Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

530 linhas
15KB

  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * SPI Master library for arduino.
  4. *
  5. * This file is free software; you can redistribute it and/or modify
  6. * it under the terms of either the GNU General Public License version 2
  7. * or the GNU Lesser General Public License version 2.1, both as
  8. * published by the Free Software Foundation.
  9. */
  10. #include "SPI.h"
  11. #include "pins_arduino.h"
  12. /**********************************************************/
  13. /* 8 bit AVR-based boards */
  14. /**********************************************************/
  15. #if defined(__AVR__)
  16. SPIClass SPI;
  17. uint8_t SPIClass::interruptMode = 0;
  18. uint8_t SPIClass::interruptMask = 0;
  19. uint8_t SPIClass::interruptSave = 0;
  20. #ifdef SPI_TRANSACTION_MISMATCH_LED
  21. uint8_t SPIClass::inTransactionFlag = 0;
  22. #endif
  23. void SPIClass::begin()
  24. {
  25. // Set SS to high so a connected chip will be "deselected" by default
  26. digitalWrite(SS, HIGH);
  27. // When the SS pin is set as OUTPUT, it can be used as
  28. // a general purpose output port (it doesn't influence
  29. // SPI operations).
  30. pinMode(SS, OUTPUT);
  31. // Warning: if the SS pin ever becomes a LOW INPUT then SPI
  32. // automatically switches to Slave, so the data direction of
  33. // the SS pin MUST be kept as OUTPUT.
  34. SPCR |= _BV(MSTR);
  35. SPCR |= _BV(SPE);
  36. // Set direction register for SCK and MOSI pin.
  37. // MISO pin automatically overrides to INPUT.
  38. // By doing this AFTER enabling SPI, we avoid accidentally
  39. // clocking in a single bit since the lines go directly
  40. // from "input" to SPI control.
  41. // http://code.google.com/p/arduino/issues/detail?id=888
  42. pinMode(SCK, OUTPUT);
  43. pinMode(MOSI, OUTPUT);
  44. }
  45. void SPIClass::end() {
  46. SPCR &= ~_BV(SPE);
  47. }
  48. // mapping of interrupt numbers to bits within SPI_AVR_EIMSK
  49. #if defined(__AVR_ATmega32U4__)
  50. #define SPI_INT0_MASK (1<<INT0)
  51. #define SPI_INT1_MASK (1<<INT1)
  52. #define SPI_INT2_MASK (1<<INT2)
  53. #define SPI_INT3_MASK (1<<INT3)
  54. #define SPI_INT4_MASK (1<<INT6)
  55. #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
  56. #define SPI_INT0_MASK (1<<INT0)
  57. #define SPI_INT1_MASK (1<<INT1)
  58. #define SPI_INT2_MASK (1<<INT2)
  59. #define SPI_INT3_MASK (1<<INT3)
  60. #define SPI_INT4_MASK (1<<INT4)
  61. #define SPI_INT5_MASK (1<<INT5)
  62. #define SPI_INT6_MASK (1<<INT6)
  63. #define SPI_INT7_MASK (1<<INT7)
  64. #elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
  65. #define SPI_INT0_MASK (1<<INT4)
  66. #define SPI_INT1_MASK (1<<INT5)
  67. #define SPI_INT2_MASK (1<<INT0)
  68. #define SPI_INT3_MASK (1<<INT1)
  69. #define SPI_INT4_MASK (1<<INT2)
  70. #define SPI_INT5_MASK (1<<INT3)
  71. #define SPI_INT6_MASK (1<<INT6)
  72. #define SPI_INT7_MASK (1<<INT7)
  73. #else
  74. #ifdef INT0
  75. #define SPI_INT0_MASK (1<<INT0)
  76. #endif
  77. #ifdef INT1
  78. #define SPI_INT1_MASK (1<<INT1)
  79. #endif
  80. #ifdef INT2
  81. #define SPI_INT2_MASK (1<<INT2)
  82. #endif
  83. #endif
  84. void SPIClass::usingInterrupt(uint8_t interruptNumber)
  85. {
  86. uint8_t stmp, mask;
  87. if (interruptMode > 1) return;
  88. stmp = SREG;
  89. noInterrupts();
  90. switch (interruptNumber) {
  91. #ifdef SPI_INT0_MASK
  92. case 0: mask = SPI_INT0_MASK; break;
  93. #endif
  94. #ifdef SPI_INT1_MASK
  95. case 1: mask = SPI_INT1_MASK; break;
  96. #endif
  97. #ifdef SPI_INT2_MASK
  98. case 2: mask = SPI_INT2_MASK; break;
  99. #endif
  100. #ifdef SPI_INT3_MASK
  101. case 3: mask = SPI_INT3_MASK; break;
  102. #endif
  103. #ifdef SPI_INT4_MASK
  104. case 4: mask = SPI_INT4_MASK; break;
  105. #endif
  106. #ifdef SPI_INT5_MASK
  107. case 5: mask = SPI_INT5_MASK; break;
  108. #endif
  109. #ifdef SPI_INT6_MASK
  110. case 6: mask = SPI_INT6_MASK; break;
  111. #endif
  112. #ifdef SPI_INT7_MASK
  113. case 7: mask = SPI_INT7_MASK; break;
  114. #endif
  115. default:
  116. interruptMode = 2;
  117. SREG = stmp;
  118. return;
  119. }
  120. interruptMode = 1;
  121. interruptMask |= mask;
  122. SREG = stmp;
  123. }
  124. /**********************************************************/
  125. /* 32 bit Teensy 3.0 and 3.1 */
