You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 7 година
пре 9 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 10 година
пре 10 година
пре 10 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 10 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 8 година
пре 7 година
пре 8 година
пре 8 година
пре 7 година
пре 8 година
пре 8 година
пре 8 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 8 година
пре 8 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 9 година
пре 10 година
пре 10 година
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * SPI Master library for arduino.
  4. *
  5. * This file is free software; you can redistribute it and/or modify
  6. * it under the terms of either the GNU General Public License version 2
  7. * or the GNU Lesser General Public License version 2.1, both as
  8. * published by the Free Software Foundation.
  9. */
  10. #include "SPI.h"
  11. #include "pins_arduino.h"
  12. /**********************************************************/
  13. /* 8 bit AVR-based boards */
  14. /**********************************************************/
  15. #if defined(__AVR__)
  16. SPIClass SPI;
  17. uint8_t SPIClass::interruptMode = 0;
  18. uint8_t SPIClass::interruptMask = 0;
  19. uint8_t SPIClass::interruptSave = 0;
  20. #ifdef SPI_TRANSACTION_MISMATCH_LED
  21. uint8_t SPIClass::inTransactionFlag = 0;
  22. #endif
  23. void SPIClass::begin()
  24. {
  25. // Set SS to high so a connected chip will be "deselected" by default
  26. digitalWrite(SS, HIGH);
  27. // When the SS pin is set as OUTPUT, it can be used as
  28. // a general purpose output port (it doesn't influence
  29. // SPI operations).
  30. pinMode(SS, OUTPUT);
  31. // Warning: if the SS pin ever becomes a LOW INPUT then SPI
  32. // automatically switches to Slave, so the data direction of
  33. // the SS pin MUST be kept as OUTPUT.
  34. SPCR |= _BV(MSTR);
  35. SPCR |= _BV(SPE);
  36. // Set direction register for SCK and MOSI pin.
  37. // MISO pin automatically overrides to INPUT.
  38. // By doing this AFTER enabling SPI, we avoid accidentally
  39. // clocking in a single bit since the lines go directly
  40. // from "input" to SPI control.
  41. // http://code.google.com/p/arduino/issues/detail?id=888
  42. pinMode(SCK, OUTPUT);
  43. pinMode(MOSI, OUTPUT);
  44. }
  45. void SPIClass::end() {
  46. SPCR &= ~_BV(SPE);
  47. }
  48. // mapping of interrupt numbers to bits within SPI_AVR_EIMSK
  49. #if defined(__AVR_ATmega32U4__)
  50. #define SPI_INT0_MASK (1<<INT0)
  51. #define SPI_INT1_MASK (1<<INT1)
  52. #define SPI_INT2_MASK (1<<INT2)
  53. #define SPI_INT3_MASK (1<<INT3)
  54. #define SPI_INT4_MASK (1<<INT6)
  55. #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
  56. #define SPI_INT0_MASK (1<<INT0)
  57. #define SPI_INT1_MASK (1<<INT1)
  58. #define SPI_INT2_MASK (1<<INT2)
  59. #define SPI_INT3_MASK (1<<INT3)
  60. #define SPI_INT4_MASK (1<<INT4)
  61. #define SPI_INT5_MASK (1<<INT5)
  62. #define SPI_INT6_MASK (1<<INT6)
  63. #define SPI_INT7_MASK (1<<INT7)
  64. #elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
  65. #define SPI_INT0_MASK (1<<INT4)
  66. #define SPI_INT1_MASK (1<<INT5)
  67. #define SPI_INT2_MASK (1<<INT0)
  68. #define SPI_INT3_MASK (1<<INT1)
  69. #define SPI_INT4_MASK (1<<INT2)
  70. #define SPI_INT5_MASK (1<<INT3)
  71. #define SPI_INT6_MASK (1<<INT6)
  72. #define SPI_INT7_MASK (1<<INT7)
  73. #else
  74. #ifdef INT0
  75. #define SPI_INT0_MASK (1<<INT0)
  76. #endif
  77. #ifdef INT1
  78. #define SPI_INT1_MASK (1<<INT1)
  79. #endif
  80. #ifdef INT2
  81. #define SPI_INT2_MASK (1<<INT2)
  82. #endif
  83. #endif
  84. void SPIClass::usingInterrupt(uint8_t interruptNumber)
  85. {
  86. uint8_t stmp, mask;
  87. if (interruptMode > 1) return;
  88. stmp = SREG;
  89. noInterrupts();
  90. switch (interruptNumber) {
  91. #ifdef SPI_INT0_MASK
  92. case 0: mask = SPI_INT0_MASK; break;
  93. #endif
  94. #ifdef SPI_INT1_MASK
  95. case 1: mask = SPI_INT1_MASK; break;
  96. #endif
  97. #ifdef SPI_INT2_MASK
  98. case 2: mask = SPI_INT2_MASK; break;
  99. #endif
  100. #ifdef SPI_INT3_MASK
  101. case 3: mask = SPI_INT3_MASK; break;
  102. #endif
  103. #ifdef SPI_INT4_MASK
  104. case 4: mask = SPI_INT4_MASK; break;
  105. #endif
  106. #ifdef SPI_INT5_MASK
  107. case 5: mask = SPI_INT5_MASK; break;
  108. #endif
  109. #ifdef SPI_INT6_MASK
  110. case 6: mask = SPI_INT6_MASK; break;
  111. #endif
  112. #ifdef SPI_INT7_MASK
  113. case 7: mask = SPI_INT7_MASK; break;
  114. #endif
  115. default:
  116. interruptMode = 2;
  117. SREG = stmp;
  118. return;
  119. }
  120. interruptMode = 1;
  121. interruptMask |= mask;
  122. SREG = stmp;
  123. }
  124. /**********************************************************/
  125. /* 32 bit Teensy 3.x */
