|
- /* USB EHCI Host for Teensy 3.6
- * Copyright 2017 Paul Stoffregen (paul@pjrc.com)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- * Note: special thanks to the Linux kernel for the CH341's method of operation, particularly how the baud rate is encoded.
- */
-
- #include <Arduino.h>
- #include "USBHost_t36.h" // Read this header first for key info
-
- #define print USBHost::print_
- #define println USBHost::println_
-
- //#define ENABLE_DEBUG_PINS
-
- #ifdef ENABLE_DEBUG_PINS
- #define debugDigitalToggle(pin) {digitalWriteFast(pin, !digitalReadFast(pin));}
- #define debugDigitalWrite(pin, state) {digitalWriteFast(pin, state);}
- #else
- #define debugDigitalToggle(pin) {;}
- #define debugDigitalWrite(pin, state) {;}
- #endif
-
- /************************************************************/
- // Define mapping VID/PID - to Serial Device type.
- /************************************************************/
- USBSerial::product_vendor_mapping_t USBSerial::pid_vid_mapping[] = {
- // FTDI mappings.
- {0x0403, 0x6001, USBSerial::FTDI},
-
- // PL2303
- {0x67B,0x2303, USBSerial::PL2303},
-
- // CH341
- {0x4348, 0x5523, USBSerial::CH341 },
- {0x1a86, 0x7523, USBSerial::CH341 },
- {0x1a86, 0x5523, USBSerial::CH341 },
-
- // Silex CP210...
- {0x10c4, 0xea60, USBSerial::CP210X }
- };
-
-
- /************************************************************/
- // Initialization and claiming of devices & interfaces
- /************************************************************/
-
- void USBSerial::init()
- {
- contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
- contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
- contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
- driver_ready_for_device(this);
- format_ = USBHOST_SERIAL_8N1;
- }
-
- bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
- {
- // only claim at interface level
- println("USBSerial claim this=", (uint32_t)this, HEX);
- print("vid=", dev->idVendor, HEX);
- print(", pid=", dev->idProduct, HEX);
- print(", bDeviceClass = ", dev->bDeviceClass);
- print(", bDeviceSubClass = ", dev->bDeviceSubClass);
- println(", bDeviceProtocol = ", dev->bDeviceProtocol);
- print_hexbytes(descriptors, len);
- if (type == 0) {
- //---------------------------------------------------------------------
- // CDCACM
- if ((dev->bDeviceClass == 2) && (dev->bDeviceSubClass == 0)) {
- // It is a communication device see if we can extract the data...
- // Try some ttyACM types?
- // This code may be similar to MIDI code.
- // But first pass see if we can simply look at the interface...
- // Lets walk through end points and see if we
- // can find an RX and TX bulk transfer end point.
- // 0 1 2 3 4 5 6 7 8 *9 10 1 2 3 *4 5 6 7 *8 9 20 1 2 *3 4 5 6 7 8 9*30 1 2 3 4 5 6 7 8 *9 40 1 2 3 4 5 *6 7 8 9 50 1 2
- // USB2AX
- //09 04 00 00 01 02 02 01 00 05 24 00 10 01 04 24 02 06 05 24 06 00 01 07 05 82 03 08 00 FF 09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
- //09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
- // Teensy 3.6
- //09 04 00 00 01 02 02 01 00 05 24 00 10 01 05 24 01 01 01 04 24 02 06 05 24 06 00 01 07 05 82 03 10 00 40 09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
- //09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
- const uint8_t *p = descriptors;
- const uint8_t *end = p + len;
-
- if (p[0] != 9 || p[1] != 4) return false; // interface descriptor
- //println(" bInterfaceClass=", p[5]);
- //println(" bInterfaceSubClass=", p[6]);
- if (p[5] != 2) return false; // bInterfaceClass: 2 Communications
- if (p[6] != 2) return false; // bInterfaceSubClass: 2 serial
- p += 9;
- println(" Interface is Serial");
- uint8_t rx_ep = 0;
- uint8_t tx_ep = 0;
- uint16_t rx_size = 0;
- uint16_t tx_size = 0;
- interface = 0; // clear out any interface numbers passed in.
-
- while (p < end) {
- len = *p;
- if (len < 4) return false;
- if (p + len > end) return false; // reject if beyond end of data
- uint32_t type = p[1];
- //println("type: ", type);
- // Unlike Audio, we need to look at Interface as our endpoints are after them...
- if (type == 4 ) { // Interface - lets remember it's number...
- interface = p[2];
- println(" Interface: ", interface);
- }
- else if (type == 0x24) { // 0x24 = CS_INTERFACE,
- uint32_t subtype = p[2];
- print(" CS_INTERFACE - subtype: ", subtype);
- if (len >= 4) print(" ", p[3], HEX);
- if (len >= 5) print(" ", p[4], HEX);
- if (len >= 6) print(" ", p[5], HEX);
- switch (subtype) {
- case 0: println(" - Header Functional Descriptor"); break;
- case 1: println(" - Call Management Functional"); break;
- case 2: println(" - Abstract Control Management"); break;
- case 4: println(" - Telephone Ringer"); break;
- case 6: println(" - union Functional"); break;
- default: println(" - ??? other"); break;
- }
- // First pass ignore...
- } else if (type == 5) {
- // endpoint descriptor
- if (p[0] < 7) return false; // at least 7 bytes
- if (p[3] == 2) { // First try ignore the first one which is interrupt...