  126. /**********************************************************/
  127. #elif defined(__arm__) && defined(TEENSYDUINO)
  128. SPIClass SPI;
  129. uint8_t SPIClass::interruptMasksUsed = 0;
  130. uint32_t SPIClass::interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  131. uint32_t SPIClass::interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  132. #ifdef SPI_TRANSACTION_MISMATCH_LED
  133. uint8_t SPIClass::inTransactionFlag = 0;
  134. #endif
  135. void SPIClass::begin()
  136. {
  137. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  138. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  139. SPI0_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  140. SPI0_CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  141. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  142. SPCR.enable_pins(); // pins managed by SPCRemulation in avr_emulation.h
  143. }
  144. void SPIClass::end() {
  145. SPCR.disable_pins();
  146. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  147. }
  148. void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName)
  149. {
  150. uint32_t n = (uint32_t)interruptName;
  151. if (n >= NVIC_NUM_INTERRUPTS) return;
  152. //Serial.print("usingInterrupt ");
  153. //Serial.println(n);
  154. interruptMasksUsed |= (1 << (n >> 5));
  155. interruptMask[n >> 5] |= (1 << (n & 0x1F));
  156. //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
  157. //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
  158. //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
  159. //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
  160. }
  161. void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName)
  162. {
  163. uint32_t n = (uint32_t)interruptName;
  164. if (n >= NVIC_NUM_INTERRUPTS) return;
  165. interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
  166. if (interruptMask[n >> 5] == 0) {
  167. interruptMasksUsed &= ~(1 << (n >> 5));
  168. }
  169. }
  170. const uint16_t SPISettings::ctar_div_table[23] = {
  171. 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40,
  172. 56, 64, 96, 128, 192, 256, 384, 512, 640, 768
  173. };
  174. const uint32_t SPISettings::ctar_clock_table[23] = {
  175. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  176. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  177. SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  178. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
  179. SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  180. SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  181. SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
  182. SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
  183. SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  184. SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0),
  185. SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  186. SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3),
  187. SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  188. SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
  189. SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  190. SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
  191. SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  192. SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
  193. SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  194. SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  195. SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7),
  196. SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
  197. SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7)
  198. };
  199. static void updateCTAR(uint32_t ctar)
  200. {
  201. if (SPI0_CTAR0 != ctar) {
  202. uint32_t mcr = SPI0_MCR;
  203. if (mcr & SPI_MCR_MDIS) {
  204. SPI0_CTAR0 = ctar;
  205. SPI0_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  206. } else {
  207. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  208. SPI0_CTAR0 = ctar;
  209. SPI0_CTAR1 = ctar | SPI_CTAR_FMSZ(8);
  210. SPI0_MCR = mcr;
  211. }
  212. }
  213. }
  214. void SPIClass::setBitOrder(uint8_t bitOrder)
  215. {
  216. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  217. uint32_t ctar = SPI0_CTAR0;
  218. if (bitOrder == LSBFIRST) {
  219. ctar |= SPI_CTAR_LSBFE;
  220. } else {
  221. ctar &= ~SPI_CTAR_LSBFE;
  222. }
  223. updateCTAR(ctar);
  224. }
  225. void SPIClass::setDataMode(uint8_t dataMode)
