@@ -106,6 +106,28 @@ struct Transfer_struct { | |||
uint32_t unused[3]; | |||
}; | |||
void begin(); | |||
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction, | |||
uint32_t max_packet_len); | |||
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len); | |||
bool followup_Transfer(Transfer_t *transfer); | |||
void add_to_async_followup_list(Transfer_t *first, Transfer_t *last); | |||
void remove_from_async_followup_list(Transfer_t *transfer); | |||
void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last); | |||
void remove_from_periodic_followup_list(Transfer_t *transfer); | |||
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port); | |||
void enumeration(const Transfer_t *transfer); | |||
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest, | |||
uint32_t wValue, uint32_t wIndex, uint32_t wLength); | |||
uint32_t assign_addr(void); | |||
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen); | |||
void pipe_set_addr(Pipe_t *pipe, uint32_t addr); | |||
uint32_t pipe_get_addr(Pipe_t *pipe); | |||
void init_Device_Pipe_Transfer_memory(void); | |||
Device_t * allocate_Device(void); | |||
void free_Device(Device_t *q); | |||
@@ -114,7 +136,30 @@ void free_Pipe(Pipe_t *q); | |||
Transfer_t * allocate_Transfer(void); | |||
void free_Transfer(Transfer_t *q); | |||
class USBHostDriver { | |||
void print(const Transfer_t *transfer); | |||
void print(const Transfer_t *first, const Transfer_t *last); | |||
void print_token(uint32_t token); | |||
void print(const Pipe_t *pipe); | |||
void print_hexbytes(const void *ptr, uint32_t len); | |||
void print(const char *s); | |||
void print(const char *s, int num); | |||
class USBHost { | |||
public: | |||
static void begin(); | |||
protected: | |||
static void enumeration(const Transfer_t *transfer); | |||
static void isr(); | |||
}; | |||
class USBHostDriver : public USBHost { | |||
public: | |||
virtual bool claim_device(Device_t *device) { | |||
return false; | |||
@@ -125,6 +170,7 @@ public: | |||
virtual void disconnect() { | |||
} | |||
USBHostDriver *next; | |||
}; | |||
class USBHub : public USBHostDriver { |
@@ -0,0 +1,581 @@ | |||
/* USB EHCI Host for Teensy 3.6 | |||
* Copyright 2017 Paul Stoffregen (paul@pjrc.com) | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a | |||
* copy of this software and associated documentation files (the | |||
* "Software"), to deal in the Software without restriction, including | |||
* without limitation the rights to use, copy, modify, merge, publish, | |||
* distribute, sublicense, and/or sell copies of the Software, and to | |||
* permit persons to whom the Software is furnished to do so, subject to | |||
* the following conditions: | |||
* | |||
* The above copyright notice and this permission notice shall be included | |||
* in all copies or substantial portions of the Software. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
*/ | |||
#include <Arduino.h> | |||
#include "USBHost.h" | |||
uint32_t periodictable[32] __attribute__ ((aligned(4096), used)); | |||
uint8_t port_state; | |||
#define PORT_STATE_DISCONNECTED 0 | |||
#define PORT_STATE_DEBOUNCE 1 | |||
#define PORT_STATE_RESET 2 | |||
#define PORT_STATE_RECOVERY 3 | |||
#define PORT_STATE_ACTIVE 4 | |||
Device_t *rootdev=NULL; | |||
Transfer_t *async_followup_first=NULL; | |||
Transfer_t *async_followup_last=NULL; | |||
Transfer_t *periodic_followup_first=NULL; | |||
Transfer_t *periodic_followup_last=NULL; | |||
void begin() | |||
{ | |||
// Teensy 3.6 has USB host power controlled by PTE6 | |||
PORTE_PCR6 = PORT_PCR_MUX(1); | |||
GPIOE_PDDR |= (1<<6); | |||
GPIOE_PSOR = (1<<6); // turn on USB host power | |||
Serial.print("sizeof Device = "); | |||
Serial.println(sizeof(Device_t)); | |||
Serial.print("sizeof Pipe = "); | |||
Serial.println(sizeof(Pipe_t)); | |||
Serial.print("sizeof Transfer = "); | |||
Serial.println(sizeof(Transfer_t)); | |||
// configure the MPU to allow USBHS DMA to access memory | |||
MPU_RGDAAC0 |= 0x30000000; | |||
Serial.print("MPU_RGDAAC0 = "); | |||
Serial.println(MPU_RGDAAC0, HEX); | |||
// turn on clocks | |||
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz | |||
OSC0_CR |= OSC_ERCLKEN; | |||
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator | |||
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock | |||
print("power up USBHS PHY"); | |||
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit | |||
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237 | |||
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS; | |||
USBHSDCD_CLOCK = 33 << 2; | |||
print("init USBHS PHY & PLL"); | |||
// init process: page 1681-1682 | |||
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698 | |||
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3; | |||
//USBPHY_CTRL_SET = USBPHY_CTRL_FSDLL_RST_EN; // TODO: what does this do?? | |||
USBPHY_TRIM_OVERRIDE_EN_SET = 1; | |||
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE | | |||
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS; | |||
// wait for the PLL to lock | |||
int count=0; | |||
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) { | |||
count++; | |||
} | |||
Serial.print("PLL locked, waited "); | |||
Serial.println(count); | |||
// turn on power to PHY | |||
USBPHY_PWD = 0; | |||
delay(10); | |||
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change | |||
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :) | |||
// sanity check, output clocks on pin 9 for testing | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK | |||
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9) | |||
// now with the PHY up and running, start up USBHS | |||
print("begin ehci reset"); | |||
USBHS_USBCMD |= USBHS_USBCMD_RST; | |||
count = 0; | |||
while (USBHS_USBCMD & USBHS_USBCMD_RST) { | |||
count++; | |||
} | |||
print(" reset waited ", count); | |||
init_Device_Pipe_Transfer_memory(); | |||
for (int i=0; i < 32; i++) { | |||
periodictable[i] = 1; | |||
} | |||
port_state = PORT_STATE_DISCONNECTED; | |||
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration | |||
// turn on the USBHS controller | |||
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode | |||
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode | |||
USBHS_USBINTR = 0; | |||
USBHS_PERIODICLISTBASE = (uint32_t)periodictable; | |||
USBHS_FRINDEX = 0; | |||
USBHS_ASYNCLISTADDR = 0; | |||
USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS | | |||
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE | | |||
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1); // periodic table is 32 pointers | |||
// turn on the USB port | |||
//USBHS_PORTSC1 = USBHS_PORTSC_PP; | |||
USBHS_PORTSC1 |= USBHS_PORTSC_PP; | |||
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec | |||
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off | |||
Serial.print("USBHS_ASYNCLISTADDR = "); | |||
Serial.println(USBHS_ASYNCLISTADDR, HEX); | |||
Serial.print("USBHS_PERIODICLISTBASE = "); | |||
Serial.println(USBHS_PERIODICLISTBASE, HEX); | |||
Serial.print("periodictable = "); | |||
Serial.println((uint32_t)periodictable, HEX); | |||
// enable interrupts, after this point interruts to all the work | |||
NVIC_ENABLE_IRQ(IRQ_USBHS); | |||
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0; | |||
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE; | |||
USBHS_USBINTR |= USBHS_USBINTR_AAE; | |||
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE; | |||
} | |||
// EHCI registers page default | |||
// -------------- ---- ------- | |||
// USBHS_USBCMD 1599 00080000 USB Command | |||
// USBHS_USBSTS 1602 00000000 USB Status | |||
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable | |||
// USBHS_FRINDEX 1609 00000000 Frame Index Register | |||
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address | |||
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address | |||
// USBHS_PORTSC1 1619 00002000 Port Status and Control | |||
// USBHS_USBMODE 1629 00005000 USB Mode | |||
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control | |||
// PORT_STATE_DISCONNECTED 0 | |||
// PORT_STATE_DEBOUNCE 1 | |||
// PORT_STATE_RESET 2 | |||
// PORT_STATE_RECOVERY 3 | |||
// PORT_STATE_ACTIVE 4 | |||
void usbhs_isr() | |||
{ | |||
uint32_t stat = USBHS_USBSTS; | |||
USBHS_USBSTS = stat; // clear pending interrupts | |||
//stat &= USBHS_USBINTR; // mask away unwanted interrupts | |||
Serial.println(); | |||
Serial.print("ISR: "); | |||
Serial.print(stat, HEX); | |||
Serial.println(); | |||
if (stat & USBHS_USBSTS_UI) Serial.println(" USB Interrupt"); | |||
if (stat & USBHS_USBSTS_UEI) Serial.println(" USB Error"); | |||
if (stat & USBHS_USBSTS_PCI) Serial.println(" Port Change"); | |||
