/* USB EHCI Host for Teensy 3.6 * Copyright 2017 Paul Stoffregen (paul@pjrc.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "USBHost_t36.h" // Read this header first for key info #define print USBHost::print_ #define println USBHost::println_ void MIDIDeviceBase::init() { contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t)); contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t)); contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t)); handleNoteOff = NULL; handleNoteOn = NULL; handleVelocityChange = NULL; handleControlChange = NULL; handleProgramChange = NULL; handleAfterTouch = NULL; handlePitchChange = NULL; handleSysExPartial = NULL; handleSysExComplete = NULL; handleTimeCodeQuarterFrame = NULL; handleSongPosition = NULL; handleSongSelect = NULL; handleTuneRequest = NULL; handleClock = NULL; handleStart = NULL; handleContinue = NULL; handleStop = NULL; handleActiveSensing = NULL; handleSystemReset = NULL; handleRealTimeSystem = NULL; rx_head = 0; rx_tail = 0; rxpipe = NULL; txpipe = NULL; driver_ready_for_device(this); } // Audio Class-Specific Descriptor Types (audio 1.0, page 99) // CS_UNDEFINED 0x20 // CS_DEVICE 0x21 // CS_CONFIGURATION 0x22 // CS_STRING 0x23 // CS_INTERFACE 0x24 // CS_ENDPOINT 0x25 // MS Class-Specific Interface Descriptor Subtypes (midi 1.0, page 36) // MS_DESCRIPTOR_UNDEFINED 0x00 // MS_HEADER 0x01 // MIDI_IN_JACK 0x02 // MIDI_OUT_JACK 0x03 // ELEMENT 0x04 // MS Class-Specific Endpoint Descriptor Subtypes (midi 1.0, page 36) // DESCRIPTOR_UNDEFINED 0x00 // MS_GENERAL 0x01 // MS MIDI IN and OUT Jack types (midi 1.0, page 36) // JACK_TYPE_UNDEFINED 0x00 // EMBEDDED 0x01 // EXTERNAL 0x02 // Endpoint Control Selectors (midi 1.0, page 36) // EP_CONTROL_UNDEFINED 0x00 // ASSOCIATION_CONTROL 0x01 bool MIDIDeviceBase::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len) { // only claim at interface level if (type != 1) return false; println("MIDIDevice claim this=", (uint32_t)this, HEX); println("len = ", len); const uint8_t *p = descriptors; const uint8_t *end = p + len; if (p[0] != 9 || p[1] != 4) return false; // interface descriptor //println(" bInterfaceClass=", p[5]); //println(" bInterfaceSubClass=", p[6]); bool ismidi = false; if (p[5] == 1 && p[6] == 3) { println(" Interface is MIDI"); // p[5] is bInterfaceClass: 1 = Audio class ismidi = true; // p[6] is bInterfaceSubClass: 3 = MIDI } else { if (p[5] >= 2 && p[5] <= 18) return false; // definitely not MIDI // Yamaha uses vendor specific class, but can be // identified as MIDI from CS_INTERFACE descriptors. // https://forum.pjrc.com/threads/55142?p=199162&viewfull=1#post199162 println(" Interface is unknown (might be Yahama)"); } p += 9; rx_ep = 0; tx_ep = 0; while (p < end) { len = *p; if (len < 4) return false; // all audio desc are at least 4 bytes if (p + len > end) return false; // reject if beyond end of data uint32_t type = p[1]; print("type: ", type); println(", len: ", len); if (type == 4 || type == 11) break; // interface or IAD, not for us if (type == 0x24) { // 0x24 = Audio CS_INTERFACE, audio 1.0, page 99 uint32_t subtype = p[2]; //println("subtype: ", subtype); if (subtype == 1) { // Interface Header, midi 1.0, page 21 println(" MIDI Header (ignored)"); ismidi = true; } else if (subtype == 2) { // MIDI IN Jack, midi 1.0, page 22 println(" MIDI IN Jack (ignored)"); ismidi = true; } else if (subtype == 3) { // MIDI OUT Jack, midi 1.0, page 22 println(" MIDI OUT Jack (ignored)"); ismidi = true; } else if (subtype == 4) { // Element Descriptor, midi 1.0, page 23-24 println(" MIDI Element (ignored)"); ismidi = true; } else if (subtype == 0xF1 && p[3] == 2) { // see Linux sound/usb/quirks.c create_roland_midi_quirk() println(" Roland vendor-specific (ignored)"); ismidi = true; } else { println(" Unknown MIDI CS_INTERFACE descriptor!"); return false; // unknown } } else if (type == 5) { // endpoint descriptor if (p[0] < 7) return false; // at least 7 bytes if (p[3] != 2 && p[3] != 3) return false; // must be bulk or interrupt type println(" MIDI Endpoint: ", p[2], HEX); switch (p[2] & 0xF0) { case 0x80: // IN endpoint if (rx_ep == 0) { rx_ep = p[2] & 0x0F; rx_ep_type = p[3]; rx_size = p[4] | (p[5] << 8); println(" rx_size = ", rx_size); } break; case 0x00: // OUT endpoint if (tx_ep == 0) { tx_ep = p[2]; tx_ep_type = p[3]; tx_size = p[4] | (p[5] << 8); println(" tx_size = ", tx_size); } break; default: return false; } } else if (type == 37) { // MIDI endpoint info, midi 1.0: 6.2.2, page 26 println(" MIDI Endpoint Jack Association (ignored)"); } else { println(" Unknown descriptor, type=", type); return false; // unknown } p += len; } if (!ismidi) { println("This interface is not MIDI"); return false; } // if an IN endpoint was found, create its pipe if (rx_ep && rx_size <= max_packet_size) { rxpipe = new_Pipe(dev, rx_ep_type, rx_ep, 1, rx_size); if (rxpipe) { rxpipe->callback_function = rx_callback; queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); rx_packet_queued = true; } } else { rxpipe = NULL; } // if an OUT endpoint was found, create its pipe if (tx_ep && tx_size <= max_packet_size) { txpipe = new_Pipe(dev, tx_ep_type, tx_ep, 0, tx_size); if (txpipe) { txpipe->callback_function = tx_callback; tx1_count = 0; tx2_count = 0; } } else { txpipe = NULL; } rx_head = 0; rx_tail = 0; msg_channel = 0; msg_type = 0; msg_data1 = 0; msg_data2 = 0; msg_sysex_len = 0; // claim if either pipe created return (rxpipe || txpipe); } void MIDIDeviceBase::rx_callback(const Transfer_t *transfer) { if (transfer->driver) { ((MIDIDevice *)(transfer->driver))->rx_data(transfer); } } void MIDIDeviceBase::tx_callback(const Transfer_t *transfer) { if (transfer->driver) { ((MIDIDevice *)(transfer->driver))->tx_data(transfer); } } void MIDIDeviceBase::rx_data(const Transfer_t *transfer) { println("MIDIDevice Receive"); print(" MIDI Data: "); uint32_t len = (transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF)) >> 2; print_hexbytes(transfer->buffer, len * 4); uint32_t head = rx_head; uint32_t tail = rx_tail; for (uint32_t i=0; i < len; i++) { uint32_t msg = rx_buffer[i]; if (msg) { if (++head >= rx_queue_size) head = 0; rx_queue[head] = msg; } } rx_head = head; rx_tail = tail; uint32_t avail = (head < tail) ? tail - head - 1 : rx_queue_size - 1 - head + tail; //println("rx_size = ", rx_size); println("avail = ", avail); if (avail >= (uint32_t)(rx_size>>2)) { // enough space to accept another full packet println("queue another receive packet"); queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); rx_packet_queued = true; } else { // queue can't accept another packet's data, so leave // the data waiting on the device until we can accept it println("wait to receive more packets"); rx_packet_queued = false; } } void MIDIDeviceBase::tx_data(const Transfer_t *transfer) { println("MIDIDevice transmit complete"); print(" MIDI Data: "); print_hexbytes(transfer->buffer, tx_size); if (transfer->buffer == tx_buffer1) { tx1_count = 0; } else if (transfer->buffer == tx_buffer2) { tx2_count = 0; } } void MIDIDeviceBase::disconnect() { // should rx_queue be cleared? // as-is, the user can still read MIDI messages // which arrived before the device disconnected. rxpipe = NULL; txpipe = NULL; } void