  126. /**********************************************************/
  127. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  128. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  129. void _spi_dma_rxISR0(void) {/*SPI.dma_rxisr();*/}
  130. const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = {
  131. SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0,
  132. 32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX,
  133. _spi_dma_rxISR0,
  134. 12, 8,
  135. 2, 2,
  136. 11, 7,
  137. 2, 2,
  138. 13, 14,
  139. 2, 2,
  140. 10, 2, 9, 6, 20, 23, 21, 22, 15,
  141. 2, 2, 2, 2, 2, 2, 2, 2, 2,
  142. 0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10
  143. };
  144. SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware);
  145. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  146. void _spi_dma_rxISR0(void) {/*SPI.dma_rxisr();*/}
  147. void _spi_dma_rxISR1(void) {/*SPI1.dma_rxisr();*/}
  148. void _spi_dma_rxISR2(void) {/*SPI2.dma_rxisr();*/}
  149. const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = {
  150. SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0,
  151. 32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX,
  152. _spi_dma_rxISR0,
  153. 12, 8, 39, 255,
  154. 2, 2, 2, 0,
  155. 11, 7, 28, 255,
  156. 2, 2, 2, 0,
  157. 13, 14, 27,
  158. 2, 2, 2,
  159. 10, 2, 9, 6, 20, 23, 21, 22, 15, 26, 45,
  160. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
  161. 0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10, 0x1, 0x20
  162. };
  163. const SPIClass::SPI_Hardware_t SPIClass::spi1_hardware = {
  164. SIM_SCGC6, SIM_SCGC6_SPI1, 1, IRQ_SPI1,
  165. #if defined(__MK66FX1M0__)
  166. 32767, DMAMUX_SOURCE_SPI1_TX, DMAMUX_SOURCE_SPI1_RX,
  167. #else
  168. // T3.5 does not have good DMA support on 1 and 2
  169. 511, 0, DMAMUX_SOURCE_SPI1,
  170. #endif
  171. _spi_dma_rxISR1,
  172. 1, 5, 61, 59,
  173. 2, 7, 2, 7,
  174. 0, 21, 61, 59,
  175. 2, 7, 7, 2,
  176. 32, 20, 60,
  177. 2, 7, 2,
  178. 6, 31, 58, 62, 63, 255, 255, 255, 255, 255, 255,
  179. 7, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0,
  180. 0x1, 0x1, 0x2, 0x1, 0x4, 0, 0, 0, 0, 0, 0
  181. };
  182. const SPIClass::SPI_Hardware_t SPIClass::spi2_hardware = {
  183. SIM_SCGC3, SIM_SCGC3_SPI2, 1, IRQ_SPI2,
  184. #if defined(__MK66FX1M0__)
  185. 32767, DMAMUX_SOURCE_SPI2_TX, DMAMUX_SOURCE_SPI2_RX,
  186. #else
  187. // T3.5 does not have good DMA support on 1 and 2
  188. 511, 0, DMAMUX_SOURCE_SPI2,
  189. #endif
  190. _spi_dma_rxISR2,
  191. 45, 51, 255, 255,
  192. 2, 2, 0, 0,
  193. 44, 52, 255, 255,
  194. 2, 2, 0, 0,
  195. 46, 53, 255,
  196. 2, 2, 0,
  197. 43, 54, 55, 255, 255, 255, 255, 255, 255, 255, 255,
  198. 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0,
  199. 0x1, 0x2, 0x1, 0, 0, 0, 0, 0, 0, 0, 0
  200. };
  201. //SPIClass SPI((uintptr_t)&KINETISK_SPI0, SPIClass::spi0_hardware);
  202. SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware);
  203. //SPIClass SPI1((uintptr_t)&KINETISK_SPI1, SPIClass::spi1_hardware);
  204. //SPIClass SPI2((uintptr_t)&KINETISK_SPI2, SPIClass::spi2_hardware);
  205. #endif
  206. void SPIClass::begin()
  207. {
  208. volatile uint32_t *reg;
  209. hardware().clock_gate_register |= hardware().clock_gate_mask;
  210. port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  211. port().CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  212. port().CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  213. port().MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  214. reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]);
  215. *reg = PORT_PCR_MUX(hardware().mosi_mux[mosi_pin_index]);
  216. reg = portConfigRegister(hardware().miso_pin[miso_pin_index]);
  217. *reg= PORT_PCR_MUX(hardware().miso_mux[miso_pin_index]);
  218. reg = portConfigRegister(hardware().sck_pin[sck_pin_index]);
  219. *reg = PORT_PCR_MUX(hardware().sck_mux[sck_pin_index]);
  220. }
  221. void SPIClass::end()
  222. {
  223. volatile uint32_t *reg;
  224. //SPCR.disable_pins();
  225. reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]);
  226. *reg = 0;
  227. reg = portConfigRegister(hardware().miso_pin[miso_pin_index]);
  228. *reg = 0;
  229. reg = portConfigRegister(hardware().sck_pin[sck_pin_index]);
  230. *reg = 0;
  231. port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  232. }
  233. void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName)
  234. {
  235. uint32_t n = (uint32_t)interruptName;
  236. if (n >= NVIC_NUM_INTERRUPTS) return;
  237. //Serial.print("usingInterrupt ");
  238. //Serial.println(n);
  239. interruptMasksUsed |= (1 << (n >> 5));
  240. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  241. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  242. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  243. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  244. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  245. }