- println(" Endpoint: ", p[2], HEX);
- switch (p[2] & 0xF0) {
- case 0x80:
- // IN endpoint
- if (rx_ep == 0) {
- rx_ep = p[2] & 0x0F;
- rx_size = p[4] | (p[5] << 8);
- println(" rx_size = ", rx_size);
- }
- break;
- case 0x00:
- // OUT endpoint
- if (tx_ep == 0) {
- tx_ep = p[2];
- tx_size = p[4] | (p[5] << 8);
- println(" tx_size = ", tx_size);
- }
- break;
- default:
- println(" invalid end point: ", p[2]);
- return false;
- }
- }
- } else {
- println(" Unknown type: ", type);
- return false; // unknown
- }
- p += len;
- }
- print(" exited loop rx:", rx_ep);
- println(", tx:", tx_ep);
- if (!rx_ep || !tx_ep) return false; // did not get our two end points
- if (!init_buffers(rx_size, tx_size)) return false;
- println(" rx buffer size:", rxsize);
- println(" tx buffer size:", txsize);
- rxpipe = new_Pipe(dev, 2, rx_ep & 15, 1, rx_size);
- if (!rxpipe) return false;
- txpipe = new_Pipe(dev, 2, tx_ep, 0, tx_size);
- if (!txpipe) {
- // TODO: free rxpipe
- return false;
- }
- sertype = CDCACM;
- rxpipe->callback_function = rx_callback;
- queue_Data_Transfer(rxpipe, rx1, (rx_size < 64)? rx_size : 64, this);
- rxstate = 1;
- if (rx_size > 128) {
- queue_Data_Transfer(rxpipe, rx2, rx_size, this);
- rxstate = 3;
- }
- txstate = 0;
- txpipe->callback_function = tx_callback;
- baudrate = 115200;
- // Wish I could just call Control to do the output... Maybe can defer until the user calls begin()
- // control requires that device is setup which is not until this call completes...
- println("Control - CDCACM DTR...");
- // Need to setup the data the line coding data
- mk_setup(setup, 0x21, 0x22, 3, 0, 0);
- queue_Control_Transfer(dev, &setup, NULL, this);
- control_queued = true;
- pending_control = 0x0; // Maybe don't need to do...
- return true;
- }
-
- // See if the vendor_id:product_id is in our list of products.
- sertype = UNKNOWN;
- for (uint8_t i = 0; i < (sizeof(pid_vid_mapping)/sizeof(pid_vid_mapping[0])); i++) {
- if ((dev->idVendor == pid_vid_mapping[i].idVendor) && (dev->idProduct == pid_vid_mapping[i].idProduct)) {
- sertype = pid_vid_mapping[i].sertype;
- break;
- }
- }
- if (sertype == UNKNOWN) return false; // not one of ours
-
- // Lets try to locate the end points. Code is common across these devices
- println("len = ", len);
- uint8_t count_end_points = descriptors[4];
- if (count_end_points < 2) return false; // not enough end points
- if (len < 23) return false;
- if (descriptors[0] != 9) return false; // length 9
-
- // Lets walk through end points and see if we
- // can find an RX and TX bulk transfer end point.
- //Example vid=67B, pid=2303
- // 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9
- //09 04 00 00 03 FF 00 00 00 07 05 81 03 0A 00 01 07 05 02 02 40 00 00 07 05 83 02 40 00 00
- uint32_t rxep = 0;
- uint32_t txep = 0;
- uint16_t rx_size = 0;
- uint16_t tx_size = 0;
- uint32_t descriptor_index = 9;
- while (count_end_points-- && ((rxep == 0) || txep == 0)) {
- if (descriptors[descriptor_index] != 7) return false; // length 7
- if (descriptors[descriptor_index+1] != 5) return false; // ep desc
- if ((descriptors[descriptor_index+3] == 2)
- && (descriptors[descriptor_index+4] <= 64)
- && (descriptors[descriptor_index+5] == 0)) {
- // have a bulk EP size
- if (descriptors[descriptor_index+2] & 0x80 ) {
- rxep = descriptors[descriptor_index+2];
- rx_size = descriptors[descriptor_index+4];
- } else {
- txep = descriptors[descriptor_index+2];
- tx_size = descriptors[descriptor_index+4];
- }
- }
- descriptor_index += 7; // setup to look at next one...
- }
- // Try to verify the end points.
- if (!check_rxtx_ep(rxep, txep)) return false;
- print("USBSerial, rxep=", rxep & 15);
- print("(", rx_size);
- print("), txep=", txep);
- print("(", tx_size);
- println(")");
-
- if (!init_buffers(rx_size, tx_size)) return false;
- println(" rx buffer size:", rxsize);
- println(" tx buffer size:", txsize);
-
- rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rx_size);
- if (!rxpipe) return false;
- txpipe = new_Pipe(dev, 2, txep, 0, tx_size);
- if (!txpipe) {
- //free_Pipe(rxpipe);
- return false;
- }
- rxpipe->callback_function = rx_callback;
- queue_Data_Transfer(rxpipe, rx1, rx_size, this);
- rxstate = 1;
- txstate = 0;
- txpipe->callback_function = tx_callback;
- baudrate = 115200;
-
- // Now do specific setup per type
- switch (sertype) {
- //---------------------------------------------------------------------
- // FTDI
- case FTDI:
- {
- pending_control = 0x0F;
- mk_setup(setup, 0x40, 0, 0, 0, 0); // reset port
- queue_Control_Transfer(dev, &setup, NULL, this);
- control_queued = true;
- return true;
- }
- //------------------------------------------------------------------------
- // Prolific
- // TODO: Note: there are probably more vendor/product pairs.. Maybe should create table of them
- case PL2303:
- {
- // First attempt keep it simple...
