Parcourir la source

Import SPI from Teensyduino 1.19

main
PaulStoffregen il y a 10 ans
révision
76af17227a
7 fichiers modifiés avec 542 ajouts et 0 suppressions
  1. +3
    -0
      README.md
  2. +68
    -0
      SPI.cpp
  3. +75
    -0
      SPI.h
  4. +143
    -0
      examples/BarometricPressureSensor/BarometricPressureSensor.ino
  5. +143
    -0
      examples/BarometricPressureSensor/BarometricPressureSensor/BarometricPressureSensor.ino
  6. +71
    -0
      examples/DigitalPotControl/DigitalPotControl.ino
  7. +39
    -0
      keywords.txt

+ 3
- 0
README.md Voir le fichier

@@ -0,0 +1,3 @@
#SPI Library for Teensy#

http://www.pjrc.com/teensy/teensyduino.html

+ 68
- 0
SPI.cpp Voir le fichier

@@ -0,0 +1,68 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/

#include "pins_arduino.h"
#include "SPI.h"

SPIClass SPI;

void SPIClass::begin() {

// Set SS to high so a connected chip will be "deselected" by default
digitalWrite(SS, HIGH);

// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SS, OUTPUT);

// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);

// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// By doing this AFTER enabling SPI, we avoid accidentally
// clocking in a single bit since the lines go directly
// from "input" to SPI control.
// http://code.google.com/p/arduino/issues/detail?id=888
#ifdef __AVR__
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
#endif
}


void SPIClass::end() {
SPCR &= ~_BV(SPE);
}

void SPIClass::setBitOrder(uint8_t bitOrder)
{
if(bitOrder == LSBFIRST) {
SPCR |= _BV(DORD);
} else {
SPCR &= ~(_BV(DORD));
}
}

void SPIClass::setDataMode(uint8_t mode)
{
SPCR = (SPCR & ~SPI_MODE_MASK) | mode;
}

void SPIClass::setClockDivider(uint8_t rate)
{
SPCR = (SPCR & ~SPI_CLOCK_MASK) | (rate & SPI_CLOCK_MASK);
SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((rate >> 2) & SPI_2XCLOCK_MASK);
}


+ 75
- 0
SPI.h Voir le fichier

@@ -0,0 +1,75 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/

#ifndef _SPI_H_INCLUDED
#define _SPI_H_INCLUDED

#include <stdio.h>
#include <Arduino.h>
#include <avr/pgmspace.h>

#define SPI_CLOCK_DIV4 0x00
#define SPI_CLOCK_DIV16 0x01
#define SPI_CLOCK_DIV64 0x02
#define SPI_CLOCK_DIV128 0x03
#define SPI_CLOCK_DIV2 0x04
#define SPI_CLOCK_DIV8 0x05
#define SPI_CLOCK_DIV32 0x06
//#define SPI_CLOCK_DIV64 0x07

#define SPI_MODE0 0x00
#define SPI_MODE1 0x04
#define SPI_MODE2 0x08
#define SPI_MODE3 0x0C

#define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
#define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
#define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR

class SPIClass {
public:
inline static byte transfer(byte _data);

// SPI Configuration methods

inline static void attachInterrupt();
inline static void detachInterrupt(); // Default

static void begin(); // Default
static void end();

static void setBitOrder(uint8_t);
static void setDataMode(uint8_t);
static void setClockDivider(uint8_t);
#if defined(__arm__) && defined(CORE_TEENSY)
inline void setMOSI(uint8_t pin) __attribute__((always_inline)) { SPCR.setMOSI(pin); }
inline void setMISO(uint8_t pin) __attribute__((always_inline)) { SPCR.setMISO(pin); }
inline void setSCK(uint8_t pin) __attribute__((always_inline)) { SPCR.setSCK(pin); }
#endif
};

extern SPIClass SPI;

byte SPIClass::transfer(byte _data) {
SPDR = _data;
while (!(SPSR & _BV(SPIF)))
;
return SPDR;
}

void SPIClass::attachInterrupt() {
SPCR |= _BV(SPIE);
}

void SPIClass::detachInterrupt() {
SPCR &= ~_BV(SPIE);
}

#endif

+ 143
- 0
examples/BarometricPressureSensor/BarometricPressureSensor.ino Voir le fichier