if (stat & USBHS_USBSTS_FRI) Serial.println(" Frame List Rollover"); | |||
if (stat & USBHS_USBSTS_SEI) Serial.println(" System Error"); | |||
if (stat & USBHS_USBSTS_AAI) Serial.println(" Async Advance (doorbell)"); | |||
if (stat & USBHS_USBSTS_URI) Serial.println(" Reset Recv"); | |||
if (stat & USBHS_USBSTS_SRI) Serial.println(" SOF"); | |||
if (stat & USBHS_USBSTS_SLI) Serial.println(" Suspend"); | |||
if (stat & USBHS_USBSTS_HCH) Serial.println(" Host Halted"); | |||
if (stat & USBHS_USBSTS_RCL) Serial.println(" Reclamation"); | |||
if (stat & USBHS_USBSTS_PS) Serial.println(" Periodic Sched En"); | |||
if (stat & USBHS_USBSTS_AS) Serial.println(" Async Sched En"); | |||
if (stat & USBHS_USBSTS_NAKI) Serial.println(" NAK"); | |||
if (stat & USBHS_USBSTS_UAI) Serial.println(" USB Async"); | |||
if (stat & USBHS_USBSTS_UPI) Serial.println(" USB Periodic"); | |||
if (stat & USBHS_USBSTS_TI0) Serial.println(" Timer0"); | |||
if (stat & USBHS_USBSTS_TI1) Serial.println(" Timer1"); | |||
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule | |||
Serial.println("Async Followup"); | |||
print(async_followup_first, async_followup_last); | |||
Transfer_t *p = async_followup_first; | |||
while (p) { | |||
if (followup_Transfer(p)) { | |||
// transfer completed | |||
Transfer_t *next = p->next_followup; | |||
remove_from_async_followup_list(p); | |||
free_Transfer(p); | |||
p = next; | |||
} else { | |||
// transfer still pending | |||
p = p->next_followup; | |||
} | |||
} | |||
print(async_followup_first, async_followup_last); | |||
} | |||
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule | |||
Serial.println("Periodic Followup"); | |||
Transfer_t *p = periodic_followup_first; | |||
while (p) { | |||
if (followup_Transfer(p)) { | |||
// transfer completed | |||
Transfer_t *next = p->next_followup; | |||
remove_from_periodic_followup_list(p); | |||
free_Transfer(p); | |||
p = next; | |||
} else { | |||
// transfer still pending | |||
p = p->next_followup; | |||
} | |||
} | |||
} | |||
if (stat & USBHS_USBSTS_PCI) { // port change detected | |||
const uint32_t portstat = USBHS_PORTSC1; | |||
Serial.print("port change: "); | |||
Serial.print(portstat, HEX); | |||
Serial.println(); | |||
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC); | |||
if (portstat & USBHS_PORTSC_OCC) { | |||
Serial.println(" overcurrent change"); | |||
} | |||
if (portstat & USBHS_PORTSC_CSC) { | |||
if (portstat & USBHS_PORTSC_CCS) { | |||
Serial.println(" connect"); | |||
if (port_state == PORT_STATE_DISCONNECTED | |||
|| port_state == PORT_STATE_DEBOUNCE) { | |||
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188) | |||
port_state = PORT_STATE_DEBOUNCE; | |||
USBHS_GPTIMER0LD = 100000; // microseconds | |||
USBHS_GPTIMER0CTL = | |||
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; | |||
stat &= ~USBHS_USBSTS_TI0; | |||
} | |||
} else { | |||
Serial.println(" disconnect"); | |||
port_state = PORT_STATE_DISCONNECTED; | |||
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT; | |||
// TODO: delete & clean up device state... | |||
} | |||
} | |||
if (portstat & USBHS_PORTSC_PEC) { | |||
// PEC bit only detects disable | |||
Serial.println(" disable"); | |||
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) { | |||
Serial.println(" port enabled"); | |||
port_state = PORT_STATE_RECOVERY; | |||
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188) | |||
USBHS_GPTIMER0LD = 10000; // microseconds | |||
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; | |||
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) { | |||
// turn on high-speed disconnect detector | |||
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT; | |||
} | |||
} | |||
if (portstat & USBHS_PORTSC_FPR) { | |||
Serial.println(" force resume"); | |||
} | |||
} | |||
if (stat & USBHS_USBSTS_TI0) { // timer 0 | |||
Serial.println("timer"); | |||
if (port_state == PORT_STATE_DEBOUNCE) { | |||
port_state = PORT_STATE_RESET; | |||
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence | |||
Serial.println(" begin reset"); | |||
} else if (port_state == PORT_STATE_RECOVERY) { | |||
port_state = PORT_STATE_ACTIVE; | |||
Serial.println(" end recovery"); | |||
// HCSPARAMS TTCTRL page 1671 | |||
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3; | |||
rootdev = new_Device(speed, 0, 0); | |||
} | |||
} | |||
} | |||
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag, | |||
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control, | |||
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address) | |||
{ | |||
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) | | |||
(max_packet_length << 16) | (head_of_list << 15) | | |||
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) | | |||
(inactivate << 7) | (address << 0) ); | |||
} | |||
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number, | |||
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask) | |||
{ | |||
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) | | |||
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) ); | |||
} | |||
// Create a new pipe. It's QH is added to the async or periodic schedule, | |||
// and a halt qTD is added to the QH, so we can grow the qTD list later. | |||
// | |||
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction, | |||
uint32_t max_packet_len) | |||
{ | |||
Pipe_t *pipe; | |||
Transfer_t *halt; | |||
uint32_t c=0, dtc=0; | |||
Serial.println("new_Pipe"); | |||
pipe = allocate_Pipe(); | |||
if (!pipe) return NULL; | |||
halt = allocate_Transfer(); | |||
if (!halt) { | |||
free_Pipe(pipe); | |||
return NULL; | |||
} | |||
memset(pipe, 0, sizeof(Pipe_t)); | |||
memset(halt, 0, sizeof(Transfer_t)); | |||
halt->qtd.next = 1; | |||
halt->qtd.token = 0x40; | |||
pipe->device = dev; | |||
pipe->qh.next = (uint32_t)halt; | |||
pipe->qh.alt_next = 1; | |||
pipe->direction = direction; | |||
pipe->type = type; | |||
if (type == 0) { | |||
// control | |||
if (dev->speed < 2) c = 1; | |||
dtc = 1; | |||
} else if (type == 2) { | |||
// bulk | |||
} else if (type == 3) { | |||
// interrupt | |||
} | |||
pipe->qh.capabilities[0] = QH_capabilities1(15, c, max_packet_len, 0, | |||
dtc, dev->speed, endpoint, 0, dev->address); | |||
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port, | |||
dev->hub_address, 0, 0); | |||
if (type == 0 || type == 2) { | |||
// control or bulk: add to async queue | |||
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR; | |||
if (list == NULL) { | |||
pipe->qh.capabilities[0] |= 0x8000; // H bit | |||
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH | |||
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh); | |||
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule | |||
Serial.println(" first in async list"); | |||
} else { | |||
// EHCI 1.0: section 4.8.1, page 72 | |||
pipe->qh.horizontal_link = list->qh.horizontal_link; | |||
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; | |||
Serial.println(" added to async list"); | |||
} | |||
} else if (type == 3) { | |||
// interrupt: add to periodic schedule | |||
// TODO: link it into the periodic table | |||
} | |||
return pipe; | |||
} | |||
// Fill in the qTD fields (token & data) | |||
// t the Transfer qTD to initialize | |||
// buf data to transfer | |||
// len length of data | |||
// pid type of packet: 0=OUT, 1=IN, 2=SETUP | |||
// data01 value of DATA0/DATA1 toggle on 1st packet | |||
// irq whether to generate an interrupt when transfer complete | |||
// | |||
void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len, | |||
uint32_t pid, uint32_t data01, bool irq) | |||
{ | |||
t->qtd.alt_next = 1; // 1=terminate | |||
if (data01) data01 = 0x80000000; | |||
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80; | |||
uint32_t addr = (uint32_t)buf; | |||
t->qtd.buffer[0] = addr; | |||
addr &= 0xFFFFF000; | |||
t->qtd.buffer[1] = addr + 0x1000; | |||
t->qtd.buffer[2] = addr + 0x2000; | |||
t->qtd.buffer[3] = addr + 0x3000; | |||
t->qtd.buffer[4] = addr + 0x4000; | |||
} | |||
// Create a Transfer and queue it | |||
// | |||
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len) | |||
{ | |||
Serial.println("new_Transfer"); | |||
Transfer_t *transfer = allocate_Transfer(); | |||
if (!transfer) return false; | |||
if (pipe->type == 0) { | |||
// control transfer | |||
Transfer_t *data, *status; | |||
uint32_t status_direction; | |||
if (len > 16384) { | |||
// hopefully we never need more | |||
// than 16K in a control transfer | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
status = allocate_Transfer(); | |||
if (!status) { | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
if (len > 0) { | |||
data = allocate_Transfer(); | |||
if (!data) { | |||