- println("PL2303: readRegister(0x04)");
- // Need to setup the data the line coding data
- mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
- queue_Control_Transfer(dev, &setup, setupdata, this);
- control_queued = true;
- setup_state = 1; // We are at step one of setup...
- pending_control = 0x3f;
- return true;
- }
- //------------------------------------------------------------------------
- // CH341
- case CH341:
- {
- println("CH341: 0xC0, 0x5f, 0, 0, 8");
- // Need to setup the data the line coding data
- mk_setup(setup, 0xC0, 0x5f, 0, 0, sizeof(setupdata));
- queue_Control_Transfer(dev, &setup, setupdata, this);
- control_queued = true;
- setup_state = 1; // We are at step one of setup...
- pending_control = 0x7f;
- return true;
- }
- //------------------------------------------------------------------------
- // CP210X
- case CP210X:
- {
- println("CP210X: 0x41, 0x11, 0, 0, 0 - reset port");
- // Need to setup the data the line coding data
- mk_setup(setup, 0x41, 0x11, 0, 0, 0);
- queue_Control_Transfer(dev, &setup, NULL, this);
- control_queued = true;
- setup_state = 1; // We are at step one of setup...
- pending_control = 0xf;
- return true;
- }
- //------------------------------------------------------------------------
- // PID:VID - not in our product list.
- default:
- return false;
- }
- } else if (type != 1) return false;
- // TTYACM: <Composit device>
- //
- // We first tried to claim a simple ttyACM device like a teensy who is configured
- // only as Serial at the device level like what was done for midi
- //
- // However some devices are a compisit of multiple Interfaces, so see if this Interface
- // is of the CDC Interface class and 0 for SubClass and protocol
- // Todo: some of this can maybe be combined with the Whole device code above.
-
- if (descriptors[0] != 9 || descriptors[1] != 4) return false; // interface descriptor
- if (descriptors[4] < 2) return false; // less than 2 end points
- if (descriptors[5] != 0xA) return false; // bInterfaceClass, 0xa = CDC data
- if (descriptors[6] != 0) return false; // bInterfaceSubClass
- if (descriptors[7] != 0) return false; // bInterfaceProtocol
-
- if (descriptors[9] != 7) return false; // length 7
- if (descriptors[10] != 5) return false; // ep desc
- uint32_t txep = descriptors[11];
- uint32_t txsize = descriptors[13];
- if (descriptors[12] != 2) return false; // bulk type
- if (descriptors[13] > 64) return false; // size 64 Max
- if (descriptors[14] != 0) return false;
-
- if (descriptors[16] != 7) return false; // length 7
- if (descriptors[17] != 5) return false; // ep desc
- uint32_t rxep = descriptors[18];
- uint32_t rxsize = descriptors[20];
- if (descriptors[19] != 2) return false; // bulk type
- if (descriptors[20] > 64) return false; // size 64 Max
- if (descriptors[21] != 0) return false;
- if (!check_rxtx_ep(rxep, txep)) return false;
- interface = descriptors[2];
-
- print("CDC, rxep=", rxep & 15);
- println(", txep=", txep);
- if (!init_buffers(rxsize, txsize)) return false;
- rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rxsize);
- if (!rxpipe) return false;
- txpipe = new_Pipe(dev, 2, txep, 0, txsize);
- if (!txpipe) {
- // TODO: free rxpipe
- return false;
- }
- sertype = CDCACM;
- rxpipe->callback_function = rx_callback;
- queue_Data_Transfer(rxpipe, rx1, 64, this);
- rxstate = 1;
- if (rxsize > 128) {
- queue_Data_Transfer(rxpipe, rx2, 64, this);
- rxstate = 3;
- }
- txstate = 0;
- txpipe->callback_function = tx_callback;
-
- // See if we can do just the inteface...
- baudrate = 115200;
- println("Control - CDCACM LINE_CODING");
- setupdata[0] = 0; // Setup baud rate 115200 - 0x1C200
- setupdata[1] = 0xc2;
- setupdata[2] = 0x1;
- setupdata[3] = 0;
- setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
- setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
- setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
- mk_setup(setup, 0x21, 0x20, 0, 0, 7);
- queue_Control_Transfer(dev, &setup, setupdata, this);
- pending_control = 0x04; // Maybe don't need to do...
- control_queued = true;
- return true;
- }
-
- // check if two legal endpoints, 1 receive & 1 transmit
- bool USBSerial::check_rxtx_ep(uint32_t &rxep, uint32_t &txep)
- {
- if ((rxep & 0x0F) == 0) return false;
- if ((txep & 0x0F) == 0) return false;
- uint32_t rxdir = rxep & 0xF0;
- uint32_t txdir = txep & 0xF0;
- if (rxdir == 0x80 && txdir == 0x00) {
- return true;
- }
- if (rxdir == 0x00 && txdir == 0x80) {
- std::swap(rxep, txep);
- return true;
- }
- return false;
- }
-
- // initialize buffer sizes and pointers
- bool USBSerial::init_buffers(uint32_t rsize, uint32_t tsize)
- {
- // buffer must be able to hold 2 of each packet, plus buffer
- // space to hold RX and TX data.