  246. void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  247. {
  248. uint32_t n = (uint32_t)interruptName;
  249. if (n >= NVIC_NUM_INTERRUPTS) return;
  250. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  251. if (interruptMask[n >> 5] == 0) {
  252. interruptMasksUsed &= ~(1 << (n >> 5));
  253. }
  254. }
  255. const uint16_t SPISettings::ctar_div_table[23] = {
  256. 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40,
  257. 56, 64, 96, 128, 192, 256, 384, 512, 640, 768
  258. };
  259. const uint32_t SPISettings::ctar_clock_table[23] = {
  260. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  261. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  262. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  263. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  264. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  265. SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  266. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  267. SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  268. SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  269. SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0),
  270. SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  271. SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3),
  272. SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  273. SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  274. SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  275. SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  276. SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  277. SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  278. SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  279. SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  280. SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7),
  281. SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  282. SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7)
  283. };
  284. void SPIClass::updateCTAR(uint32_t ctar)
  285. {
  286. if (port().CTAR0 != ctar) {
  287. uint32_t mcr = port().MCR;
  288. if (mcr & SPI_MCR_MDIS) {
  289. port().CTAR0 = ctar;
  290. port().CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  291. } else {
  292. port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  293. port().CTAR0 = ctar;
  294. port().CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  295. port().MCR = mcr;
  296. }
  297. }
  298. }
  299. void SPIClass::setBitOrder(uint8_t bitOrder)
  300. {
  301. hardware().clock_gate_register |= hardware().clock_gate_mask;
  302. uint32_t ctar = port().CTAR0;
  303. if (bitOrder == LSBFIRST) {
  304. ctar |= SPI_CTAR_LSBFE;
  305. } else {
  306. ctar &= ~SPI_CTAR_LSBFE;
  307. }
  308. updateCTAR(ctar);
  309. }
  310. void SPIClass::setDataMode(uint8_t dataMode)
  311. {
  312. hardware().clock_gate_register |= hardware().clock_gate_mask;
  313. //uint32_t ctar = port().CTAR0;
  314. // TODO: implement with native code
  315. //SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  316. }
  317. void SPIClass::setClockDivider_noInline(uint32_t clk)
  318. {
  319. hardware().clock_gate_register |= hardware().clock_gate_mask;
  320. uint32_t ctar = port().CTAR0;
  321. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  322. if (ctar & SPI_CTAR_CPHA) {
  323. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  324. }
  325. ctar |= clk;
  326. updateCTAR(ctar);
  327. }
  328. uint8_t SPIClass::pinIsChipSelect(uint8_t pin)
  329. {
  330. for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) {
  331. if (pin == hardware().cs_pin[i]) return hardware().cs_mask[i];
  332. }
  333. return 0;
  334. /*
  335. switch (pin) {
  336. case 10: return 0x01; // PTC4
  337. case 2: return 0x01; // PTD0
  338. case 9: return 0x02; // PTC3
  339. case 6: return 0x02; // PTD4
  340. case 20: return 0x04; // PTD5
  341. case 23: return 0x04; // PTC2
  342. case 21: return 0x08; // PTD6
  343. case 22: return 0x08; // PTC1
  344. case 15: return 0x10; // PTC0
  345. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  346. case 26: return 0x01;
  347. case 45: return 0x20; // CS5
  348. #endif
  349. }
  350. return 0;
  351. */
  352. }
  353. bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  354. {
  355. uint8_t pin1_mask, pin2_mask;
  356. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  357. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  358. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  359. if ((pin1_mask & pin2_mask) != 0) return false;
  360. return true;
  361. }
  362. // setCS() is not intended for use from normal Arduino programs/sketches.