@@ -0,0 +1,143 @@
/*
SCP1000 Barometric Pressure Sensor Display
Shows the output of a Barometric Pressure Sensor on a
Uses the SPI library. For details on the sensor, see:
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
http://www.vti.fi/en/support/obsolete_products/pressure_sensors/
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
Circuit:
SCP1000 sensor attached to pins 6, 7, 10 - 13:
DRDY: pin 6
CSB: pin 7
MOSI: pin 11
MISO: pin 12
SCK: pin 13
created 31 July 2010
modified 14 August 2010
by Tom Igoe
*/

// the sensor communicates using SPI, so include the library:
#include <SPI.h>

//Sensor's memory register addresses:
const int PRESSURE = 0x1F; //3 most significant bits of pressure
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
const int TEMPERATURE = 0x21; //16 bit temperature reading
const byte READ = 0b11111100; // SCP1000's read command
const byte WRITE = 0b00000010; // SCP1000's write command

// pins used for the connection with the sensor
// the other you need are controlled by the SPI library):
const int dataReadyPin = 6;
const int chipSelectPin = 7;

void setup() {
Serial.begin(9600);

// start the SPI library:
SPI.begin();

// initalize the data ready and chip select pins:
pinMode(dataReadyPin, INPUT);
pinMode(chipSelectPin, OUTPUT);

//Configure SCP1000 for low noise configuration:
writeRegister(0x02, 0x2D);
writeRegister(0x01, 0x03);
writeRegister(0x03, 0x02);
// give the sensor time to set up:
delay(100);
}

void loop() {
//Select High Resolution Mode
writeRegister(0x03, 0x0A);

// don't do anything until the data ready pin is high:
if (digitalRead(dataReadyPin) == HIGH) {
//Read the temperature data
int tempData = readRegister(0x21, 2);

// convert the temperature to celsius and display it:
float realTemp = (float)tempData / 20.0;
Serial.print("Temp[C]=");
Serial.print(realTemp);


//Read the pressure data highest 3 bits:
byte pressure_data_high = readRegister(0x1F, 1);
pressure_data_high &= 0b00000111; //you only needs bits 2 to 0

//Read the pressure data lower 16 bits:
unsigned int pressure_data_low = readRegister(0x20, 2);
//combine the two parts into one 19-bit number:
long pressure = ((pressure_data_high << 16) | pressure_data_low)/4;

// display the temperature:
Serial.println("\tPressure [Pa]=" + String(pressure));
}
}

//Read from or write to register from the SCP1000:
unsigned int readRegister(byte thisRegister, int bytesToRead ) {
byte inByte = 0; // incoming byte from the SPI
unsigned int result = 0; // result to return
Serial.print(thisRegister, BIN);
Serial.print("\t");
// SCP1000 expects the register name in the upper 6 bits
// of the byte. So shift the bits left by two bits:
thisRegister = thisRegister << 2;
// now combine the address and the command into one byte
byte dataToSend = thisRegister & READ;
Serial.println(thisRegister, BIN);
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
// send the device the register you want to read:
SPI.transfer(dataToSend);
// send a value of 0 to read the first byte returned:
result = SPI.transfer(0x00);
// decrement the number of bytes left to read:
bytesToRead--;
// if you still have another byte to read:
if (bytesToRead > 0) {
// shift the first byte left, then get the second byte:
result = result << 8;
inByte = SPI.transfer(0x00);
// combine the byte you just got with the previous one:
result = result | inByte;
// decrement the number of bytes left to read:
bytesToRead--;
}
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
// return the result:
return(result);
}