- if (sizeof(bigbuffer) < (rsize + tsize) * 3 + 2) return false;
- rx1 = (uint8_t *)bigbuffer;
- rx2 = rx1 + rsize;
- tx1 = rx2 + rsize;
- tx2 = tx1 + tsize;
- rxbuf = tx2 + tsize;
- // FIXME: this assume 50-50 split - not true when rsize != tsize
- rxsize = (sizeof(bigbuffer) - (rsize + tsize) * 2) / 2;
- txsize = rxsize;
- txbuf = rxbuf + rxsize;
- rxhead = 0;
- rxtail = 0;
- txhead = 0;
- txtail = 0;
- rxstate = 0;
- return true;
- }
-
- void USBSerial::disconnect()
- {
- }
-
-
-
- void USBSerial::control(const Transfer_t *transfer)
- {
- println("control callback (serial) ", pending_control, HEX);
- control_queued = false;
-
- // We will split this up by Serial type, maybe different functions?
-
- //-------------------------------------------------------------------------
- // First FTDI
- if (sertype == FTDI) {
- if (pending_control & 1) {
- pending_control &= ~1;
- // set data format
- uint16_t ftdi_format = format_ & 0xf; // This should give us the number of bits.
-
- // now lets extract the parity from our encoding
- ftdi_format |= (format_ & 0xe0) << 3; // they encode bits 9-11
-
- // See if two stop bits
- if (format_ & 0x100) ftdi_format |= (0x2 << 11);
-
- mk_setup(setup, 0x40, 4, ftdi_format, 0, 0); // data format 8N1
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- // set baud rate
- if (pending_control & 2) {
- pending_control &= ~2;
- uint32_t baudval = 3000000 / baudrate;
- mk_setup(setup, 0x40, 3, baudval, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- // configure flow control
- if (pending_control & 4) {
- pending_control &= ~4;
- mk_setup(setup, 0x40, 2, 0, 1, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- // set DTR
- if (pending_control & 8) {
- pending_control &= ~8;
- mk_setup(setup, 0x40, 1, 0x0101, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- // clear DTR
- if (pending_control & 0x80) {
- pending_control &= ~0x80;
- println("FTDI clear DTR");
- mk_setup(setup, 0x40, 1, 0x0100, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
-
- }
-
- //-------------------------------------------------------------------------
- // Now CDCACM
- if (sertype == CDCACM) {
- if (pending_control & 2) {
- pending_control &= ~2;
- // Should probably use data structure, but that may depend on byte ordering...
- setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
- setupdata[1] = (baudrate >> 8) & 0xff;
- setupdata[2] = (baudrate >> 16) & 0xff;
- setupdata[3] = (baudrate >> 24) & 0xff;
- setupdata[4] = (format_ & 0x100)? 2 : 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
- setupdata[5] = (format_ & 0xe0) >> 5; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
- setupdata[6] = format_ & 0x1f; // Data bits (5, 6, 7, 8 or 16)
- print("CDCACM setup: ");
- print_hexbytes(&setupdata, 7);
- mk_setup(setup, 0x21, 0x20, 0, 0, 7);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- return;
- }
- // configure flow control
- if (pending_control & 4) {
- pending_control &= ~4;
- println("Control - 0x21,0x22, 0x3");
- // Need to setup the data the line coding data
- mk_setup(setup, 0x21, 0x22, 3, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- if (pending_control & 0x80) {
- pending_control &= ~0x80;
- println("Control - 0x21,0x22, 0x0 - clear DTR");
- // Need to setup the data the line coding data
- mk_setup(setup, 0x21, 0x22, 0, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- }
-
- //-------------------------------------------------------------------------
- // Now PL2303 - Which appears to be a little more complicated
- if (sertype == PL2303) {
- if (pending_control & 1) {
- // Still in larger setup state mode
- switch (setup_state) {
- case 1:
- println("PL2303: writeRegister(0x04, 0x00)");
- mk_setup(setup, 0x40, 1, 0x0404, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 2;
- control_queued = true;
- return;
- case 2:
- println("PL2303: readRegister(0x04)");
- mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- setup_state = 3;
- return;
- case 3:
- println("PL2303: v1 = readRegister(0x03)");
- mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- setup_state = 4;
- return;
- case 4:
- println("PL2303: readRegister(0x04)");
- // Do we need this value long term or we could just leave in setup data?
- pl2303_v1 = setupdata[0]; // save the first bye of version
- mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- setup_state = 5;
- return;
- case 5:
- println("PL2303: writeRegister(0x04, 0x01)");
- mk_setup(setup, 0x40, 1, 0x0404, 1, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 6;
- control_queued = true;
- return;
- case 6:
- println("PL2303: readRegister(0x04)");
- mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- setup_state = 7;
- return;
- case 7:
- println("PL2303: v2 = readRegister(0x03)");
- mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- setup_state = 8;
- return;
- case 8:
- pl2303_v2 = setupdata[0]; // save the first bye of version
- print(" PL2303 Version ", pl2303_v1, HEX);
- println(":", pl2303_v2, HEX);
- println("PL2303: writeRegister(0, 1)");
- mk_setup(setup, 0x40, 1, 0, 1, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 9;
- control_queued = true;
- return;
- case 9:
- println("PL2303: writeRegister(1, 0)");
- mk_setup(setup, 0x40, 1, 1, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 10;
- control_queued = true;
- return;
- case 10:
- println("PL2303: writeRegister(2, 44)");
- mk_setup(setup, 0x40, 1, 2, 0x44, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 11;
- control_queued = true;
- return;
- case 11:
- println("PL2303: writeRegister(8, 0)");
- mk_setup(setup, 0x40, 1, 8, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 12;
- control_queued = true;
- return;
- case 12:
- println("PL2303: writeRegister(9, 0)");
- mk_setup(setup, 0x40, 1, 9, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 13;
- control_queued = true;
- return;
- case 13:
- println("PL2303: Read current Baud/control");
- mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- break;
- }
- pending_control &= ~1; // We are finally going to leave this list and join the rest
- if (control_queued) return;
- }
-
- // set baud rate
- if (pending_control & 2) {
- pending_control &= ~2;
- // See what the read returned earlier
- print("PL2303: Returned configuration data: ");
- print_hexbytes(setupdata, 7);
-
- // Should probably use data structure, but that may depend on byte ordering...
- setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
- setupdata[1] = (baudrate >> 8) & 0xff;
- setupdata[2] = (baudrate >> 16) & 0xff;
- setupdata[3] = (baudrate >> 24) & 0xff;
- setupdata[4] = (format_ & 0x100)? 2 : 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
- setupdata[5] = (format_ & 0xe0) >> 5; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
- setupdata[6] = format_ & 0x1f; // Data bits (5, 6, 7, 8 or 16)
- print("PL2303: Set baud/control: ", baudrate, HEX);
- print(" = ");
- print_hexbytes(&setupdata, 7);
- mk_setup(setup, 0x21, 0x20, 0, 0, 7);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- return;
- }
- if (pending_control & 4) {
- pending_control &= ~4;
- println("PL2303: writeRegister(0, 0)");
- mk_setup(setup, 0x40, 1, 0, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- if (pending_control & 8) {
- pending_control &= ~8;
- println("PL2303: Read current Baud/control");
- memset(setupdata, 0, sizeof(setupdata)); // clear it to see if we read it...
- mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- }
- if (pending_control & 0x10) {
- pending_control &= ~0x10;
- print("PL2303: Returned configuration data: ");
- print_hexbytes(setupdata, 7);
-
- // This sets the control lines (0x1=DTR, 0x2=RTS)
- println("PL2303: 0x21, 0x22, 0x3");
- mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- if (pending_control & 0x20) {
- pending_control &= ~0x20;
- println("PL2303: 0x21, 0x22, 0x3");
- mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- }
- if (pending_control & 0x80) {
- pending_control &= ~0x80;
- println("PL2303: 0x21, 0x22, 0x0"); // Clear DTR/RTS
- mk_setup(setup, 0x21, 0x22, 0, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- }
- }
-
- if (sertype == CH341) {
- #if 0
- print(" Transfer: ");
- print_hexbytes(&transfer->setup, sizeof(setup_t));
- if (transfer->length) {
- print(" data: ");
- print_hexbytes(transfer->buffer, transfer->length);
- }
- #endif
- if (pending_control & 1) {
- // Still in larger setup state mode
- switch (setup_state) {
- case 1:
- print(" Returned: ");
- print_hexbytes(transfer->buffer, transfer->length);
- println("CH341: 40, a1, 0, 0, 0");
- mk_setup(setup, 0x40, 0xa1, 0, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 2;
- control_queued = true;
- return;
- case 2:
- ch341_setBaud(0); // send the first byte of the baud rate
- control_queued = true;
- setup_state = 3;
- return;
- case 3:
- ch341_setBaud(1); // send the second byte of the baud rate
- control_queued = true;
- setup_state = 4;
- return;
- case 4:
- println("CH341: c0, 95, 2518, 0, 8");
- mk_setup(setup, 0xc0, 0x95, 0x2518, 0, sizeof(setup)); //
- queue_Control_Transfer(device, &setup, setupdata, this);
- setup_state = 5;
- control_queued = true;
- return;
- case 5:
- print(" Returned: ");
- print_hexbytes(transfer->buffer, transfer->length);
- println("CH341: 40, 0x9a, 0x2518, 0x0050, 0");
- mk_setup(setup, 0x40, 0x9a, 0x2518, 0x0050, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 6;
- control_queued = true;
- return;
- case 6:
- println("CH341: c0, 95, 0x706, 0, 8 - get status");
- mk_setup(setup, 0xc0, 0x95, 0x706, 0, sizeof(setup)); //
- queue_Control_Transfer(device, &setup, setupdata, this);
- setup_state = 7;
- control_queued = true;
- return;
- case 7:
- print(" Returned: ");
- print_hexbytes(transfer->buffer, transfer->length);
- println("CH341: 40, 0xa1, 0x501f, 0xd90a, 0");
- mk_setup(setup, 0x40, 0xa1, 0x501f, 0xd90a, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- setup_state = 8;
- control_queued = true;
- break;
- }
- pending_control &= ~1; // We are finally going to leave this list and join the rest
- if (control_queued) return;
- }
- // set baud rate
- if (pending_control & 2) {
- pending_control &= ~2;
- ch341_setBaud(0); // send the first byte of the baud rate
- control_queued = true;
- return;
- }
- if (pending_control & 4) {
- pending_control &= ~4;
- ch341_setBaud(1); // send the first byte of the baud rate
- control_queued = true;
- return;
- }
-
- if (pending_control & 8) {
- pending_control &= ~8;
- uint16_t ch341_format;
- switch (format_) {
- default:
- // These values were observed when used on PC... Need to flush out others.
- case USBHOST_SERIAL_8N1: ch341_format = 0xc3; break;
- case USBHOST_SERIAL_7E1: ch341_format = 0xda; break;
- case USBHOST_SERIAL_7O1: ch341_format = 0xca; break;
- case USBHOST_SERIAL_8N2: ch341_format = 0xc7; break;
- }
- println("CH341: 40, 0x9a, 0x2518: ", ch341_format, HEX);
- mk_setup(setup, 0x40, 0x9a, 0x2518, ch341_format, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- if (pending_control & 0x10) {
- pending_control &= ~0x10;
- // This is setting handshake need to figure out what...
- // 0x20=DTR, 0x40=RTS send ~ of values.