  363. uint8_t SPIClass::setCS(uint8_t pin)
  364. {
  365. for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) {
  366. if (pin == hardware().cs_pin[i]) {
  367. volatile uint32_t *reg = portConfigRegister(pin);
  368. *reg = PORT_PCR_MUX(hardware().cs_mux[i]);
  369. return hardware().cs_mask[i];
  370. }
  371. }
  372. return 0;
  373. /*
  374. switch (pin) {
  375. case 10: CORE_PIN10_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTC4
  376. case 2: CORE_PIN2_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD0
  377. case 9: CORE_PIN9_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTC3
  378. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTD4
  379. case 20: CORE_PIN20_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTD5
  380. case 23: CORE_PIN23_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTC2
  381. case 21: CORE_PIN21_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTD6
  382. case 22: CORE_PIN22_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTC1
  383. case 15: CORE_PIN15_CONFIG = PORT_PCR_MUX(2); return 0x10; // PTC0
  384. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  385. case 26: CORE_PIN26_CONFIG = PORT_PCR_MUX(2);return 0x01;
  386. case 45: CORE_PIN45_CONFIG = PORT_PCR_MUX(3);return 0x20;
  387. #endif
  388. }
  389. return 0;
  390. */
  391. }
  392. void SPIClass::setMOSI(uint8_t pin)
  393. {
  394. if (pin != hardware().mosi_pin[mosi_pin_index]) {
  395. for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) {
  396. if (pin == hardware().mosi_pin[i]) {
  397. mosi_pin_index = i;
  398. return;
  399. }
  400. }
  401. }
  402. }
  403. void SPIClass::setMISO(uint8_t pin)
  404. {
  405. if (pin != hardware().miso_pin[miso_pin_index]) {
  406. for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) {
  407. if (pin == hardware().miso_pin[i]) {
  408. miso_pin_index = i;
  409. return;
  410. }
  411. }
  412. }
  413. }
  414. void SPIClass::setSCK(uint8_t pin)
  415. {
  416. if (pin != hardware().sck_pin[sck_pin_index]) {
  417. for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) {
  418. if (pin == hardware().sck_pin[i]) {
  419. sck_pin_index = i;
  420. return;
  421. }
  422. }
  423. }
  424. }
  425. void SPIClass::transfer(void *buf, size_t count)
  426. {
  427. if (count == 0) return;
  428. uint8_t *p_write = (uint8_t *)buf;
  429. uint8_t *p_read = p_write;
  430. size_t count_read = count;
  431. bool lsbfirst = (port().CTAR0 & SPI_CTAR_LSBFE) ? true : false;
  432. // Lets clear the reader queue
  433. port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
  434. uint32_t sr;
  435. // Now lets loop while we still have data to output
  436. if (count & 1) {
  437. if (count > 1)
  438. port().PUSHR = *p_write++ | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0);
  439. else
  440. port().PUSHR = *p_write++ | SPI_PUSHR_CTAS(0);
  441. count--;
  442. }
  443. while (count > 0) {
  444. // Push out the next byte;
  445. uint16_t w = (*p_write++) << 8;
  446. w |= *p_write++;
  447. if (lsbfirst) w = __builtin_bswap16(w);
  448. if (count == 2)
  449. port().PUSHR = w | SPI_PUSHR_CTAS(1);
  450. else
  451. port().PUSHR = w | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1);
  452. count -= 2; // how many bytes to output.
  453. // Make sure queue is not full before pushing next byte out
  454. do {
  455. sr = port().SR;
  456. if (sr & 0xF0) {
  457. uint16_t w = port().POPR; // Read any pending RX bytes in
  458. if (count_read & 1) {
  459. *p_read++ = w; // Read any pending RX bytes in
  460. count_read--;
  461. } else {
  462. if (lsbfirst) w = __builtin_bswap16(w);
  463. *p_read++ = w >> 8;
  464. *p_read++ = (w & 0xff);
  465. count_read -= 2;
  466. }
  467. }
  468. } while ((sr & (15 << 12)) > (3 << 12));
  469. }
  470. // now lets wait for all of the read bytes to be returned...