free_Transfer(transfer); | |||
free_Transfer(status); | |||
return false; | |||
} | |||
init_qTD(data, buffer, len, pipe->direction, 1, false); | |||
transfer->qtd.next = (uint32_t)data; | |||
data->qtd.next = (uint32_t)status; | |||
status_direction = pipe->direction ^ 1; | |||
} else { | |||
transfer->qtd.next = (uint32_t)status; | |||
status_direction = 1; // always IN, USB 2.0 page 226 | |||
} | |||
Serial.print("setup address "); | |||
Serial.println((uint32_t)&pipe->device->setup, HEX); | |||
init_qTD(transfer, &pipe->device->setup, 8, 2, 0, false); | |||
init_qTD(status, NULL, 0, status_direction, 1, true); | |||
status->pipe = pipe; | |||
status->buffer = buffer; | |||
status->length = len; | |||
status->qtd.next = 1; | |||
} else { | |||
// bulk, interrupt or isochronous transfer | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
// find halt qTD | |||
Transfer_t *halt = (Transfer_t *)(pipe->qh.next); | |||
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next); | |||
// transfer's token | |||
uint32_t token = transfer->qtd.token; | |||
// transfer becomes new halt qTD | |||
transfer->qtd.token = 0x40; | |||
// copy transfer non-token fields to halt | |||
halt->qtd.next = transfer->qtd.next; | |||
halt->qtd.alt_next = transfer->qtd.alt_next; | |||
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize... | |||
halt->qtd.buffer[1] = transfer->qtd.buffer[1]; | |||
halt->qtd.buffer[2] = transfer->qtd.buffer[2]; | |||
halt->qtd.buffer[3] = transfer->qtd.buffer[3]; | |||
halt->qtd.buffer[4] = transfer->qtd.buffer[4]; | |||
halt->pipe = pipe; | |||
// find the last qTD we're adding | |||
Transfer_t *last = halt; | |||
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next); | |||
// last points to transfer (which becomes new halt) | |||
last->qtd.next = (uint32_t)transfer; | |||
transfer->qtd.next = 1; | |||
// link all the new qTD by next_followup & prev_followup | |||
Transfer_t *prev = NULL; | |||
Transfer_t *p = halt; | |||
while (p->qtd.next != (uint32_t)transfer) { | |||
Transfer_t *next = (Transfer_t *)p->qtd.next; | |||
p->prev_followup = prev; | |||
p->next_followup = next; | |||
prev = p; | |||
p = next; | |||
} | |||
p->prev_followup = prev; | |||
p->next_followup = NULL; | |||
print(halt, p); | |||
// add them to a followup list | |||
if (pipe->type == 0 || pipe->type == 2) { | |||
// control or bulk | |||
add_to_async_followup_list(halt, p); | |||
} else { | |||
// interrupt | |||
add_to_periodic_followup_list(halt, p); | |||
} | |||
// old halt becomes new transfer, this commits all new qTDs to QH | |||
halt->qtd.token = token; | |||
return true; | |||
} | |||
bool followup_Transfer(Transfer_t *transfer) | |||
{ | |||
Serial.print(" Followup "); | |||
Serial.println((uint32_t)transfer, HEX); | |||
if (!(transfer->qtd.token & 0x80)) { | |||
// TODO: check error status | |||
if (transfer->qtd.token & 0x8000) { | |||
// this transfer caused an interrupt | |||
if (transfer->pipe->callback_function) { | |||
// do the callback | |||
(*(transfer->pipe->callback_function))(transfer); | |||
} | |||
} | |||
// do callback function... | |||
Serial.println(" completed"); | |||
return true; | |||
} | |||
return false; | |||
} | |||
void add_to_async_followup_list(Transfer_t *first, Transfer_t *last) | |||
{ | |||
last->next_followup = NULL; // always add to end of list | |||
if (async_followup_last == NULL) { | |||
first->prev_followup = NULL; | |||
async_followup_first = first; | |||
} else { | |||
first->prev_followup = async_followup_last; | |||
async_followup_last->next_followup = first; | |||
} | |||
async_followup_last = last; | |||
} | |||
void remove_from_async_followup_list(Transfer_t *transfer) | |||
{ | |||
Transfer_t *next = transfer->next_followup; | |||
Transfer_t *prev = transfer->prev_followup; | |||
if (prev) { | |||
prev->next_followup = next; | |||
} else { | |||
async_followup_first = next; | |||
} | |||
if (next) { | |||
next->prev_followup = prev; | |||
} else { | |||
async_followup_last = prev; | |||
} | |||
} | |||
void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last) | |||
{ | |||
last->next_followup = NULL; // always add to end of list | |||
if (periodic_followup_last == NULL) { | |||
first->prev_followup = NULL; | |||
periodic_followup_first = first; | |||
} else { | |||
first->prev_followup = periodic_followup_last; | |||
periodic_followup_last->next_followup = first; | |||
} | |||
periodic_followup_last = last; | |||
} | |||
void remove_from_periodic_followup_list(Transfer_t *transfer) | |||
{ | |||
Transfer_t *next = transfer->next_followup; | |||
Transfer_t *prev = transfer->prev_followup; | |||
if (prev) { | |||
prev->next_followup = next; | |||
} else { | |||
periodic_followup_first = next; | |||
} | |||
if (next) { | |||
next->prev_followup = prev; | |||
} else { | |||
periodic_followup_last = prev; | |||
} | |||
} | |||
@@ -0,0 +1,230 @@ | |||
/* USB EHCI Host for Teensy 3.6 | |||
* Copyright 2017 Paul Stoffregen (paul@pjrc.com) | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a | |||
* copy of this software and associated documentation files (the | |||
* "Software"), to deal in the Software without restriction, including | |||
* without limitation the rights to use, copy, modify, merge, publish, | |||
* distribute, sublicense, and/or sell copies of the Software, and to | |||
* permit persons to whom the Software is furnished to do so, subject to | |||
* the following conditions: | |||
* | |||
* The above copyright notice and this permission notice shall be included | |||
* in all copies or substantial portions of the Software. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
*/ | |||
#include <Arduino.h> | |||
#include "USBHost.h" | |||
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest, | |||
uint32_t wValue, uint32_t wIndex, uint32_t wLength) | |||
{ | |||
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16); | |||
s.word2 = wIndex | (wLength << 16); | |||
} | |||
static uint8_t enumbuf[256] __attribute__ ((aligned(16))); | |||
// Create a new device and begin the enumeration process | |||
// | |||
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port) | |||
{ | |||
Device_t *dev; | |||
Serial.print("new_Device: "); | |||
switch (speed) { | |||
case 0: Serial.print("12"); break; | |||
case 1: Serial.print("1.5"); break; | |||
case 2: Serial.print("480"); break; | |||
default: Serial.print("??"); | |||
} | |||
Serial.println(" Mbit/sec"); | |||
dev = allocate_Device(); | |||
if (!dev) return NULL; | |||
memset(dev, 0, sizeof(Device_t)); | |||
dev->speed = speed; | |||
dev->address = 0; | |||
dev->hub_address = hub_addr; | |||
dev->hub_port = hub_port; | |||
dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8); | |||
if (!dev->control_pipe) { | |||
free_Device(dev); | |||
return NULL; | |||
} | |||
dev->control_pipe->callback_function = &enumeration; | |||
dev->control_pipe->direction = 1; // 1=IN | |||
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 8); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 8); | |||
return dev; | |||
} | |||
void enumeration(const Transfer_t *transfer) | |||
{ | |||
uint32_t len; | |||
Serial.print(" CALLBACK: "); | |||
print_hexbytes(transfer->buffer, transfer->length); | |||
//print(transfer); | |||
Device_t *dev = transfer->pipe->device; | |||
while (1) { | |||
// Within this large switch/case, "break" means we've done | |||
// some work, but more remains to be done in a different | |||
// state. Generally break is used after parsing received | |||
// data, but what happens next could be different states. | |||
// When completed, return is used. Generally, return happens | |||
// only after a new control transfer is queued, or when | |||
// enumeration is complete and no more communication is needed. | |||
switch (dev->enum_state) { | |||
case 0: // read 8 bytes of device desc, set max packet, and send set address | |||
pipe_set_maxlen(dev->control_pipe, enumbuf[7]); | |||
mk_setup(dev->setup, 0, 5, assign_addr(), 0, 0); // 5=SET_ADDRESS | |||
new_Transfer(dev->control_pipe, NULL, 0); | |||
dev->enum_state = 1; | |||
return; | |||
case 1: // request all 18 bytes of device descriptor | |||
pipe_set_addr(dev->control_pipe, dev->setup.wValue); | |||
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 18); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 18); | |||
dev->enum_state = 2; | |||
return; | |||
case 2: // parse 18 device desc bytes | |||
dev->bDeviceClass = enumbuf[4]; | |||
dev->bDeviceSubClass = enumbuf[5]; | |||
dev->bDeviceProtocol = enumbuf[6]; | |||
dev->idVendor = enumbuf[8] | (enumbuf[9] << 8); | |||
dev->idProduct = enumbuf[10] | (enumbuf[11] << 8); | |||
enumbuf[0] = enumbuf[14]; | |||