- println("CH341: 0x40, 0xa4, 0xff9f, 0, 0 - Handshake");
- mk_setup(setup, 0x40, 0xa4, 0xff9f, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- if (pending_control & 0x20) {
- pending_control &= ~0x20;
- // This is setting handshake need to figure out what...
- println("CH341: c0, 95, 0x706, 0, 8 - get status");
- mk_setup(setup, 0xc0, 0x95, 0x706, 0, sizeof(setup)); //
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- return;
- }
- if (pending_control & 0x40) {
- pending_control &= ~0x40;
- print(" Returned: ");
- print_hexbytes(transfer->buffer, transfer->length);
- println("CH341: 0x40, 0x9a, 0x2727, 0, 0");
- mk_setup(setup, 0x40, 0x9a, 0x2727, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
-
- return;
- }
-
- if (pending_control & 0x80) {
- pending_control &= ~0x80;
- println("CH341: 0x40, 0xa4, 0xffff, 0, 0 - Handshake");
- mk_setup(setup, 0x40, 0xa4, 0xffff, 0, 0); //
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- }
- //-------------------------------------------------------------------------
- // First CP210X
- if (sertype == CP210X) {
- if (pending_control & 1) {
- pending_control &= ~1;
- // set data format
- uint16_t cp210x_format = (format_ & 0xf) << 8; // This should give us the number of bits.
-
- // now lets extract the parity from our encoding bits 5-7 and in theres 4-7
- cp210x_format |= (format_ & 0xe0) >> 1; // they encode bits 9-11
-
- // See if two stop bits
- if (format_ & 0x100) cp210x_format |= 2;
-
- mk_setup(setup, 0x41, 3, cp210x_format, 0, 0); // data format 8N1
- println("CP210x setup, 0x41, 3, cp210x_format ",cp210x_format, HEX);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
- // set baud rate
- if (pending_control & 2) {
- pending_control &= ~2;
- setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
- setupdata[1] = (baudrate >> 8) & 0xff;
- setupdata[2] = (baudrate >> 16) & 0xff;
- setupdata[3] = (baudrate >> 24) & 0xff;
- mk_setup(setup, 0x40, 0x1e, 0, 0, 4);
- println("CP210x Set Baud 0x40, 0x1e");
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- return;
- }
- // Appears to be an enable command
- if (pending_control & 4) {
- pending_control &= ~4;
- memset(setupdata, 0, sizeof(setupdata)); // clear out the data
- println("CP210x 0x41, 0, 1");
- mk_setup(setup, 0x41, 0, 1, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- return;
- }
-
- // MHS_REQUEST
- if (pending_control & 8) {
- pending_control &= ~0x88;
- mk_setup(setup, 0x41, 7, 0x0303, 0, 0);
- queue_Control_Transfer(device, &setup, NULL, this);
- control_queued = true;
- println("CP210x 0x41, 7, 0x0303");
- return;
- }
- }
- }
-
- #define CH341_BAUDBASE_FACTOR 1532620800
- #define CH341_BAUDBASE_DIVMAX 3
- void USBSerial::ch341_setBaud(uint8_t byte_index) {
- if (byte_index == 0) {
- uint32_t factor;
- uint16_t divisor;
-
- factor = (CH341_BAUDBASE_FACTOR / baudrate);
- divisor = CH341_BAUDBASE_DIVMAX;
-
- while ((factor > 0xfff0) && divisor) {
- factor >>= 3;
- divisor--;
- }
-
- factor = 0x10000 - factor;
-
- factor = (factor & 0xff00) | divisor;
- setupdata[0] = factor & 0xff; // save away the low byte for 2nd message
-
-
- println("CH341: 40, 0x9a, 0x1312... (Baud word 0):", factor, HEX);
- mk_setup(setup, 0x40, 0x9a, 0x1312, factor, 0); //
- } else {
- // Second packet use the byte we saved away during the calculation above
- println("CH341: 40, 0x9a, 0x0f2c... (Baud word 1):", setupdata[0], HEX);
- mk_setup(setup, 0x40, 0x9a, 0x0f2c, setupdata[0], 0); //
- }
- queue_Control_Transfer(device, &setup, setupdata, this);
- control_queued = true;
- }
-
-
- /************************************************************/
- // Interrupt-based Data Movement
- /************************************************************/
-
- void USBSerial::rx_callback(const Transfer_t *transfer)
- {
- if (!transfer->driver) return;
- ((USBSerial *)(transfer->driver))->rx_data(transfer);
- }
-
- void USBSerial::tx_callback(const Transfer_t *transfer)
- {
- if (!transfer->driver) return;
- ((USBSerial *)(transfer->driver))->tx_data(transfer);
- }
-
-
- void USBSerial::rx_data(const Transfer_t *transfer)
- {
- uint32_t len = transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF);
-
- debugDigitalToggle(6);
- // first update rxstate bitmask, since buffer is no longer queued
- if (transfer->buffer == rx1) {
- rxstate &= 0xFE;
- } else if (transfer->buffer == rx2) {
- rxstate &= 0xFD;
- }
- // get start of data and actual length
- const uint8_t *p = (const uint8_t *)transfer->buffer;
- if (sertype == FTDI) {
- if (len >= 2) {
- p += 2;
- len -= 2;
- } else {
- len = 0;
- }
- }
- if (len > 0) {
- print("rx token: ", transfer->qtd.token, HEX);
- print(" transfer length: ", transfer->length, DEC);
- print(" len:", len, DEC);
- print(" - ", *p, HEX);
- println(" ", *(p+1), HEX);
- print("rx: ");
- print_hexbytes(p, len);
- }
- // Copy data from packet buffer to circular buffer.