  471. while (count_read) {
  472. sr = port().SR;
  473. if (sr & 0xF0) {
  474. uint16_t w = port().POPR; // Read any pending RX bytes in
  475. if (count_read & 1) {
  476. *p_read++ = w; // Read any pending RX bytes in
  477. count_read--;
  478. } else {
  479. if (lsbfirst) w = __builtin_bswap16(w);
  480. *p_read++ = w >> 8;
  481. *p_read++ = (w & 0xff);
  482. count_read -= 2;
  483. }
  484. }
  485. }
  486. }
  487. /**********************************************************/
  488. /* 32 bit Teensy-3.5/3.6 */
  489. /**********************************************************/
  490. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  491. SPI1Class SPI1;
  492. uint8_t SPI1Class::interruptMasksUsed = 0;
  493. uint32_t SPI1Class::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  494. uint32_t SPI1Class::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  495. #ifdef SPI_TRANSACTION_MISMATCH_LED
  496. uint8_t SPI1Class::inTransactionFlag = 0;
  497. #endif
  498. void SPI1Class::begin()
  499. {
  500. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  501. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  502. SPI1_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  503. SPI1_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  504. SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  505. SPCR1.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  506. }
  507. void SPI1Class::end() {
  508. SPCR1.disable_pins();
  509. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  510. }
  511. void SPI1Class::usingInterrupt(IRQ_NUMBER_t interruptName)
  512. {
  513. uint32_t n = (uint32_t)interruptName;
  514. if (n >= NVIC_NUM_INTERRUPTS) return;
  515. //Serial.print("usingInterrupt ");
  516. //Serial.println(n);
  517. interruptMasksUsed |= (1 << (n >> 5));
  518. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  519. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  520. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  521. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  522. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  523. }
  524. void SPI1Class::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  525. {
  526. uint32_t n = (uint32_t)interruptName;
  527. if (n >= NVIC_NUM_INTERRUPTS) return;
  528. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  529. if (interruptMask[n >> 5] == 0) {
  530. interruptMasksUsed &= ~(1 << (n >> 5));
  531. }
  532. }
  533. static void updateCTAR1(uint32_t ctar)
  534. {
  535. if (SPI1_CTAR0 != ctar) {
  536. uint32_t mcr = SPI1_MCR;
  537. if (mcr & SPI_MCR_MDIS) {
  538. SPI1_CTAR0 = ctar;
  539. SPI1_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  540. } else {
  541. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  542. SPI1_CTAR0 = ctar;
  543. SPI1_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  544. SPI1_MCR = mcr;
  545. }
  546. }
  547. }
  548. void SPI1Class::setBitOrder(uint8_t bitOrder)
  549. {
  550. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  551. uint32_t ctar = SPI1_CTAR0;
  552. if (bitOrder == LSBFIRST) {
  553. ctar |= SPI_CTAR_LSBFE;
  554. } else {
  555. ctar &= ~SPI_CTAR_LSBFE;
  556. }
  557. updateCTAR1(ctar);
  558. }
  559. void SPI1Class::setDataMode(uint8_t dataMode)
  560. {
  561. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  562. // TODO: implement with native code
  563. SPCR1 = (SPCR1 & ~SPI_MODE_MASK) | dataMode;
  564. }
  565. void SPI1Class::setClockDivider_noInline(uint32_t clk)
  566. {
  567. SIM_SCGC6 |= SIM_SCGC6_SPI1;
  568. uint32_t ctar = SPI1_CTAR0;
  569. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  570. if (ctar & SPI_CTAR_CPHA) {
  571. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  572. }
  573. ctar |= clk;
  574. updateCTAR1(ctar);
  575. }
  576. uint8_t SPI1Class::pinIsChipSelect(uint8_t pin)
  577. {
  578. switch (pin) {
  579. case 6: return 0x01; // CS0
  580. case 31: return 0x01; // CS0
  581. case 58: return 0x02; //CS1
  582. case 62: return 0x01; //CS0
  583. case 63: return 0x04; //CS2
  584. }
  585. return 0;
  586. }
  587. bool SPI1Class::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  588. {
  589. uint8_t pin1_mask, pin2_mask;
  590. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  591. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  592. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  593. if ((pin1_mask & pin2_mask) != 0) return false;
  594. return true;
  595. }
  596. // setCS() is not intended for use from normal Arduino programs/sketches.