//Sends a write command to SCP1000

void writeRegister(byte thisRegister, byte thisValue) {

// SCP1000 expects the register address in the upper 6 bits
// of the byte. So shift the bits left by two bits:
thisRegister = thisRegister << 2;
// now combine the register address and the command into one byte:
byte dataToSend = thisRegister | WRITE;

// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);

SPI.transfer(dataToSend); //Send register location
SPI.transfer(thisValue); //Send value to record into register

// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
}


+ 143
- 0
examples/BarometricPressureSensor/BarometricPressureSensor/BarometricPressureSensor.ino Voir le fichier

@@ -0,0 +1,143 @@
/*
SCP1000 Barometric Pressure Sensor Display
Shows the output of a Barometric Pressure Sensor on a
Uses the SPI library. For details on the sensor, see:
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
http://www.vti.fi/en/support/obsolete_products/pressure_sensors/
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
Circuit:
SCP1000 sensor attached to pins 6, 7, 10 - 13:
DRDY: pin 6
CSB: pin 7
MOSI: pin 11
MISO: pin 12
SCK: pin 13
created 31 July 2010
modified 14 August 2010
by Tom Igoe
*/

// the sensor communicates using SPI, so include the library:
#include <SPI.h>

//Sensor's memory register addresses:
const int PRESSURE = 0x1F; //3 most significant bits of pressure
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
const int TEMPERATURE = 0x21; //16 bit temperature reading
cont byte READ = 0b00000000; // SCP1000's read command
const byte WRITE = 0b00000010; // SCP1000's write command
// pins used for the connection with the sensor
// the other you need are controlled by the SPI library):
const int dataReadyPin = 6;
const int chipSelectPin = 7;

void setup() {
Serial.begin(9600);

// start the SPI library:
SPI.begin();

// initalize the data ready and chip select pins:
pinMode(dataReadyPin, INPUT);
pinMode(chipSelectPin, OUTPUT);

//Configure SCP1000 for low noise configuration:
writeRegister(0x02, 0x2D);
writeRegister(0x01, 0x03);
writeRegister(0x03, 0x02);
// give the sensor time to set up:
delay(100);
}

void loop() {
//Select High Resolution Mode
writeRegister(0x03, 0x0A);

// don't do anything until the data ready pin is high:
if (digitalRead(dataReadyPin) == HIGH) {
//Read the temperature data
int tempData = readRegister(0x21, 2);

// convert the temperature to celsius and display it:
float realTemp = (float)tempData / 20.0;
Serial.print("Temp[C]=");
Serial.print(realTemp);


//Read the pressure data highest 3 bits:
byte pressure_data_high = readRegister(0x1F, 1);
pressure_data_high &= 0b00000111; //you only needs bits 2 to 0

//Read the pressure data lower 16 bits:
unsigned int pressure_data_low = readRegister(0x20, 2);
//combine the two parts into one 19-bit number:
long pressure = ((pressure_data_high << 16) | pressure_data_low)/4;

// display the temperature:
Serial.println("\tPressure [Pa]=" + String(pressure));
}
}

//Read from or write to register from the SCP1000:
unsigned int readRegister(byte thisRegister, int bytesToRead ) {
byte inByte = 0; // incoming byte from the SPI
unsigned int result = 0; // result to return

// SCP1000 expects the register name in the upper 6 bits
// of the byte. So shift the bits left by two bits:
thisRegister = thisRegister << 2;
// now combine the address and the command into one byte
dataToSend = thisRegister & READ;

// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
// send the device the register you want to read:
SPI.transfer(dataToSend);
// send a value of 0 to read the first byte returned:
result = SPI.transfer(0x00);
// decrement the number of bytes left to read:
bytesToRead--;
// if you still have another byte to read:
if (bytesToRead > 0) {
// shift the first byte left, then get the second byte:
result = result << 8;
inByte = SPI.transfer(0x00);
// combine the byte you just got with the previous one:
result = result | inByte;
// decrement the number of bytes left to read:
bytesToRead--;
}
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
// return the result:
return(result);
}