- // Assume the buffer will always have space, since we
- // check before queuing the buffers
- uint32_t head = rxhead;
- uint32_t tail = rxtail;
- if (++head >= rxsize) head = 0;
- uint32_t avail;
- if (len > 0) {
- //print("head=", head);
- //print(", tail=", tail);
- avail = rxsize - head;
- //print(", avail=", avail);
- //println(", rxsize=", rxsize);
- if (avail > len) avail = len;
- memcpy(rxbuf + head, p, avail);
- if (len <= avail) {
- head += avail - 1;
- if (head >= rxsize) head = 0;
- } else {
- head = len - avail - 1;
- memcpy(rxbuf, p + avail, head + 1);
- }
- rxhead = head;
- }
- // TODO: can be this more efficient? We know from above which
- // buffer is no longer queued, so possible skip most of this work?
- rx_queue_packets(head, tail);
- }
-
- // re-queue packet buffer(s) if possible
- void USBSerial::rx_queue_packets(uint32_t head, uint32_t tail)
- {
- uint32_t avail;
- if (head >= tail) {
- avail = rxsize - 1 - head + tail;
- } else {
- avail = tail - head - 1;
- }
- uint32_t packetsize = rx2 - rx1;
- if (avail >= packetsize) {
- if ((rxstate & 0x01) == 0) {
- queue_Data_Transfer(rxpipe, rx1, packetsize, this);
- rxstate |= 0x01;
- } else if ((rxstate & 0x02) == 0) {
- queue_Data_Transfer(rxpipe, rx2, packetsize, this);
- rxstate |= 0x02;
- }
- if ((rxstate & 0x03) != 0x03 && avail >= packetsize * 2) {
- if ((rxstate & 0x01) == 0) {
- queue_Data_Transfer(rxpipe, rx1, packetsize, this);
- rxstate |= 0x01;
- } else if ((rxstate & 0x02) == 0) {
- queue_Data_Transfer(rxpipe, rx2, packetsize, this);
- rxstate |= 0x02;
- }
- }
- }
- }
-
- void USBSerial::tx_data(const Transfer_t *transfer)
- {
- uint32_t mask;
- uint8_t *p = (uint8_t *)transfer->buffer;
- debugDigitalWrite(5, HIGH);
- if (p == tx1) {
- println("tx1:");
- mask = 1;
- //txstate &= 0xFE;
- } else if (p == tx2) {
- println("tx2:");
- mask = 2;
- //txstate &= 0xFD;
- } else {
- debugDigitalWrite(5, LOW);
- return; // should never happen
- }
- // check how much more data remains in the transmit buffer
- uint32_t head = txhead;
- uint32_t tail = txtail;
- uint32_t count;
- if (head >= tail) {
- count = head - tail;
- } else {
- count = txsize + head - tail;
- }
- uint32_t packetsize = tx2 - tx1;
- // Only output full packets unless the flush bit was set.
- if ((count == 0) || ((count < packetsize) && ((txstate & 0x4) == 0) )) {
- // not enough data in buffer to fill a full packet
- txstate &= ~(mask | 4); // turn off that transfer and make sure the flush bit is not set
- debugDigitalWrite(5, LOW);
- return;
- }
- // immediately transmit another full packet, if we have enough data
- if (count >= packetsize) count = packetsize;
- else txstate &= ~(mask | 4); // This packet will complete any outstanding flush
-
- println("TX:moar data!!!!");
- if (++tail >= txsize) tail = 0;
- uint32_t n = txsize - tail;
- if (n > count) n = count;
- memcpy(p, txbuf + tail, n);
- if (n >= count) {
- tail += n - 1;
- if (tail >= txsize) tail = 0;
- } else {
- uint32_t len = count - n;
- memcpy(p + n, txbuf, len);
- tail = len - 1;
- }
- txtail = tail;
- queue_Data_Transfer(txpipe, p, count, this);
- debugDigitalWrite(5, LOW);
- }
-
- void USBSerial::flush()
- {
- print("USBSerial::flush");
- if (txhead == txtail) {
- println(" - Empty");
- return; // empty.
- }
- debugDigitalWrite(32, HIGH);
- NVIC_DISABLE_IRQ(IRQ_USBHS);
- txtimer.stop(); // Stop longer timer.
- txtimer.start(100); // Start a mimimal timeout
- // timer_event(nullptr); // Try calling direct - fails to work
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- while (txstate & 3) ; // wait for all of the USB packets to be sent.
- println(" completed");
- debugDigitalWrite(32, LOW);
- }
-
-
-
- void USBSerial::timer_event(USBDriverTimer *whichTimer)
- {
- debugDigitalWrite(7, HIGH);
- println("txtimer");
- uint32_t count;
- uint32_t head = txhead;
- uint32_t tail = txtail;
- if (head == tail) {
- println(" *** Empty ***");
- debugDigitalWrite(7, LOW);
- return; // nothing to transmit
- } else if (head > tail) {
- count = head - tail;
- } else {
- count = txsize + head - tail;
- }
-
- uint8_t *p;
- if ((txstate & 0x01) == 0) {
- p = tx1;
- txstate |= 0x01;
- } else if ((txstate & 0x02) == 0) {
- p = tx2;
- txstate |= 0x02;
- } else {
- txstate |= 4; // Tell the TX code to do flush code.
- println(" *** No buffers ***");
- debugDigitalWrite(7, LOW);
- return; // no outgoing buffers available, try again later
- }
-
- uint32_t packetsize = tx2 - tx1;
-
- // Possible for remaining ? packet size and not have both?