  597. uint8_t SPI1Class::setCS(uint8_t pin)
  598. {
  599. switch (pin) {
  600. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(7); return 0x01; // PTD4
  601. case 31: CORE_PIN31_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD5
  602. case 58: CORE_PIN58_CONFIG = PORT_PCR_MUX(2); return 0x02; //CS1
  603. case 62: CORE_PIN62_CONFIG = PORT_PCR_MUX(2); return 0x01; //CS0
  604. case 63: CORE_PIN63_CONFIG = PORT_PCR_MUX(2); return 0x04; //CS2
  605. }
  606. return 0;
  607. }
  608. void SPI1Class::transfer(void *buf, size_t count)
  609. {
  610. if (count == 0) return;
  611. uint8_t *p_write = (uint8_t *)buf;
  612. uint8_t *p_read = p_write;
  613. size_t count_read = count;
  614. bool lsbfirst = (SPI1_CTAR0 & SPI_CTAR_LSBFE) ? true : false;
  615. // Lets clear the reader queue
  616. SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
  617. uint32_t sr;
  618. // Now lets loop while we still have data to output
  619. if (count & 1) {
  620. KINETISK_SPI1.PUSHR = *p_write++ | SPI_PUSHR_CTAS(0);
  621. count--;
  622. }
  623. while (count > 0) {
  624. // Push out the next byte;
  625. uint16_t w = (*p_write++) << 8;
  626. w |= *p_write++;
  627. if (lsbfirst) w = __builtin_bswap16(w);
  628. KINETISK_SPI1.PUSHR = w | SPI_PUSHR_CTAS(1);
  629. count -= 2; // how many bytes to output.
  630. // Make sure queue is not full before pushing next byte out
  631. do {
  632. sr = KINETISK_SPI1.SR;
  633. if (sr & 0xF0) {
  634. uint16_t w = KINETISK_SPI1.POPR; // Read any pending RX bytes in
  635. if (count_read & 1) {
  636. *p_read++ = w; // Read any pending RX bytes in
  637. count_read--;
  638. } else {
  639. if (lsbfirst) w = __builtin_bswap16(w);
  640. *p_read++ = w >> 8;
  641. *p_read++ = (w & 0xff);
  642. count_read -= 2;
  643. }
  644. }
  645. } while ((sr & (15 << 12)) > (0 << 12)); // SPI1 and 2 only have 1 item queue
  646. }
  647. // now lets wait for all of the read bytes to be returned...
  648. while (count_read) {
  649. sr = KINETISK_SPI1.SR;
  650. if (sr & 0xF0) {
  651. uint16_t w = KINETISK_SPI1.POPR; // Read any pending RX bytes in
  652. if (count_read & 1) {
  653. *p_read++ = w; // Read any pending RX bytes in
  654. count_read--;
  655. } else {
  656. if (lsbfirst) w = __builtin_bswap16(w);
  657. *p_read++ = w >> 8;
  658. *p_read++ = (w & 0xff);
  659. count_read -= 2;
  660. }
  661. }
  662. }
  663. }
  664. // SPI2 Class
  665. SPI2Class SPI2;
  666. uint8_t SPI2Class::interruptMasksUsed = 0;
  667. uint32_t SPI2Class::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  668. uint32_t SPI2Class::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  669. #ifdef SPI_TRANSACTION_MISMATCH_LED
  670. uint8_t SPI2Class::inTransactionFlag = 0;
  671. #endif
  672. void SPI2Class::begin()
  673. {
  674. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  675. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  676. SPI2_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  677. SPI2_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  678. SPI2_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  679. SPCR2.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  680. }
  681. void SPI2Class::end() {
  682. SPCR2.disable_pins();
  683. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  684. }
  685. void SPI2Class::usingInterrupt(IRQ_NUMBER_t interruptName)
  686. {
  687. uint32_t n = (uint32_t)interruptName;
  688. if (n >= NVIC_NUM_INTERRUPTS) return;
  689. //Serial.print("usingInterrupt ");
  690. //Serial.println(n);
  691. interruptMasksUsed |= (1 << (n >> 5));
  692. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  693. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  694. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  695. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  696. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  697. }
  698. void SPI2Class::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  699. {
  700. uint32_t n = (uint32_t)interruptName;