enumbuf[1] = enumbuf[15]; | |||
enumbuf[2] = enumbuf[16]; | |||
if ((enumbuf[0] | enumbuf[1] | enumbuf[2]) > 0) { | |||
dev->enum_state = 3; | |||
} else { | |||
dev->enum_state = 11; | |||
} | |||
break; | |||
case 3: // request Language ID | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300, 0, len); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 4; | |||
return; | |||
case 4: // parse Language ID | |||
if (enumbuf[4] < 4 || enumbuf[5] != 3) { | |||
dev->enum_state = 11; | |||
} else { | |||
dev->LanguageID = enumbuf[6] | (enumbuf[7] << 8); | |||
if (enumbuf[0]) dev->enum_state = 5; | |||
else if (enumbuf[1]) dev->enum_state = 7; | |||
else if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
} | |||
break; | |||
case 5: // request Manufacturer string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[0], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 6; | |||
return; | |||
case 6: // parse Manufacturer string | |||
// TODO: receive the string... | |||
if (enumbuf[1]) dev->enum_state = 7; | |||
else if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
break; | |||
case 7: // request Product string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[1], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 8; | |||
return; | |||
case 8: // parse Product string | |||
// TODO: receive the string... | |||
if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
break; | |||
case 9: // request Serial Number string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[2], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 10; | |||
return; | |||
case 10: // parse Serial Number string | |||
// TODO: receive the string... | |||
dev->enum_state = 11; | |||
break; | |||
case 11: // request first 9 bytes of config desc | |||
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, 9); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 9); | |||
dev->enum_state = 12; | |||
return; | |||
case 12: // read 9 bytes, request all of config desc | |||
len = enumbuf[2] | (enumbuf[3] << 8); | |||
Serial.print("Config data length = "); | |||
Serial.println(len); | |||
if (len > sizeof(enumbuf)) { | |||
// TODO: how to handle device with too much config data | |||
} | |||
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, len); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, len); | |||
dev->enum_state = 13; | |||
return; | |||
case 13: // read all config desc, send set config | |||
Serial.print("bNumInterfaces = "); | |||
Serial.println(enumbuf[4]); | |||
Serial.print("bConfigurationValue = "); | |||
Serial.println(enumbuf[5]); | |||
// TODO: actually do something with interface descriptor? | |||
mk_setup(dev->setup, 0, 9, enumbuf[5], 0, 0); // 9=SET_CONFIGURATION | |||
new_Transfer(dev->control_pipe, NULL, 0); | |||
dev->enum_state = 14; | |||
return; | |||
case 14: // device is now configured | |||
// TODO: initialize drivers?? | |||
dev->enum_state = 15; | |||
return; | |||
case 15: // control transfers for other stuff?? | |||
default: | |||
return; | |||
} | |||
} | |||
} | |||
uint32_t assign_addr(void) | |||
{ | |||
return 29; // TODO: when multiple devices, assign a unique address | |||
} | |||
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen) | |||
{ | |||
Serial.print("pipe_set_maxlen "); | |||
Serial.println(maxlen); | |||
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0x8000FFFF) | (maxlen << 16); | |||
} | |||
void pipe_set_addr(Pipe_t *pipe, uint32_t addr) | |||
{ | |||
Serial.print("pipe_set_addr "); | |||
Serial.println(addr); | |||
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0xFFFFFF80) | addr; | |||
} | |||
uint32_t pipe_get_addr(Pipe_t *pipe) | |||
{ | |||
return pipe->qh.capabilities[0] & 0xFFFFFF80; | |||
} | |||
@@ -21,20 +21,7 @@ | |||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
*/ | |||
#include "host.h" | |||
uint32_t periodictable[32] __attribute__ ((aligned(4096), used)); | |||
uint8_t port_state; | |||
#define PORT_STATE_DISCONNECTED 0 | |||
#define PORT_STATE_DEBOUNCE 1 | |||
#define PORT_STATE_RESET 2 | |||
#define PORT_STATE_RECOVERY 3 | |||
#define PORT_STATE_ACTIVE 4 | |||
Device_t *rootdev=NULL; | |||
Transfer_t *async_followup_first=NULL; | |||
Transfer_t *async_followup_last=NULL; | |||
Transfer_t *periodic_followup_first=NULL; | |||
Transfer_t *periodic_followup_last=NULL; | |||
#include "USBHost.h" | |||
void setup() | |||
{ | |||
@@ -43,111 +30,11 @@ void setup() | |||
digitalWrite(32, LOW); | |||
pinMode(30, OUTPUT); // pin 30 = debug info - use oscilloscope | |||
digitalWrite(30, LOW); | |||
// Teensy 3.6 has USB host power controlled by PTE6 | |||
PORTE_PCR6 = PORT_PCR_MUX(1); | |||
GPIOE_PDDR |= (1<<6); | |||
GPIOE_PSOR = (1<<6); // turn on USB host power | |||
while (!Serial) ; // wait | |||
Serial.println("USB Host Testing"); | |||
Serial.print("sizeof Device = "); | |||
Serial.println(sizeof(Device_t)); | |||
Serial.print("sizeof Pipe = "); | |||
Serial.println(sizeof(Pipe_t)); | |||
Serial.print("sizeof Transfer = "); | |||
Serial.println(sizeof(Transfer_t)); | |||
// configure the MPU to allow USBHS DMA to access memory | |||
MPU_RGDAAC0 |= 0x30000000; | |||
Serial.print("MPU_RGDAAC0 = "); | |||
Serial.println(MPU_RGDAAC0, HEX); | |||
// turn on clocks | |||
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz | |||
OSC0_CR |= OSC_ERCLKEN; | |||
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator | |||
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock | |||
print("power up USBHS PHY"); | |||
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit | |||
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237 | |||
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS; | |||
USBHSDCD_CLOCK = 33 << 2; | |||
print("init USBHS PHY & PLL"); | |||
// init process: page 1681-1682 | |||
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698 | |||
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3; | |||
USBPHY_TRIM_OVERRIDE_EN_SET = 1; | |||
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE | | |||
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS; | |||
// wait for the PLL to lock | |||
int count=0; | |||
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) { | |||
count++; | |||
} | |||
Serial.print("PLL locked, waited "); | |||
Serial.println(count); | |||
// turn on power to PHY | |||
USBPHY_PWD = 0; | |||
delay(10); | |||
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change | |||
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :) | |||
// sanity check, output clocks on pin 9 for testing | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz | |||
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK | |||
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9) | |||
// now with the PHY up and running, start up USBHS | |||
print("begin ehci reset"); | |||
USBHS_USBCMD |= USBHS_USBCMD_RST; | |||
count = 0; | |||
while (USBHS_USBCMD & USBHS_USBCMD_RST) { | |||
count++; | |||
} | |||
print(" reset waited ", count); | |||
init_Device_Pipe_Transfer_memory(); | |||
for (int i=0; i < 32; i++) { | |||
periodictable[i] = 1; | |||
} | |||
port_state = PORT_STATE_DISCONNECTED; | |||
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration | |||
// turn on the USBHS controller | |||
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode | |||
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode | |||
USBHS_USBINTR = 0; | |||
USBHS_PERIODICLISTBASE = (uint32_t)periodictable; | |||
USBHS_FRINDEX = 0; | |||
USBHS_ASYNCLISTADDR = 0; | |||
USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS | | |||
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE | | |||
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1); // periodic table is 32 pointers | |||
// turn on the USB port | |||
//USBHS_PORTSC1 = USBHS_PORTSC_PP; | |||
USBHS_PORTSC1 |= USBHS_PORTSC_PP; | |||
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec | |||
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off | |||
Serial.print("USBHS_ASYNCLISTADDR = "); | |||
Serial.println(USBHS_ASYNCLISTADDR, HEX); | |||
Serial.print("USBHS_PERIODICLISTBASE = "); | |||
Serial.println(USBHS_PERIODICLISTBASE, HEX); | |||
Serial.print("periodictable = "); | |||
Serial.println((uint32_t)periodictable, HEX); | |||
while (!Serial) ; // wait for Arduino Serial Monitor | |||
Serial.println("USB Host Testing"); | |||
// enable interrupts, after this point interruts to all the work | |||
NVIC_ENABLE_IRQ(IRQ_USBHS); | |||
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0; | |||
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE; | |||
USBHS_USBINTR |= USBHS_USBINTR_AAE; | |||
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE; | |||
begin(); | |||
delay(25); | |||