  226. {
  227. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  228. // TODO: implement with native code
  229. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  230. }
  231. void SPIClass::setClockDivider_noInline(uint32_t clk)
  232. {
  233. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  234. uint32_t ctar = SPI0_CTAR0;
  235. ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
  236. if (ctar & SPI_CTAR_CPHA) {
  237. clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
  238. }
  239. ctar |= clk;
  240. updateCTAR(ctar);
  241. }
  242. bool SPIClass::pinIsChipSelect(uint8_t pin)
  243. {
  244. if (pin == 10 || pin == 9 || pin == 6 || pin == 2 || pin == 15) return true;
  245. if (pin >= 20 && pin <= 23) return true;
  246. return false;
  247. }
  248. bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
  249. {
  250. if (!pinIsChipSelect(pin1) || !pinIsChipSelect(pin2)) return false;
  251. if ((pin1 == 2 && pin2 == 10) || (pin1 == 10 && pin2 == 2)) return false;
  252. if ((pin1 == 6 && pin2 == 9) || (pin1 == 9 && pin2 == 6)) return false;
  253. if ((pin1 == 20 && pin2 == 23) || (pin1 == 23 && pin2 == 20)) return false;
  254. if ((pin1 == 21 && pin2 == 22) || (pin1 == 22 && pin2 == 21)) return false;
  255. return true;
  256. }
  257. uint8_t SPIClass::setCS(uint8_t pin)
  258. {
  259. switch (pin) {
  260. case 10: CORE_PIN10_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTC4
  261. case 2: CORE_PIN2_CONFIG = PORT_PCR_MUX(2); return 0x01; // PTD0
  262. case 9: CORE_PIN9_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTC3
  263. case 6: CORE_PIN6_CONFIG = PORT_PCR_MUX(2); return 0x02; // PTD4
  264. case 20: CORE_PIN20_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTD5
  265. case 23: CORE_PIN23_CONFIG = PORT_PCR_MUX(2); return 0x04; // PTC2
  266. case 21: CORE_PIN21_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTD6
  267. case 22: CORE_PIN22_CONFIG = PORT_PCR_MUX(2); return 0x08; // PTC1
  268. case 15: CORE_PIN15_CONFIG = PORT_PCR_MUX(2); return 0x10; // PTC0
  269. }
  270. return 0;
  271. }
  272. /**********************************************************/
  273. /* 32 bit Arduino Due */
  274. /**********************************************************/
  275. #elif defined(__arm__) && defined(__SAM3X8E__)
  276. #include "SPI.h"
  277. SPIClass::SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void)) :
  278. spi(_spi), id(_id), initCb(_initCb), initialized(false)
  279. {
  280. // Empty
  281. }
  282. void SPIClass::begin() {
  283. init();
  284. // NPCS control is left to the user
  285. // Default speed set to 4Mhz
  286. setClockDivider(BOARD_SPI_DEFAULT_SS, 21);
  287. setDataMode(BOARD_SPI_DEFAULT_SS, SPI_MODE0);
  288. setBitOrder(BOARD_SPI_DEFAULT_SS, MSBFIRST);
  289. }
  290. void SPIClass::begin(uint8_t _pin) {
  291. init();
  292. uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin);
  293. PIO_Configure(
  294. g_APinDescription[spiPin].pPort,
  295. g_APinDescription[spiPin].ulPinType,
  296. g_APinDescription[spiPin].ulPin,
  297. g_APinDescription[spiPin].ulPinConfiguration);
  298. // Default speed set to 4Mhz
  299. setClockDivider(_pin, 21);
  300. setDataMode(_pin, SPI_MODE0);
  301. setBitOrder(_pin, MSBFIRST);
  302. }
  303. void SPIClass::init() {
  304. if (initialized)
  305. return;
  306. interruptMode = 0;
  307. interruptMask = 0;
  308. interruptSave = 0;
  309. initCb();
  310. SPI_Configure(spi, id, SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS);
  311. SPI_Enable(spi);
  312. initialized = true;
  313. }
  314. #ifndef interruptsStatus
  315. #define interruptsStatus() __interruptsStatus()
  316. static inline unsigned char __interruptsStatus(void) __attribute__((always_inline, unused));
  317. static inline unsigned char __interruptsStatus(void) {
  318. unsigned int primask;
  319. asm volatile ("mrs %0, primask" : "=r" (primask));
  320. if (primask) return 0;
  321. return 1;
  322. }
  323. #endif
  324. void SPIClass::usingInterrupt(uint8_t interruptNumber)
  325. {
  326. uint8_t irestore;
  327. irestore = interruptsStatus();
  328. noInterrupts();
  329. if (interruptMode < 2) {
  330. if (interruptNumber > NUM_DIGITAL_PINS) {
  331. interruptMode = 2;
  332. } else {
  333. uint8_t imask = interruptMask;
  334. Pio *pio = g_APinDescription[interruptNumber].pPort;