  701. if (n >= NVIC_NUM_INTERRUPTS) return;
  702. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  703. if (interruptMask[n >> 5] == 0) {
  704. interruptMasksUsed &= ~(1 << (n >> 5));
  705. }
  706. }
  707. static void updateCTAR2(uint32_t ctar)
  708. {
  709. if (SPI2_CTAR0 != ctar) {
  710. uint32_t mcr = SPI2_MCR;
  711. if (mcr & SPI_MCR_MDIS) {
  712. SPI2_CTAR0 = ctar;
  713. SPI2_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  714. } else {
  715. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  716. SPI2_CTAR0 = ctar;
  717. SPI2_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  718. SPI2_MCR = mcr;
  719. }
  720. }
  721. }
  722. void SPI2Class::setBitOrder(uint8_t bitOrder)
  723. {
  724. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  725. uint32_t ctar = SPI2_CTAR0;
  726. if (bitOrder == LSBFIRST) {
  727. ctar |= SPI_CTAR_LSBFE;
  728. } else {
  729. ctar &= ~SPI_CTAR_LSBFE;
  730. }
  731. updateCTAR2(ctar);
  732. }
  733. void SPI2Class::setDataMode(uint8_t dataMode)
  734. {
  735. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  736. // TODO: implement with native code
  737. SPCR2 = (SPCR2 & ~SPI_MODE_MASK) | dataMode;
  738. }
  739. void SPI2Class::setClockDivider_noInline(uint32_t clk)
  740. {
  741. SIM_SCGC3 |= SIM_SCGC3_SPI2;
  742. uint32_t ctar = SPI2_CTAR0;
  743. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  744. if (ctar & SPI_CTAR_CPHA) {
  745. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  746. }
  747. ctar |= clk;
  748. updateCTAR2(ctar);
  749. }
  750. uint8_t SPI2Class::pinIsChipSelect(uint8_t pin)
  751. {
  752. switch (pin) {
  753. case 43: return 0x01; // CS0
  754. case 54: return 0x02; // CS1
  755. case 55: return 0x01; // CS0
  756. }
  757. return 0;
  758. }
  759. bool SPI2Class::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  760. {
  761. uint8_t pin1_mask, pin2_mask;
  762. if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
  763. if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
  764. //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
  765. if ((pin1_mask & pin2_mask) != 0) return false;
  766. return true;
  767. }
  768. // setCS() is not intended for use from normal Arduino programs/sketches.
  769. uint8_t SPI2Class::setCS(uint8_t pin)
  770. {
  771. switch (pin) {
  772. case 43: CORE_PIN43_CONFIG = PORT_PCR_MUX(2); return 0x01; // CS0
  773. case 54: CORE_PIN54_CONFIG = PORT_PCR_MUX(2); return 0x02; // CS1
  774. case 55: CORE_PIN55_CONFIG = PORT_PCR_MUX(2); return 0x01; // CS0
  775. }
  776. return 0;
  777. }
  778. void SPI2Class::transfer(void *buf, size_t count)
  779. {
  780. if (count == 0) return;
  781. uint8_t *p_write = (uint8_t *)buf;
  782. uint8_t *p_read = p_write;
  783. size_t count_read = count;
  784. bool lsbfirst = (SPI2_CTAR0 & SPI_CTAR_LSBFE) ? true : false;
  785. // Lets clear the reader queue
  786. SPI2_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
  787. uint32_t sr;
  788. // Now lets loop while we still have data to output
  789. if (count & 1) {
  790. KINETISK_SPI2.PUSHR = *p_write++ | SPI_PUSHR_CTAS(0);
  791. count--;
  792. }
  793. while (count > 0) {
  794. // Push out the next byte;
  795. uint16_t w = (*p_write++) << 8;
  796. w |= *p_write++;
  797. if (lsbfirst) w = __builtin_bswap16(w);
  798. KINETISK_SPI2.PUSHR = w | SPI_PUSHR_CTAS(1);
  799. count -= 2; // how many bytes to output.
  800. // Make sure queue is not full before pushing next byte out
  801. do {
  802. sr = KINETISK_SPI2.SR;
  803. if (sr & 0xF0) {
  804. uint16_t w = KINETISK_SPI2.POPR; // Read any pending RX bytes in
  805. if (count_read & 1) {
  806. *p_read++ = w; // Read any pending RX bytes in
  807. count_read--;
  808. } else {
  809. if (lsbfirst) w = __builtin_bswap16(w);
  810. *p_read++ = w >> 8;
  811. *p_read++ = (w & 0xff);
  812. count_read -= 2;
  813. }
  814. }
  815. } while ((sr & (15 << 12)) > (0 << 12)); // SPI2 and 2 only have 1 item queue
  816. }
  817. // now lets wait for all of the read bytes to be returned...