Serial.println("Plug in device..."); | |||
@@ -162,6 +49,7 @@ void setup() | |||
#endif | |||
} | |||
void loop() | |||
{ | |||
} | |||
@@ -175,830 +63,4 @@ void pulse(int usec) | |||
digitalWriteFast(30, LOW); | |||
} | |||
// EHCI registers page default | |||
// -------------- ---- ------- | |||
// USBHS_USBCMD 1599 00080000 USB Command | |||
// USBHS_USBSTS 1602 00000000 USB Status | |||
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable | |||
// USBHS_FRINDEX 1609 00000000 Frame Index Register | |||
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address | |||
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address | |||
// USBHS_PORTSC1 1619 00002000 Port Status and Control | |||
// USBHS_USBMODE 1629 00005000 USB Mode | |||
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control | |||
// PORT_STATE_DISCONNECTED 0 | |||
// PORT_STATE_DEBOUNCE 1 | |||
// PORT_STATE_RESET 2 | |||
// PORT_STATE_RECOVERY 3 | |||
// PORT_STATE_ACTIVE 4 | |||
void usbhs_isr(void) | |||
{ | |||
uint32_t stat = USBHS_USBSTS; | |||
USBHS_USBSTS = stat; // clear pending interrupts | |||
//stat &= USBHS_USBINTR; // mask away unwanted interrupts | |||
Serial.println(); | |||
Serial.print("ISR: "); | |||
Serial.print(stat, HEX); | |||
Serial.println(); | |||
if (stat & USBHS_USBSTS_UI) Serial.println(" USB Interrupt"); | |||
if (stat & USBHS_USBSTS_UEI) Serial.println(" USB Error"); | |||
if (stat & USBHS_USBSTS_PCI) Serial.println(" Port Change"); | |||
if (stat & USBHS_USBSTS_FRI) Serial.println(" Frame List Rollover"); | |||
if (stat & USBHS_USBSTS_SEI) Serial.println(" System Error"); | |||
if (stat & USBHS_USBSTS_AAI) Serial.println(" Async Advance (doorbell)"); | |||
if (stat & USBHS_USBSTS_URI) Serial.println(" Reset Recv"); | |||
if (stat & USBHS_USBSTS_SRI) Serial.println(" SOF"); | |||
if (stat & USBHS_USBSTS_SLI) Serial.println(" Suspend"); | |||
if (stat & USBHS_USBSTS_HCH) Serial.println(" Host Halted"); | |||
if (stat & USBHS_USBSTS_RCL) Serial.println(" Reclamation"); | |||
if (stat & USBHS_USBSTS_PS) Serial.println(" Periodic Sched En"); | |||
if (stat & USBHS_USBSTS_AS) Serial.println(" Async Sched En"); | |||
if (stat & USBHS_USBSTS_NAKI) Serial.println(" NAK"); | |||
if (stat & USBHS_USBSTS_UAI) Serial.println(" USB Async"); | |||
if (stat & USBHS_USBSTS_UPI) Serial.println(" USB Periodic"); | |||
if (stat & USBHS_USBSTS_TI0) Serial.println(" Timer0"); | |||
if (stat & USBHS_USBSTS_TI1) Serial.println(" Timer1"); | |||
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule | |||
Serial.println("Async Followup"); | |||
print(async_followup_first, async_followup_last); | |||
Transfer_t *p = async_followup_first; | |||
while (p) { | |||
if (followup_Transfer(p)) { | |||
// transfer completed | |||
Transfer_t *next = p->next_followup; | |||
remove_from_async_followup_list(p); | |||
free_Transfer(p); | |||
p = next; | |||
} else { | |||
// transfer still pending | |||
p = p->next_followup; | |||
} | |||
} | |||
print(async_followup_first, async_followup_last); | |||
} | |||
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule | |||
Serial.println("Periodic Followup"); | |||
Transfer_t *p = periodic_followup_first; | |||
while (p) { | |||
if (followup_Transfer(p)) { | |||
// transfer completed | |||
Transfer_t *next = p->next_followup; | |||
remove_from_periodic_followup_list(p); | |||
free_Transfer(p); | |||
p = next; | |||
} else { | |||
// transfer still pending | |||
p = p->next_followup; | |||
} | |||
} | |||
} | |||
if (stat & USBHS_USBSTS_PCI) { // port change detected | |||
const uint32_t portstat = USBHS_PORTSC1; | |||
Serial.print("port change: "); | |||
Serial.print(portstat, HEX); | |||
Serial.println(); | |||
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC); | |||
if (portstat & USBHS_PORTSC_OCC) { | |||
Serial.println(" overcurrent change"); | |||
} | |||
if (portstat & USBHS_PORTSC_CSC) { | |||
if (portstat & USBHS_PORTSC_CCS) { | |||
Serial.println(" connect"); | |||
if (port_state == PORT_STATE_DISCONNECTED | |||
|| port_state == PORT_STATE_DEBOUNCE) { | |||
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188) | |||
port_state = PORT_STATE_DEBOUNCE; | |||
USBHS_GPTIMER0LD = 100000; // microseconds | |||
USBHS_GPTIMER0CTL = | |||
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; | |||
stat &= ~USBHS_USBSTS_TI0; | |||
} | |||
} else { | |||
Serial.println(" disconnect"); | |||
port_state = PORT_STATE_DISCONNECTED; | |||
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT; | |||
// TODO: delete & clean up device state... | |||
} | |||
} | |||
if (portstat & USBHS_PORTSC_PEC) { | |||
// PEC bit only detects disable | |||
Serial.println(" disable"); | |||
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) { | |||
Serial.println(" port enabled"); | |||
port_state = PORT_STATE_RECOVERY; | |||
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188) | |||
USBHS_GPTIMER0LD = 10000; // microseconds | |||
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; | |||
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) { | |||
// turn on high-speed disconnect detector | |||
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT; | |||
} | |||
} | |||
if (portstat & USBHS_PORTSC_FPR) { | |||
Serial.println(" force resume"); | |||
} | |||
pulse(1); | |||
} | |||
if (stat & USBHS_USBSTS_TI0) { // timer 0 | |||
Serial.println("timer"); | |||
pulse(2); | |||
if (port_state == PORT_STATE_DEBOUNCE) { | |||
port_state = PORT_STATE_RESET; | |||
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence | |||
Serial.println(" begin reset"); | |||
} else if (port_state == PORT_STATE_RECOVERY) { | |||
port_state = PORT_STATE_ACTIVE; | |||
Serial.println(" end recovery"); | |||
// HCSPARAMS TTCTRL page 1671 | |||
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3; | |||
rootdev = new_Device(speed, 0, 0); | |||
} | |||
} | |||
} | |||
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest, | |||
uint32_t wValue, uint32_t wIndex, uint32_t wLength) | |||
{ | |||
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16); | |||
s.word2 = wIndex | (wLength << 16); | |||
} | |||
static uint8_t enumbuf[256] __attribute__ ((aligned(16))); | |||
void enumeration(const Transfer_t *transfer) | |||
{ | |||
uint32_t len; | |||
Serial.print(" CALLBACK: "); | |||
print_hexbytes(transfer->buffer, transfer->length); | |||
//print(transfer); | |||
Device_t *dev = transfer->pipe->device; | |||
while (1) { | |||
// Within this large switch/case, "break" means we've done | |||
// some work, but more remains to be done in a different | |||
// state. Generally break is used after parsing received | |||
// data, but what happens next could be different states. | |||
// When completed, return is used. Generally, return happens | |||
// only after a new control transfer is queued, or when | |||
// enumeration is complete and no more communication is needed. | |||
switch (dev->enum_state) { | |||
case 0: // read 8 bytes of device desc, set max packet, and send set address | |||
pipe_set_maxlen(dev->control_pipe, enumbuf[7]); | |||
mk_setup(dev->setup, 0, 5, assign_addr(), 0, 0); // 5=SET_ADDRESS | |||
new_Transfer(dev->control_pipe, NULL, 0); | |||
dev->enum_state = 1; | |||
return; | |||
case 1: // request all 18 bytes of device descriptor | |||
pipe_set_addr(dev->control_pipe, dev->setup.wValue); | |||
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 18); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 18); | |||
dev->enum_state = 2; | |||
return; | |||
case 2: // parse 18 device desc bytes | |||
dev->bDeviceClass = enumbuf[4]; | |||
dev->bDeviceSubClass = enumbuf[5]; | |||
dev->bDeviceProtocol = enumbuf[6]; | |||
dev->idVendor = enumbuf[8] | (enumbuf[9] << 8); | |||
dev->idProduct = enumbuf[10] | (enumbuf[11] << 8); | |||
enumbuf[0] = enumbuf[14]; | |||
enumbuf[1] = enumbuf[15]; | |||
enumbuf[2] = enumbuf[16]; | |||
if ((enumbuf[0] | enumbuf[1] | enumbuf[2]) > 0) { | |||
dev->enum_state = 3; | |||
} else { | |||
dev->enum_state = 11; | |||
} | |||
break; | |||
case 3: // request Language ID | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300, 0, len); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 4; | |||
return; | |||
case 4: // parse Language ID | |||
if (enumbuf[4] < 4 || enumbuf[5] != 3) { | |||
dev->enum_state = 11; | |||
} else { | |||
dev->LanguageID = enumbuf[6] | (enumbuf[7] << 8); | |||
if (enumbuf[0]) dev->enum_state = 5; | |||
else if (enumbuf[1]) dev->enum_state = 7; | |||
else if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
} | |||
break; | |||
case 5: // request Manufacturer string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[0], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 6; | |||