- if (count > packetsize) {
- txstate |= 4; // One of the active transfers will handle the remaining parts
- count = packetsize;
- }
-
- if (++tail >= txsize) tail = 0;
- uint32_t n = txsize - tail;
- if (n > count) n = count;
- memcpy(p, txbuf + tail, n);
- if (n >= count) {
- tail += n - 1;
- if (tail >= txsize) tail = 0;
- } else {
- uint32_t len = count - n;
- memcpy(p + n, txbuf, len);
- tail = len - 1;
- }
- txtail = tail;
- print(" TX data (", count);
- print(") ");
- print_hexbytes(p, count);
- queue_Data_Transfer(txpipe, p, count, this);
- debugDigitalWrite(7, LOW);
- }
-
-
-
- /************************************************************/
- // User Functions - must disable USBHQ IRQ for EHCI access
- /************************************************************/
-
- void USBSerial::begin(uint32_t baud, uint32_t format)
- {
- NVIC_DISABLE_IRQ(IRQ_USBHS);
- baudrate = baud;
- bool format_changed = format != format_;
- format_ = format;
- switch (sertype) {
- default:
- case CDCACM: pending_control |= 0x6; break;
- case FTDI: pending_control |= (format_changed? 0xf : 0xe); break; // Set BAUD, FLOW, DTR
- case PL2303: pending_control |= 0x1e; break; // set more stuff...
- case CH341: pending_control |= 0x1e; break;
- case CP210X: pending_control |= 0xf; break;
- }
- if (!control_queued) control(NULL);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- // Wait until all packets have been queued before we return to caller.
- while (pending_control) {
- yield(); // not sure if we want to yield or what?
- }
- }
-
- void USBSerial::end(void)
- {
- NVIC_DISABLE_IRQ(IRQ_USBHS);
- switch (sertype) {
- default:
- case CDCACM: pending_control |= 0x80; break;
- case FTDI: pending_control |= 0x80; break; // clear DTR
- case PL2303: pending_control |= 0x80; break;
- case CH341: pending_control |= 0x80; break;
- }
- if (!control_queued) control(NULL);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
-
- // Wait until all packets have been queued before we return to caller.
- while (pending_control) {
- yield(); // not sure if we want to yield or what?
- }
- }
-
- int USBSerial::available(void)
- {
- if (!device) return 0;
- uint32_t head = rxhead;
- uint32_t tail = rxtail;
- if (head >= tail) return head - tail;
- return rxsize + head - tail;
- }
-
- int USBSerial::peek(void)
- {
- if (!device) return -1;
- uint32_t head = rxhead;
- uint32_t tail = rxtail;
- if (head == tail) return -1;
- if (++tail >= rxsize) tail = 0;
- return rxbuf[tail];
- }
-
- int USBSerial::read(void)
- {
- if (!device) return -1;
- uint32_t head = rxhead;
- uint32_t tail = rxtail;
- if (head == tail) return -1;
- if (++tail >= rxsize) tail = 0;
- int c = rxbuf[tail];
- rxtail = tail;
- if ((rxstate & 0x03) != 0x03) {
- NVIC_DISABLE_IRQ(IRQ_USBHS);
- rx_queue_packets(head, tail);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- }
- return c;
- }
-
- int USBSerial::availableForWrite()
- {
- if (!device) return 0;
- uint32_t head = txhead;
- uint32_t tail = txtail;
- if (head >= tail) return txsize - 1 - head + tail;
- return tail - head - 1;
- }
-
- size_t USBSerial::write(uint8_t c)
- {
- if (!device) return 0;
- uint32_t head = txhead;
- if (++head >= txsize) head = 0;
- while (txtail == head) {
- // wait...
- }
- txbuf[head] = c;
- txhead = head;
- //print("head=", head);
- //println(", tail=", txtail);
-
- // if full packet in buffer and tx packet ready, queue it
- NVIC_DISABLE_IRQ(IRQ_USBHS);
- uint32_t tail = txtail;
- if ((txstate & 0x03) != 0x03) {
- // at least one packet buffer is ready to transmit
- uint32_t count;
- if (head >= tail) {
- count = head - tail;
- } else {
- count = txsize + head - tail;
- }
- uint32_t packetsize = tx2 - tx1;
- if (count >= packetsize) {
- //println("txsize=", txsize);
- uint8_t *p;
- if ((txstate & 0x01) == 0) {
- p = tx1;
- txstate |= 0x01;
- } else /* if ((txstate & 0x02) == 0) */ {
- p = tx2;
- txstate |= 0x02;
- }
- // copy data to packet buffer
- if (++tail >= txsize) tail = 0;
- uint32_t n = txsize - tail;
- if (n > packetsize) n = packetsize;
- //print("memcpy, offset=", tail);
- //println(", len=", n);
- memcpy(p, txbuf + tail, n);
- if (n >= packetsize) {
- tail += n - 1;
- if (tail >= txsize) tail = 0;
- } else {
- //n = txsize - n;
- uint32_t len = packetsize - n;
- //println("memcpy, offset=0, len=", len);
- memcpy(p + n, txbuf, len);
- tail = len - 1;
- }
- txtail = tail;
- //println("queue tx packet, newtail=", tail);
- debugDigitalWrite(7, HIGH);
- queue_Data_Transfer(txpipe, p, packetsize, this);
- debugDigitalWrite(7, LOW);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- return 1;
- }
- }
- // otherwise, set a latency timer to later transmit partial packet
- txtimer.stop();
- txtimer.start(write_timeout_);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- return 1;
- }
-
-
|