  818. while (count_read) {
  819. sr = KINETISK_SPI2.SR;
  820. if (sr & 0xF0) {
  821. uint16_t w = KINETISK_SPI2.POPR; // Read any pending RX bytes in
  822. if (count_read & 1) {
  823. *p_read++ = w; // Read any pending RX bytes in
  824. count_read--;
  825. } else {
  826. if (lsbfirst) w = __builtin_bswap16(w);
  827. *p_read++ = w >> 8;
  828. *p_read++ = (w & 0xff);
  829. count_read -= 2;
  830. }
  831. }
  832. }
  833. }
  834. #endif
  835. /**********************************************************/
  836. /* 32 bit Teensy-LC */
  837. /**********************************************************/
  838. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  839. SPIClass SPI;
  840. SPI1Class SPI1;
  841. uint32_t SPIClass::interruptMask = 0;
  842. uint32_t SPIClass::interruptSave = 0;
  843. uint32_t SPI1Class::interruptMask = 0;
  844. uint32_t SPI1Class::interruptSave = 0;
  845. #ifdef SPI_TRANSACTION_MISMATCH_LED
  846. uint8_t SPIClass::inTransactionFlag = 0;
  847. uint8_t SPI1Class::inTransactionFlag = 0;
  848. #endif
  849. void SPIClass::begin()
  850. {
  851. SIM_SCGC4 |= SIM_SCGC4_SPI0;
  852. SPI0_C1 = SPI_C1_SPE | SPI_C1_MSTR;
  853. SPI0_C2 = 0;
  854. uint8_t tmp __attribute__((unused)) = SPI0_S;
  855. SPCR.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  856. }
  857. void SPIClass::end() {
  858. SPCR.disable_pins();
  859. SPI0_C1 = 0;
  860. }
  861. const uint16_t SPISettings::br_div_table[30] = {
  862. 2, 4, 6, 8, 10, 12, 14, 16, 20, 24,
  863. 28, 32, 40, 48, 56, 64, 80, 96, 112, 128,
  864. 160, 192, 224, 256, 320, 384, 448, 512, 640, 768,
  865. };
  866. const uint8_t SPISettings::br_clock_table[30] = {
  867. SPI_BR_SPPR(0) | SPI_BR_SPR(0),
  868. SPI_BR_SPPR(1) | SPI_BR_SPR(0),
  869. SPI_BR_SPPR(2) | SPI_BR_SPR(0),
  870. SPI_BR_SPPR(3) | SPI_BR_SPR(0),
  871. SPI_BR_SPPR(4) | SPI_BR_SPR(0),
  872. SPI_BR_SPPR(5) | SPI_BR_SPR(0),
  873. SPI_BR_SPPR(6) | SPI_BR_SPR(0),
  874. SPI_BR_SPPR(7) | SPI_BR_SPR(0),
  875. SPI_BR_SPPR(4) | SPI_BR_SPR(1),
  876. SPI_BR_SPPR(5) | SPI_BR_SPR(1),
  877. SPI_BR_SPPR(6) | SPI_BR_SPR(1),
  878. SPI_BR_SPPR(7) | SPI_BR_SPR(1),
  879. SPI_BR_SPPR(4) | SPI_BR_SPR(2),
  880. SPI_BR_SPPR(5) | SPI_BR_SPR(2),
  881. SPI_BR_SPPR(6) | SPI_BR_SPR(2),
  882. SPI_BR_SPPR(7) | SPI_BR_SPR(2),
  883. SPI_BR_SPPR(4) | SPI_BR_SPR(3),
  884. SPI_BR_SPPR(5) | SPI_BR_SPR(3),
  885. SPI_BR_SPPR(6) | SPI_BR_SPR(3),
  886. SPI_BR_SPPR(7) | SPI_BR_SPR(3),
  887. SPI_BR_SPPR(4) | SPI_BR_SPR(4),
  888. SPI_BR_SPPR(5) | SPI_BR_SPR(4),
  889. SPI_BR_SPPR(6) | SPI_BR_SPR(4),
  890. SPI_BR_SPPR(7) | SPI_BR_SPR(4),
  891. SPI_BR_SPPR(4) | SPI_BR_SPR(5),
  892. SPI_BR_SPPR(5) | SPI_BR_SPR(5),
  893. SPI_BR_SPPR(6) | SPI_BR_SPR(5),
  894. SPI_BR_SPPR(7) | SPI_BR_SPR(5),
  895. SPI_BR_SPPR(4) | SPI_BR_SPR(6),
  896. SPI_BR_SPPR(5) | SPI_BR_SPR(6)
  897. };
  898. // setCS() is not intended for use from normal Arduino programs/sketches.
  899. uint8_t SPIClass::setCS(uint8_t pin)
  900. {
  901. switch (pin) {
  902. case 10: CORE_PIN10_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTC4
  903. case 2: CORE_PIN2_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD0
  904. }
  905. return 0;
  906. }
  907. void SPI1Class::begin()
  908. {
  909. SIM_SCGC4 |= SIM_SCGC4_SPI1;
  910. SPI1_C1 = SPI_C1_SPE | SPI_C1_MSTR;
  911. SPI1_C2 = 0;
  912. uint8_t tmp __attribute__((unused)) = SPI1_S;
  913. SPCR1.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  914. }
  915. void SPI1Class::end() {
  916. SPCR1.disable_pins();
  917. SPI1_C1 = 0;
  918. }
  919. // setCS() is not intended for use from normal Arduino programs/sketches.
  920. uint8_t SPI1Class::setCS(uint8_t pin)
  921. {
  922. switch (pin) {
  923. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD4
  924. }
  925. return 0;
  926. }
  927. #endif