return; | |||
case 6: // parse Manufacturer string | |||
// TODO: receive the string... | |||
if (enumbuf[1]) dev->enum_state = 7; | |||
else if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
break; | |||
case 7: // request Product string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[1], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 8; | |||
return; | |||
case 8: // parse Product string | |||
// TODO: receive the string... | |||
if (enumbuf[2]) dev->enum_state = 9; | |||
else dev->enum_state = 11; | |||
break; | |||
case 9: // request Serial Number string | |||
len = sizeof(enumbuf) - 4; | |||
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[2], dev->LanguageID, len); | |||
new_Transfer(dev->control_pipe, enumbuf + 4, len); | |||
dev->enum_state = 10; | |||
return; | |||
case 10: // parse Serial Number string | |||
// TODO: receive the string... | |||
dev->enum_state = 11; | |||
break; | |||
case 11: // request first 9 bytes of config desc | |||
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, 9); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 9); | |||
dev->enum_state = 12; | |||
return; | |||
case 12: // read 9 bytes, request all of config desc | |||
len = enumbuf[2] | (enumbuf[3] << 8); | |||
Serial.print("Config data length = "); | |||
Serial.println(len); | |||
if (len > sizeof(enumbuf)) { | |||
// TODO: how to handle device with too much config data | |||
} | |||
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, len); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, len); | |||
dev->enum_state = 13; | |||
return; | |||
case 13: // read all config desc, send set config | |||
Serial.print("bNumInterfaces = "); | |||
Serial.println(enumbuf[4]); | |||
Serial.print("bConfigurationValue = "); | |||
Serial.println(enumbuf[5]); | |||
// TODO: actually do something with interface descriptor? | |||
mk_setup(dev->setup, 0, 9, enumbuf[5], 0, 0); // 9=SET_CONFIGURATION | |||
new_Transfer(dev->control_pipe, NULL, 0); | |||
dev->enum_state = 14; | |||
return; | |||
case 14: // device is now configured | |||
// TODO: initialize drivers?? | |||
dev->enum_state = 15; | |||
return; | |||
case 15: // control transfers for other stuff?? | |||
default: | |||
return; | |||
} | |||
} | |||
} | |||
uint32_t assign_addr(void) | |||
{ | |||
return 29; // TODO: when multiple devices, assign a unique address | |||
} | |||
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen) | |||
{ | |||
Serial.print("pipe_set_maxlen "); | |||
Serial.println(maxlen); | |||
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0x8000FFFF) | (maxlen << 16); | |||
} | |||
void pipe_set_addr(Pipe_t *pipe, uint32_t addr) | |||
{ | |||
Serial.print("pipe_set_addr "); | |||
Serial.println(addr); | |||
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0xFFFFFF80) | addr; | |||
} | |||
uint32_t pipe_get_addr(Pipe_t *pipe) | |||
{ | |||
return pipe->qh.capabilities[0] & 0xFFFFFF80; | |||
} | |||
// Create a new device and begin the enumeration process | |||
// | |||
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port) | |||
{ | |||
Device_t *dev; | |||
Serial.print("new_Device: "); | |||
switch (speed) { | |||
case 0: Serial.print("12"); break; | |||
case 1: Serial.print("1.5"); break; | |||
case 2: Serial.print("480"); break; | |||
default: Serial.print("??"); | |||
} | |||
Serial.println(" Mbit/sec"); | |||
dev = allocate_Device(); | |||
if (!dev) return NULL; | |||
memset(dev, 0, sizeof(Device_t)); | |||
dev->speed = speed; | |||
dev->address = 0; | |||
dev->hub_address = hub_addr; | |||
dev->hub_port = hub_port; | |||
dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8); | |||
if (!dev->control_pipe) { | |||
free_Device(dev); | |||
return NULL; | |||
} | |||
dev->control_pipe->callback_function = &enumeration; | |||
dev->control_pipe->direction = 1; // 1=IN | |||
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 8); // 6=GET_DESCRIPTOR | |||
new_Transfer(dev->control_pipe, enumbuf, 8); | |||
return dev; | |||
} | |||
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag, | |||
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control, | |||
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address) | |||
{ | |||
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) | | |||
(max_packet_length << 16) | (head_of_list << 15) | | |||
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) | | |||
(inactivate << 7) | (address << 0) ); | |||
} | |||
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number, | |||
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask) | |||
{ | |||
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) | | |||
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) ); | |||
} | |||
// Create a new pipe. It's QH is added to the async or periodic schedule, | |||
// and a halt qTD is added to the QH, so we can grow the qTD list later. | |||
// | |||
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction, | |||
uint32_t max_packet_len) | |||
{ | |||
Pipe_t *pipe; | |||
Transfer_t *halt; | |||
uint32_t c=0, dtc=0; | |||
Serial.println("new_Pipe"); | |||
pipe = allocate_Pipe(); | |||
if (!pipe) return NULL; | |||
halt = allocate_Transfer(); | |||
if (!halt) { | |||
free_Pipe(pipe); | |||
return NULL; | |||
} | |||
memset(pipe, 0, sizeof(Pipe_t)); | |||
memset(halt, 0, sizeof(Transfer_t)); | |||
halt->qtd.next = 1; | |||
halt->qtd.token = 0x40; | |||
pipe->device = dev; | |||
pipe->qh.next = (uint32_t)halt; | |||
pipe->qh.alt_next = 1; | |||
pipe->direction = direction; | |||
pipe->type = type; | |||
if (type == 0) { | |||
// control | |||
if (dev->speed < 2) c = 1; | |||
dtc = 1; | |||
} else if (type == 2) { | |||
// bulk | |||
} else if (type == 3) { | |||
// interrupt | |||
} | |||
pipe->qh.capabilities[0] = QH_capabilities1(15, c, max_packet_len, 0, | |||
dtc, dev->speed, endpoint, 0, dev->address); | |||
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port, | |||
dev->hub_address, 0, 0); | |||
if (type == 0 || type == 2) { | |||
// control or bulk: add to async queue | |||
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR; | |||
if (list == NULL) { | |||
pipe->qh.capabilities[0] |= 0x8000; // H bit | |||
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH | |||
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh); | |||
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule | |||
Serial.println(" first in async list"); | |||
} else { | |||
// EHCI 1.0: section 4.8.1, page 72 | |||
pipe->qh.horizontal_link = list->qh.horizontal_link; | |||
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; | |||
Serial.println(" added to async list"); | |||
} | |||
} else if (type == 3) { | |||
// interrupt: add to periodic schedule | |||
// TODO: link it into the periodic table | |||
} | |||
return pipe; | |||
} | |||
// Fill in the qTD fields (token & data) | |||
// t the Transfer qTD to initialize | |||
// buf data to transfer | |||
// len length of data | |||
// pid type of packet: 0=OUT, 1=IN, 2=SETUP | |||
// data01 value of DATA0/DATA1 toggle on 1st packet | |||
// irq whether to generate an interrupt when transfer complete | |||
// | |||
void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len, | |||
uint32_t pid, uint32_t data01, bool irq) | |||
{ | |||
t->qtd.alt_next = 1; // 1=terminate | |||
if (data01) data01 = 0x80000000; | |||
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80; | |||
uint32_t addr = (uint32_t)buf; | |||
t->qtd.buffer[0] = addr; | |||
addr &= 0xFFFFF000; | |||
t->qtd.buffer[1] = addr + 0x1000; | |||
t->qtd.buffer[2] = addr + 0x2000; | |||
t->qtd.buffer[3] = addr + 0x3000; | |||
t->qtd.buffer[4] = addr + 0x4000; | |||
} | |||
// Create a Transfer and queue it | |||
// | |||
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len) | |||
{ | |||
Serial.println("new_Transfer"); | |||
Transfer_t *transfer = allocate_Transfer(); | |||
if (!transfer) return false; | |||
if (pipe->type == 0) { | |||
// control transfer | |||
Transfer_t *data, *status; | |||
uint32_t status_direction; | |||
if (len > 16384) { | |||
// hopefully we never need more | |||
// than 16K in a control transfer | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
status = allocate_Transfer(); | |||
if (!status) { | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
if (len > 0) { | |||
data = allocate_Transfer(); | |||
if (!data) { | |||
free_Transfer(transfer); | |||
free_Transfer(status); | |||
return false; | |||
} | |||
init_qTD(data, buffer, len, pipe->direction, 1, false); | |||
transfer->qtd.next = (uint32_t)data; | |||
data->qtd.next = (uint32_t)status; | |||
status_direction = pipe->direction ^ 1; | |||
} else { | |||
transfer->qtd.next = (uint32_t)status; | |||