  335. if (pio == PIOA) {
  336. imask |= 1;
  337. } else if (pio == PIOB) {
  338. imask |= 2;
  339. } else if (pio == PIOC) {
  340. imask |= 4;
  341. } else if (pio == PIOD) {
  342. imask |= 8;
  343. }
  344. interruptMask = imask;
  345. interruptMode = 1;
  346. }
  347. }
  348. if (irestore) interrupts();
  349. }
  350. void SPIClass::beginTransaction(uint8_t pin, SPISettings settings)
  351. {
  352. if (interruptMode > 0) {
  353. if (interruptMode == 1) {
  354. uint8_t imask = interruptMask;
  355. if (imask & 1) NVIC_DisableIRQ(PIOA_IRQn);
  356. if (imask & 2) NVIC_DisableIRQ(PIOB_IRQn);
  357. if (imask & 4) NVIC_DisableIRQ(PIOC_IRQn);
  358. if (imask & 8) NVIC_DisableIRQ(PIOD_IRQn);
  359. } else {
  360. interruptSave = interruptsStatus();
  361. noInterrupts();
  362. }
  363. }
  364. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(pin);
  365. bitOrder[ch] = settings.border;
  366. SPI_ConfigureNPCS(spi, ch, settings.config);
  367. }
  368. void SPIClass::endTransaction(void)
  369. {
  370. if (interruptMode > 0) {
  371. if (interruptMode == 1) {
  372. uint8_t imask = interruptMask;
  373. if (imask & 1) NVIC_EnableIRQ(PIOA_IRQn);
  374. if (imask & 2) NVIC_EnableIRQ(PIOB_IRQn);
  375. if (imask & 4) NVIC_EnableIRQ(PIOC_IRQn);
  376. if (imask & 8) NVIC_EnableIRQ(PIOD_IRQn);
  377. } else {
  378. if (interruptSave) interrupts();
  379. }
  380. }
  381. }
  382. void SPIClass::end(uint8_t _pin) {
  383. uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin);
  384. // Setting the pin as INPUT will disconnect it from SPI peripheral
  385. pinMode(spiPin, INPUT);
  386. }
  387. void SPIClass::end() {
  388. SPI_Disable(spi);
  389. initialized = false;
  390. }
  391. void SPIClass::setBitOrder(uint8_t _pin, BitOrder _bitOrder) {
  392. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  393. bitOrder[ch] = _bitOrder;
  394. }
  395. void SPIClass::setDataMode(uint8_t _pin, uint8_t _mode) {
  396. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  397. mode[ch] = _mode | SPI_CSR_CSAAT;
  398. // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed
  399. // transfer. Some device needs that for working properly.
  400. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1));
  401. }
  402. void SPIClass::setClockDivider(uint8_t _pin, uint8_t _divider) {
  403. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  404. divider[ch] = _divider;
  405. // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed
  406. // transfer. Some device needs that for working properly.
  407. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1));
  408. }
  409. byte SPIClass::transfer(byte _pin, uint8_t _data, SPITransferMode _mode) {
  410. uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin);
  411. // Reverse bit order
  412. if (bitOrder[ch] == LSBFIRST)
  413. _data = __REV(__RBIT(_data));
  414. uint32_t d = _data | SPI_PCS(ch);
  415. if (_mode == SPI_LAST)
  416. d |= SPI_TDR_LASTXFER;
  417. // SPI_Write(spi, _channel, _data);
  418. while ((spi->SPI_SR & SPI_SR_TDRE) == 0)
  419. ;
  420. spi->SPI_TDR = d;
  421. // return SPI_Read(spi);
  422. while ((spi->SPI_SR & SPI_SR_RDRF) == 0)
  423. ;
  424. d = spi->SPI_RDR;
  425. // Reverse bit order
  426. if (bitOrder[ch] == LSBFIRST)
  427. d = __REV(__RBIT(d));
  428. return d & 0xFF;
  429. }
  430. void SPIClass::attachInterrupt(void) {
  431. // Should be enableInterrupt()
  432. }
  433. void SPIClass::detachInterrupt(void) {
  434. // Should be disableInterrupt()
  435. }
  436. #if SPI_INTERFACES_COUNT > 0
  437. static void SPI_0_Init(void) {
  438. PIO_Configure(
  439. g_APinDescription[PIN_SPI_MOSI].pPort,
  440. g_APinDescription[PIN_SPI_MOSI].ulPinType,
  441. g_APinDescription[PIN_SPI_MOSI].ulPin,
  442. g_APinDescription[PIN_SPI_MOSI].ulPinConfiguration);
  443. PIO_Configure(
  444. g_APinDescription[PIN_SPI_MISO].pPort,
  445. g_APinDescription[PIN_SPI_MISO].ulPinType,
  446. g_APinDescription[PIN_SPI_MISO].ulPin,
  447. g_APinDescription[PIN_SPI_MISO].ulPinConfiguration);
  448. PIO_Configure(
  449. g_APinDescription[PIN_SPI_SCK].pPort,
  450. g_APinDescription[PIN_SPI_SCK].ulPinType,
  451. g_APinDescription[PIN_SPI_SCK].ulPin,
  452. g_APinDescription[PIN_SPI_SCK].ulPinConfiguration);
  453. }
  454. SPIClass SPI(SPI_INTERFACE, SPI_INTERFACE_ID, SPI_0_Init);
  455. #endif
  456. #endif