MIDIDeviceBase::write_packed(uint32_t data) { if (!txpipe) return; uint32_t tx_max = tx_size / 4; while (1) { uint32_t tx1 = tx1_count; uint32_t tx2 = tx2_count; if (tx1 < tx_max && (tx2 == 0 || tx2 >= tx_max)) { // use tx_buffer1 tx_buffer1[tx1++] = data; tx1_count = tx1; if (tx1 >= tx_max) { queue_Data_Transfer(txpipe, tx_buffer1, tx_max*4, this); } else { // TODO: start a timer, rather than sending the buffer // before it's full, to make best use of bandwidth tx1_count = tx_max; queue_Data_Transfer(txpipe, tx_buffer1, tx_max*4, this); } return; } if (tx2 < tx_max) { // use tx_buffer2 tx_buffer2[tx2++] = data; tx2_count = tx2; if (tx2 >= tx_max) { queue_Data_Transfer(txpipe, tx_buffer2, tx_max*4, this); } else { // TODO: start a timer, rather than sending the buffer // before it's full, to make best use of bandwidth tx2_count = tx_max; queue_Data_Transfer(txpipe, tx_buffer2, tx_max*4, this); } return; } } } void MIDIDeviceBase::send_sysex_buffer_has_term(const uint8_t *data, uint32_t length, uint8_t cable) { cable = (cable & 0x0F) << 4; while (length > 3) { write_packed(0x04 | cable | (data[0] << 8) | (data[1] << 16) | (data[2] << 24)); data += 3; length -= 3; } if (length == 3) { write_packed(0x07 | cable | (data[0] << 8) | (data[1] << 16) | (data[2] << 24)); } else if (length == 2) { write_packed(0x06 | cable | (data[0] << 8) | (data[1] << 16)); } else if (length == 1) { write_packed(0x05 | cable | (data[0] << 8)); } } void MIDIDeviceBase::send_sysex_add_term_bytes(const uint8_t *data, uint32_t length, uint8_t cable) { cable = (cable & 0x0F) << 4; if (length == 0) { write_packed(0x06 | cable | (0xF0 << 8) | (0xF7 << 16)); return; } else if (length == 1) { write_packed(0x07 | cable | (0xF0 << 8) | (data[0] << 16) | (0xF7 << 24)); return; } else { write_packed(0x04 | cable | (0xF0 << 8) | (data[0] << 16) | (data[1] << 24)); data += 2; length -= 2; } while (length >= 3) { write_packed(0x04 | cable | (data[0] << 8) | (data[1] << 16) | (data[2] << 24)); data += 3; length -= 3; } if (length == 2) { write_packed(0x07 | cable | (data[0] << 8) | (data[1] << 16) | (0xF7 << 24)); } else if (length == 1) { write_packed(0x06 | cable | (data[0] << 8) | (0xF7 << 16)); } else { write_packed(0x05 | cable | (0xF7 << 8)); } } bool MIDIDeviceBase::read(uint8_t channel) { uint32_t n, head, tail, avail, ch, type1, type2, b1; head = rx_head; tail = rx_tail; if (head == tail) return false; if (++tail >= rx_queue_size) tail = 0; n = rx_queue[tail]; rx_tail = tail; if (!rx_packet_queued && rxpipe) { avail = (head < tail) ? tail - head - 1 : rx_queue_size - 1 - head + tail; if (avail >= (uint32_t)(rx_size>>2)) { __disable_irq(); queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); __enable_irq(); } } println("read: ", n, HEX); type1 = n & 15; type2 = (n >> 12) & 15; b1 = (n >> 8) & 0xFF; ch = (b1 & 15) + 1; msg_cable = (n >> 4) & 15; if (type1 >= 0x08 && type1 <= 0x0E) { if (channel && channel != ch) { // ignore other channels when user wants single channel read return false; } if (type1 == 0x08 && type2 == 0x08) { msg_type = 0x80; // 0x80 = Note off if (handleNoteOff) { (*handleNoteOff)(ch, (n >> 16), (n >> 24)); } } else if (type1 == 0x09 && type2 == 0x09) { if ((n >> 24) > 0) { msg_type = 0x90; // 0x90 = Note on if (handleNoteOn) { (*handleNoteOn)(ch, (n >> 16), (n >> 24)); } } else { msg_type = 0x80; // 0x80 = Note off if (handleNoteOff) { (*handleNoteOff)(ch, (n >> 16), (n >> 24)); } } } else if (type1 == 0x0A && type2 == 0x0A) { msg_type = 0xA0; // 0xA0 = AfterTouchPoly if (handleVelocityChange) { (*handleVelocityChange)(ch, (n >> 16), (n >> 24)); } } else