status_direction = 1; // always IN, USB 2.0 page 226 | |||
} | |||
Serial.print("setup address "); | |||
Serial.println((uint32_t)&pipe->device->setup, HEX); | |||
init_qTD(transfer, &pipe->device->setup, 8, 2, 0, false); | |||
init_qTD(status, NULL, 0, status_direction, 1, true); | |||
status->pipe = pipe; | |||
status->buffer = buffer; | |||
status->length = len; | |||
status->qtd.next = 1; | |||
} else { | |||
// bulk, interrupt or isochronous transfer | |||
free_Transfer(transfer); | |||
return false; | |||
} | |||
// find halt qTD | |||
Transfer_t *halt = (Transfer_t *)(pipe->qh.next); | |||
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next); | |||
// transfer's token | |||
uint32_t token = transfer->qtd.token; | |||
// transfer becomes new halt qTD | |||
transfer->qtd.token = 0x40; | |||
// copy transfer non-token fields to halt | |||
halt->qtd.next = transfer->qtd.next; | |||
halt->qtd.alt_next = transfer->qtd.alt_next; | |||
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize... | |||
halt->qtd.buffer[1] = transfer->qtd.buffer[1]; | |||
halt->qtd.buffer[2] = transfer->qtd.buffer[2]; | |||
halt->qtd.buffer[3] = transfer->qtd.buffer[3]; | |||
halt->qtd.buffer[4] = transfer->qtd.buffer[4]; | |||
halt->pipe = pipe; | |||
// find the last qTD we're adding | |||
Transfer_t *last = halt; | |||
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next); | |||
// last points to transfer (which becomes new halt) | |||
last->qtd.next = (uint32_t)transfer; | |||
transfer->qtd.next = 1; | |||
// link all the new qTD by next_followup & prev_followup | |||
Transfer_t *prev = NULL; | |||
Transfer_t *p = halt; | |||
while (p->qtd.next != (uint32_t)transfer) { | |||
Transfer_t *next = (Transfer_t *)p->qtd.next; | |||
p->prev_followup = prev; | |||
p->next_followup = next; | |||
prev = p; | |||
p = next; | |||
} | |||
p->prev_followup = prev; | |||
p->next_followup = NULL; | |||
print(halt, p); | |||
// add them to a followup list | |||
if (pipe->type == 0 || pipe->type == 2) { | |||
// control or bulk | |||
add_to_async_followup_list(halt, p); | |||
} else { | |||
// interrupt | |||
add_to_periodic_followup_list(halt, p); | |||
} | |||
// old halt becomes new transfer, this commits all new qTDs to QH | |||
halt->qtd.token = token; | |||
return true; | |||
} | |||
bool followup_Transfer(Transfer_t *transfer) | |||
{ | |||
Serial.print(" Followup "); | |||
Serial.println((uint32_t)transfer, HEX); | |||
if (!(transfer->qtd.token & 0x80)) { | |||
// TODO: check error status | |||
if (transfer->qtd.token & 0x8000) { | |||
// this transfer caused an interrupt | |||
if (transfer->pipe->callback_function) { | |||
// do the callback | |||
(*(transfer->pipe->callback_function))(transfer); | |||
} | |||
} | |||
// do callback function... | |||
Serial.println(" completed"); | |||
return true; | |||
} | |||
return false; | |||
} | |||
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last) | |||
{ | |||
last->next_followup = NULL; // always add to end of list | |||
if (async_followup_last == NULL) { | |||
first->prev_followup = NULL; | |||
async_followup_first = first; | |||
} else { | |||
first->prev_followup = async_followup_last; | |||
async_followup_last->next_followup = first; | |||
} | |||
async_followup_last = last; | |||
} | |||
static void remove_from_async_followup_list(Transfer_t *transfer) | |||
{ | |||
Transfer_t *next = transfer->next_followup; | |||
Transfer_t *prev = transfer->prev_followup; | |||
if (prev) { | |||
prev->next_followup = next; | |||
} else { | |||
async_followup_first = next; | |||
} | |||
if (next) { | |||
next->prev_followup = prev; | |||
} else { | |||
async_followup_last = prev; | |||
} | |||
} | |||
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last) | |||
{ | |||
last->next_followup = NULL; // always add to end of list | |||
if (periodic_followup_last == NULL) { | |||
first->prev_followup = NULL; | |||
periodic_followup_first = first; | |||
} else { | |||
first->prev_followup = periodic_followup_last; | |||
periodic_followup_last->next_followup = first; | |||
} | |||
periodic_followup_last = last; | |||
} | |||
static void remove_from_periodic_followup_list(Transfer_t *transfer) | |||
{ | |||
Transfer_t *next = transfer->next_followup; | |||
Transfer_t *prev = transfer->prev_followup; | |||
if (prev) { | |||
prev->next_followup = next; | |||
} else { | |||
periodic_followup_first = next; | |||
} | |||
if (next) { | |||
next->prev_followup = prev; | |||
} else { | |||
periodic_followup_last = prev; | |||
} | |||
} | |||
void print(const Transfer_t *transfer) | |||
{ | |||
if (!((uint32_t)transfer & 0xFFFFFFE0)) return; | |||
Serial.print("Transfer @ "); | |||
Serial.println(((uint32_t)transfer & 0xFFFFFFE0), HEX); | |||
Serial.print(" next: "); | |||
Serial.println(transfer->qtd.next, HEX); | |||
Serial.print(" anext: "); | |||
Serial.println(transfer->qtd.alt_next, HEX); | |||
Serial.print(" token: "); | |||
Serial.println(transfer->qtd.token, HEX); | |||
Serial.print(" bufs: "); | |||
for (int i=0; i < 5; i++) { | |||
Serial.print(transfer->qtd.buffer[i], HEX); | |||
if (i < 4) Serial.print(','); | |||
} | |||
Serial.println(); | |||
} | |||
void print(const Transfer_t *first, const Transfer_t *last) | |||
{ | |||
Serial.print("Transfer Followup List "); | |||
Serial.print((uint32_t)first, HEX); | |||
Serial.print(" to "); | |||
Serial.println((uint32_t)last, HEX); | |||
Serial.println(" forward:"); | |||
while (first) { | |||
Serial.print(" "); | |||
Serial.print((uint32_t)first, HEX); | |||
print_token(first->qtd.token); | |||
first = first->next_followup; | |||
} | |||
Serial.println(" backward:"); | |||
while (last) { | |||
Serial.print(" "); | |||
Serial.print((uint32_t)last, HEX); | |||
print_token(last->qtd.token); | |||
last = last->prev_followup; | |||
} | |||
} | |||
void print_token(uint32_t token) | |||
{ | |||
switch ((token >> 8) & 3) { | |||
case 0: | |||
Serial.print(" OUT "); | |||
Serial.println((token >> 16) & 0x7FFF); | |||
break; | |||
case 1: | |||
Serial.print(" IN "); | |||
Serial.println((token >> 16) & 0x7FFF); | |||
break; | |||
case 2: | |||
Serial.println(" SETUP"); | |||
break; | |||
default: | |||
Serial.println(" unknown"); | |||
} | |||
} | |||
void print(const Pipe_t *pipe) | |||
{ | |||
if (!((uint32_t)pipe & 0xFFFFFFE0)) return; | |||
Serial.print("Pipe "); | |||
if (pipe->type == 0) Serial.print("control"); | |||
else if (pipe->type == 1) Serial.print("isochronous"); | |||
else if (pipe->type == 2) Serial.print("bulk"); | |||
else if (pipe->type == 3) Serial.print("interrupt"); | |||
Serial.print(pipe->direction ? " IN" : " OUT"); | |||
Serial.print(" @ "); | |||
Serial.println((uint32_t)pipe, HEX); | |||
Serial.print(" horiz link: "); | |||
Serial.println(pipe->qh.horizontal_link, HEX); | |||
Serial.print(" capabilities: "); | |||
Serial.print(pipe->qh.capabilities[0], HEX); | |||
Serial.print(','); | |||
Serial.println(pipe->qh.capabilities[1], HEX); | |||
Serial.println(" overlay:"); | |||
Serial.print(" cur: "); | |||
Serial.println(pipe->qh.current, HEX); | |||
Serial.print(" next: "); | |||
Serial.println(pipe->qh.next, HEX); | |||
Serial.print(" anext: "); | |||
Serial.println(pipe->qh.alt_next, HEX); | |||
Serial.print(" token: "); | |||
Serial.println(pipe->qh.token, HEX); | |||
Serial.print(" bufs: "); | |||
for (int i=0; i < 5; i++) { | |||
Serial.print(pipe->qh.buffer[i], HEX); | |||
if (i < 4) Serial.print(','); | |||
} | |||
Serial.println(); | |||
const Transfer_t *t = (Transfer_t *)pipe->qh.next; | |||
while (((uint32_t)t & 0xFFFFFFE0)) { | |||
print(t); | |||
t = (Transfer_t *)t->qtd.next; | |||
} | |||
//Serial.print(); | |||
} | |||
void print_hexbytes(const void *ptr, uint32_t len) | |||
{ | |||
if (ptr == NULL || len == 0) return; | |||
const uint8_t *p = (const uint8_t *)ptr; | |||
do { | |||
if (*p < 16) Serial.print('0'); | |||
Serial.print(*p++, HEX); | |||
Serial.print(' '); | |||
} while (--len); | |||
Serial.println(); | |||
} | |||
void print(const char *s) | |||
{ | |||
Serial.println(s); | |||
delay(10); | |||
} | |||
void print(const char *s, int num) | |||
{ | |||
Serial.print(s); | |||
Serial.println(num); | |||
delay(10); | |||
} | |||
// Memory allocation | |||
static Device_t memory_Device[3]; | |||
static Pipe_t memory_Pipe[6] __attribute__ ((aligned(64))); | |||
static Transfer_t memory_Transfer[24] __attribute__ ((aligned(64))); | |||
Device_t * free_Device_list = NULL; | |||
Pipe_t * free_Pipe_list = NULL; | |||
Transfer_t * free_Transfer_list = NULL; | |||
void init_Device_Pipe_Transfer_memory(void) | |||
{ | |||
Device_t *end_device = memory_Device + sizeof(memory_Device)/sizeof(Device_t); | |||