//Sends a write command to SCP1000

void writeRegister(byte thisRegister, byte thisValue) {

// SCP1000 expects the register address in the upper 6 bits
// of the byte. So shift the bits left by two bits:
thisRegister = thisRegister << 2;
// now combine the register address and the command into one byte:
dataToSend = thisRegister | WRITE;

// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);

SPI.transfer(dataToSend); //Send register location
SPI.transfer(thisValue); //Send value to record into register

// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
}




+ 71
- 0
examples/DigitalPotControl/DigitalPotControl.ino Voir le fichier

@@ -0,0 +1,71 @@
/*
Digital Pot Control
This example controls an Analog Devices AD5206 digital potentiometer.
The AD5206 has 6 potentiometer channels. Each channel's pins are labeled
A - connect this to voltage
W - this is the pot's wiper, which changes when you set it
B - connect this to ground.
The AD5206 is SPI-compatible,and to command it, you send two bytes,
one with the channel number (0 - 5) and one with the resistance value for the
channel (0 - 255).
The circuit:
* All A pins of AD5206 connected to +5V
* All B pins of AD5206 connected to ground
* An LED and a 220-ohm resisor in series connected from each W pin to ground
* CS - to digital pin 10 (SS pin)
* SDI - to digital pin 11 (MOSI pin)
* CLK - to digital pin 13 (SCK pin)
created 10 Aug 2010
by Tom Igoe
Thanks to Heather Dewey-Hagborg for the original tutorial, 2005
*/


// inslude the SPI library:
#include <SPI.h>


// set pin 10 as the slave select for the digital pot:
const int slaveSelectPin = 10;

void setup() {
// set the slaveSelectPin as an output:
pinMode (slaveSelectPin, OUTPUT);
// initialize SPI:
SPI.begin();
}

void loop() {
// go through the six channels of the digital pot:
for (int channel = 0; channel < 6; channel++) {
// change the resistance on this channel from min to max:
for (int level = 0; level < 255; level++) {
digitalPotWrite(channel, level);
delay(10);
}
// wait a second at the top:
delay(100);
// change the resistance on this channel from max to min:
for (int level = 0; level < 255; level++) {
digitalPotWrite(channel, 255 - level);
delay(10);
}
}

}

void digitalPotWrite(int address, int value) {
// take the SS pin low to select the chip:
digitalWrite(slaveSelectPin,LOW);
// send in the address and value via SPI:
SPI.transfer(address);
SPI.transfer(value);
// take the SS pin high to de-select the chip:
digitalWrite(slaveSelectPin,HIGH);
}

+ 39
- 0
keywords.txt Voir le fichier

@@ -0,0 +1,39 @@
#######################################
# Syntax Coloring Map SPI
#######################################

#######################################
# Datatypes (KEYWORD1)
#######################################

SPI KEYWORD1

#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
end KEYWORD2
transfer KEYWORD2
setBitOrder KEYWORD2
setDataMode KEYWORD2
setClockDivider KEYWORD2
setMOSI KEYWORD2
setMISO KEYWORD2
setSCK KEYWORD2


#######################################
# Constants (LITERAL1)
#######################################
SPI_CLOCK_DIV4 LITERAL1
SPI_CLOCK_DIV16 LITERAL1
SPI_CLOCK_DIV64 LITERAL1
SPI_CLOCK_DIV128 LITERAL1
SPI_CLOCK_DIV2 LITERAL1
SPI_CLOCK_DIV8 LITERAL1
SPI_CLOCK_DIV32 LITERAL1
SPI_CLOCK_DIV64 LITERAL1
SPI_MODE0 LITERAL1
SPI_MODE1 LITERAL1
SPI_MODE2 LITERAL1
SPI_MODE3 LITERAL1

Chargement…
Annuler
Enregistrer