIC_EnableIRQ(PIOC_IRQn);
  719. if (imask & 8) NVIC_EnableIRQ(PIOD_IRQn);
  720. } else {
  721. if (interruptSave) interrupts();
  722. }
  723. }
  724. }
  725. void SPIClass::end(uint8_t _pin) {
  726. uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin);
  727. // Setting the pin as INPUT will disconnect it from SPI peripheral
  728. pinMode(spiPin, INPUT);
  729. }
  730. void SPIClass::end() {
  731. SPI_Disable(spi);
  732. initialized = false;
  733. }
  734. void SPIClass::setBitOrder(uint8_t _pin, BitOrder _bitOrder) {
  735. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  736. bitOrder[ch] = _bitOrder;
  737. }
  738. void SPIClass::setDataMode(uint8_t _pin, uint8_t _mode) {
  739. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  740. mode[ch] = _mode | SPI_CSR_CSAAT;
  741. // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed
  742. // transfer. Some device needs that for working properly.
  743. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1));
  744. }
  745. void SPIClass::setClockDivider(uint8_t _pin, uint8_t _divider) {
  746. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  747. divider[ch] = _divider;
  748. // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed
  749. // transfer. Some device needs that for working properly.
  750. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1));
  751. }
  752. byte SPIClass::transfer(byte _pin, uint8_t _data, SPITransferMode _mode) {
  753. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  754. // Reverse bit order
  755. if (bitOrder[ch] == LSBFIRST)
  756. _data = __REV(__RBIT(_data));
  757. uint32_t d = _data | SPI_PCS(ch);
  758. if (_mode == SPI_LAST)
  759. d |= SPI_TDR_LASTXFER;
  760. // SPI_Write(spi, _channel, _data);
  761. while ((spi->SPI_SR & SPI_SR_TDRE) == 0)
  762. ;
  763. spi->SPI_TDR = d;
  764. // return SPI_Read(spi);
  765. while ((spi->SPI_SR & SPI_SR_RDRF) == 0)
  766. ;
  767. d = spi->SPI_RDR;
  768. // Reverse bit order
  769. if (bitOrder[ch] == LSBFIRST)
  770. d = __REV(__RBIT(d));
  771. return d & 0xFF;
  772. }
  773. void SPIClass::attachInterrupt(void) {
  774. // Should be enableInterrupt()
  775. }
  776. void SPIClass::detachInterrupt(void) {
  777. // Should be disableInterrupt()
  778. }
  779. #if SPI_INTERFACES_COUNT > 0
  780. static void SPI_0_Init(void) {
  781. PIO_Configure(
  782. g_APinDescription[PIN_SPI_MOSI].pPort,
  783. g_APinDescription[PIN_SPI_MOSI].ulPinType,
  784. g_APinDescription[PIN_SPI_MOSI].ulPin,
  785. g_APinDescription[PIN_SPI_MOSI].ulPinConfiguration);
  786. PIO_Configure(
  787. g_APinDescription[PIN_SPI_MISO].pPort,
  788. g_APinDescription[PIN_SPI_MISO].ulPinType,
  789. g_APinDescription[PIN_SPI_MISO].ulPin,
  790. g_APinDescription[PIN_SPI_MISO].ulPinConfiguration);
  791. PIO_Configure(
  792. g_APinDescription[PIN_SPI_SCK].pPort,
  793. g_APinDescription[PIN_SPI_SCK].ulPinType,
  794. g_APinDescription[PIN_SPI_SCK].ulPin,
  795. g_APinDescription[PIN_SPI_SCK].ulPinConfiguration);
  796. }
  797. SPIClass SPI(SPI_INTERFACE, SPI_INTERFACE_ID, SPI_0_Init);
  798. #endif
  799. #endif