for (Device_t *device = memory_Device; device < end_device; device++) { | |||
free_Device(device); | |||
} | |||
Pipe_t *end_pipe = memory_Pipe + sizeof(memory_Pipe)/sizeof(Pipe_t); | |||
for (Pipe_t *pipe = memory_Pipe; pipe < end_pipe; pipe++) { | |||
free_Pipe(pipe); | |||
} | |||
Transfer_t *end_transfer = memory_Transfer + sizeof(memory_Transfer)/sizeof(Transfer_t); | |||
for (Transfer_t *transfer = memory_Transfer; transfer < end_transfer; transfer++) { | |||
free_Transfer(transfer); | |||
} | |||
} | |||
Device_t * allocate_Device(void) | |||
{ | |||
Device_t *device = free_Device_list; | |||
if (device) free_Device_list = *(Device_t **)device; | |||
return device; | |||
} | |||
void free_Device(Device_t *device) | |||
{ | |||
*(Device_t **)device = free_Device_list; | |||
free_Device_list = device; | |||
} | |||
Pipe_t * allocate_Pipe(void) | |||
{ | |||
Pipe_t *pipe = free_Pipe_list; | |||
if (pipe) free_Pipe_list = *(Pipe_t **)pipe; | |||
return pipe; | |||
} | |||
void free_Pipe(Pipe_t *pipe) | |||
{ | |||
*(Pipe_t **)pipe = free_Pipe_list; | |||
free_Pipe_list = pipe; | |||
} | |||
Transfer_t * allocate_Transfer(void) | |||
{ | |||
Transfer_t *transfer = free_Transfer_list; | |||
if (transfer) free_Transfer_list = *(Transfer_t **)transfer; | |||
return transfer; | |||
} | |||
void free_Transfer(Transfer_t *transfer) | |||
{ | |||
*(Transfer_t **)transfer = free_Transfer_list; | |||
free_Transfer_list = transfer; | |||
} | |||
@@ -0,0 +1,92 @@ | |||
/* USB EHCI Host for Teensy 3.6 | |||
* Copyright 2017 Paul Stoffregen (paul@pjrc.com) | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a | |||
* copy of this software and associated documentation files (the | |||
* "Software"), to deal in the Software without restriction, including | |||
* without limitation the rights to use, copy, modify, merge, publish, | |||
* distribute, sublicense, and/or sell copies of the Software, and to | |||
* permit persons to whom the Software is furnished to do so, subject to | |||
* the following conditions: | |||
* | |||
* The above copyright notice and this permission notice shall be included | |||
* in all copies or substantial portions of the Software. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
*/ | |||
#include <Arduino.h> | |||
#include "USBHost.h" | |||
// Memory allocation | |||
static Device_t memory_Device[3]; | |||
static Pipe_t memory_Pipe[6] __attribute__ ((aligned(64))); | |||
static Transfer_t memory_Transfer[24] __attribute__ ((aligned(64))); | |||
Device_t * free_Device_list = NULL; | |||
Pipe_t * free_Pipe_list = NULL; | |||
Transfer_t * free_Transfer_list = NULL; | |||
void init_Device_Pipe_Transfer_memory(void) | |||
{ | |||
Device_t *end_device = memory_Device + sizeof(memory_Device)/sizeof(Device_t); | |||
for (Device_t *device = memory_Device; device < end_device; device++) { | |||
free_Device(device); | |||
} | |||
Pipe_t *end_pipe = memory_Pipe + sizeof(memory_Pipe)/sizeof(Pipe_t); | |||
for (Pipe_t *pipe = memory_Pipe; pipe < end_pipe; pipe++) { | |||
free_Pipe(pipe); | |||
} | |||
Transfer_t *end_transfer = memory_Transfer + sizeof(memory_Transfer)/sizeof(Transfer_t); | |||
for (Transfer_t *transfer = memory_Transfer; transfer < end_transfer; transfer++) { | |||
free_Transfer(transfer); | |||
} | |||
} | |||
Device_t * allocate_Device(void) | |||
{ | |||
Device_t *device = free_Device_list; | |||
if (device) free_Device_list = *(Device_t **)device; | |||
return device; | |||
} | |||
void free_Device(Device_t *device) | |||
{ | |||
*(Device_t **)device = free_Device_list; | |||
free_Device_list = device; | |||
} | |||
Pipe_t * allocate_Pipe(void) | |||
{ | |||
Pipe_t *pipe = free_Pipe_list; | |||
if (pipe) free_Pipe_list = *(Pipe_t **)pipe; | |||
return pipe; | |||
} | |||
void free_Pipe(Pipe_t *pipe) | |||
{ | |||
*(Pipe_t **)pipe = free_Pipe_list; | |||
free_Pipe_list = pipe; | |||
} | |||
Transfer_t * allocate_Transfer(void) | |||
{ | |||
Transfer_t *transfer = free_Transfer_list; | |||
if (transfer) free_Transfer_list = *(Transfer_t **)transfer; | |||
return transfer; | |||
} | |||
void free_Transfer(Transfer_t *transfer) | |||
{ | |||
*(Transfer_t **)transfer = free_Transfer_list; | |||
free_Transfer_list = transfer; | |||
} | |||
@@ -0,0 +1,154 @@ | |||
/* USB EHCI Host for Teensy 3.6 | |||
* Copyright 2017 Paul Stoffregen (paul@pjrc.com) | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a | |||
* copy of this software and associated documentation files (the | |||
* "Software"), to deal in the Software without restriction, including | |||
* without limitation the rights to use, copy, modify, merge, publish, | |||
* distribute, sublicense, and/or sell copies of the Software, and to | |||
* permit persons to whom the Software is furnished to do so, subject to | |||
* the following conditions: | |||
* | |||
* The above copyright notice and this permission notice shall be included | |||
* in all copies or substantial portions of the Software. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
*/ | |||
#include <Arduino.h> | |||
#include "USBHost.h" | |||
void print(const Transfer_t *transfer) | |||
{ | |||
if (!((uint32_t)transfer & 0xFFFFFFE0)) return; | |||
Serial.print("Transfer @ "); | |||
Serial.println(((uint32_t)transfer & 0xFFFFFFE0), HEX); | |||
Serial.print(" next: "); | |||
Serial.println(transfer->qtd.next, HEX); | |||
Serial.print(" anext: "); | |||
Serial.println(transfer->qtd.alt_next, HEX); | |||
Serial.print(" token: "); | |||
Serial.println(transfer->qtd.token, HEX); | |||
Serial.print(" bufs: "); | |||
for (int i=0; i < 5; i++) { | |||
Serial.print(transfer->qtd.buffer[i], HEX); | |||
if (i < 4) Serial.print(','); | |||
} | |||
Serial.println(); | |||
} | |||
void print(const Transfer_t *first, const Transfer_t *last) | |||
{ | |||
Serial.print("Transfer Followup List "); | |||
Serial.print((uint32_t)first, HEX); | |||
Serial.print(" to "); | |||
Serial.println((uint32_t)last, HEX); | |||
Serial.println(" forward:"); | |||
while (first) { | |||
Serial.print(" "); | |||
Serial.print((uint32_t)first, HEX); | |||
print_token(first->qtd.token); | |||
first = first->next_followup; | |||
} | |||
Serial.println(" backward:"); | |||
while (last) { | |||
Serial.print(" "); | |||
Serial.print((uint32_t)last, HEX); | |||
print_token(last->qtd.token); | |||
last = last->prev_followup; | |||
} | |||
} | |||
void print_token(uint32_t token) | |||
{ | |||
switch ((token >> 8) & 3) { | |||
case 0: | |||
Serial.print(" OUT "); | |||
Serial.println((token >> 16) & 0x7FFF); | |||
break; | |||
case 1: | |||
Serial.print(" IN "); | |||
Serial.println((token >> 16) & 0x7FFF); | |||
break; | |||
case 2: | |||
Serial.println(" SETUP"); | |||
break; | |||
default: | |||
Serial.println(" unknown"); | |||
} | |||
} | |||
void print(const Pipe_t *pipe) | |||
{ | |||
if (!((uint32_t)pipe & 0xFFFFFFE0)) return; | |||
Serial.print("Pipe "); | |||
if (pipe->type == 0) Serial.print("control"); | |||
else if (pipe->type == 1) Serial.print("isochronous"); | |||
else if (pipe->type == 2) Serial.print("bulk"); | |||
else if (pipe->type == 3) Serial.print("interrupt"); | |||
Serial.print(pipe->direction ? " IN" : " OUT"); | |||
Serial.print(" @ "); | |||
Serial.println((uint32_t)pipe, HEX); | |||
Serial.print(" horiz link: "); | |||
Serial.println(pipe->qh.horizontal_link, HEX); | |||
Serial.print(" capabilities: "); | |||
Serial.print(pipe->qh.capabilities[0], HEX); | |||
Serial.print(','); | |||
Serial.println(pipe->qh.capabilities[1], HEX); | |||
Serial.println(" overlay:"); | |||
Serial.print(" cur: "); | |||
Serial.println(pipe->qh.current, HEX); | |||
Serial.print(" next: "); | |||
Serial.println(pipe->qh.next, HEX); | |||
Serial.print(" anext: "); | |||
Serial.println(pipe->qh.alt_next, HEX); | |||
Serial.print(" token: "); | |||
Serial.println(pipe->qh.token, HEX); | |||
Serial.print(" bufs: "); | |||
for (int i=0; i < 5; i++) { | |||
Serial.print(pipe->qh.buffer[i], HEX); | |||
if (i < 4) Serial.print(','); | |||
} | |||
Serial.println(); | |||
const Transfer_t *t = (Transfer_t *)pipe->qh.next; | |||
while (((uint32_t)t & 0xFFFFFFE0)) { | |||
print(t); | |||
t = (Transfer_t *)t->qtd.next; | |||
} | |||
//Serial.print(); | |||
} | |||
void print_hexbytes(const void *ptr, uint32_t len) | |||
{ | |||
if (ptr == NULL || len == 0) return; | |||
const uint8_t *p = (const uint8_t *)ptr; | |||
do { | |||
if (*p < 16) Serial.print('0'); | |||
Serial.print(*p++, HEX); | |||
Serial.print(' '); | |||
} while (--len); | |||
Serial.println(); | |||
} | |||
void print(const char *s) | |||
{ | |||
Serial.println(s); | |||
delay(10); | |||
} | |||
void print(const char *s, int num) | |||
{ | |||
Serial.print(s); | |||
Serial.println(num); | |||
delay(10); | |||
} | |||