if (type1 == 0x0B && type2 == 0x0B) { msg_type = 0xB0; // 0xB0 = Control Change if (handleControlChange) { (*handleControlChange)(ch, (n >> 16), (n >> 24)); } } else if (type1 == 0x0C && type2 == 0x0C) { msg_type = 0xC0; // 0xC0 = Program Change if (handleProgramChange) { (*handleProgramChange)(ch, (n >> 16)); } } else if (type1 == 0x0D && type2 == 0x0D) { msg_type = 0xD0; // 0xD0 = After Touch if (handleAfterTouch) { (*handleAfterTouch)(ch, (n >> 16)); } } else if (type1 == 0x0E && type2 == 0x0E) { msg_type = 0xE0; // 0xE0 = Pitch Bend if (handlePitchChange) { int value = ((n >> 16) & 0x7F) | ((n >> 17) & 0x3F80); value -= 8192; // 0 to 16383 --> -8192 to +8191 (*handlePitchChange)(ch, value); } } else { return false; } return_message: msg_channel = ch; msg_data1 = (n >> 16); msg_data2 = (n >> 24); return true; } if (type1 == 0x02 || type1 == 0x03 || (type1 == 0x05 && b1 >= 0xF1 && b1 != 0xF7)) { // system common or system realtime message system_common_or_realtime: switch (b1) { case 0xF1: // usbMIDI.TimeCodeQuarterFrame if (handleTimeCodeQuarterFrame) { (*handleTimeCodeQuarterFrame)(n >> 16); } break; case 0xF2: // usbMIDI.SongPosition if (handleSongPosition) { (*handleSongPosition)(((n >> 16) & 0x7F) | ((n >> 17) & 0x3F80)); } break; case 0xF3: // usbMIDI.SongSelect if (handleSongSelect) { (*handleSongSelect)(n >> 16); } break; case 0xF6: // usbMIDI.TuneRequest if (handleTuneRequest) { (*handleTuneRequest)(); } break; case 0xF8: // usbMIDI.Clock if (handleClock) { (*handleClock)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xF8); } break; case 0xFA: // usbMIDI.Start if (handleStart) { (*handleStart)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFA); } break; case 0xFB: // usbMIDI.Continue if (handleContinue) { (*handleContinue)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFB); } break; case 0xFC: // usbMIDI.Stop if (handleStop) { (*handleStop)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFC); } break; case 0xFE: // usbMIDI.ActiveSensing if (handleActiveSensing) { (*handleActiveSensing)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFE); } break; case 0xFF: // usbMIDI.SystemReset if (handleSystemReset) { (*handleSystemReset)(); } else if (handleRealTimeSystem) { (*handleRealTimeSystem)(0xFF); } break; default: return false; // unknown message, ignore it } msg_type = b1; goto return_message; } if (type1 == 0x04) { sysex_byte(n >> 8); sysex_byte(n >> 16); sysex_byte(n >> 24); return false; } if (type1 >= 0x05 && type1 <= 0x07) { sysex_byte(b1); // allow for buggy devices which use code 5 to transmit 1 byte at a time // https://forum.pjrc.com/threads/43450?p=164596&viewfull=1#post164596 if (type1 == 0x05 && b1 != 0xF7) return false; if (type1 >= 0x06) sysex_byte(n >> 16); if (type1 == 0x07) sysex_byte(n >> 24); uint16_t len = msg_sysex_len; msg_data1 = len; msg_data2 = len >> 8; msg_sysex_len = 0; msg_type = 0xF0; // 0xF0 = SystemExclusive if (handleSysExPartial) { (*handleSysExPartial)(msg_sysex, len, 1); } else if (handleSysExComplete) { (*handleSysExComplete)(msg_sysex, len); } return true; } if (type1 == 0x0F) { if (b1 >= 0xF8) { goto system_common_or_realtime; } if (b1 == 0xF0 || msg_sysex_len > 0) { // Is this really needed? Mac OS-X does this, but do any devices? sysex_byte(b1); } } return false; } void MIDIDeviceBase::sysex_byte(uint8_t b) { if (handleSysExPartial && msg_sysex_len >= SYSEX_MAX_LEN) { // when buffer is full, send another chunk to partial handler. (*handleSysExPartial)(msg_sysex, msg_sysex_len, 0); msg_sysex_len = 0; } if (msg_sysex_len < SYSEX_MAX_LEN) { msg_sysex[msg_sysex_len++] = b; } }