|
- /* USB EHCI Host for Teensy 3.6
- * Copyright 2017 Paul Stoffregen (paul@pjrc.com)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
- #include <Arduino.h>
- #include "USBHost_t36.h" // Read this header first for key info
-
- // All USB EHCI controller hardware access is done from this file's code.
- // Hardware services are made available to the rest of this library by
- // three structures:
- //
- // Pipe_t: Every USB endpoint is accessed by a pipe. new_Pipe()
- // sets up the EHCI to support the pipe/endpoint, and delete_Pipe()
- // removes this configuration.
- //
- // Transfer_t: These are used for all communication. Data transfers
- // are placed into work queues, to be executed by the EHCI in
- // the future. Transfer_t only manages data. The actual data
- // is stored in a separate buffer (usually from a device driver)
- // which is referenced from Transfer_t. All data transfer is queued,
- // never done with blocking functions that wait. When transfers
- // complete, a driver-supplied callback function is called to notify
- // the driver.
- //
- // USBDriverTimer: Some drivers require timers. These allow drivers
- // to share the hardware timer, with each USBDriverTimer object
- // able to schedule a callback function a configurable number of
- // microseconds in the future.
- //
- // In addition to these 3 services, the EHCI interrupt also responds
- // to changes on the main port, creating and deleting the root device.
- // See enumeration.cpp for all device-level code.
-
- // Size of the periodic list, in milliseconds. This determines the
- // slowest rate we can poll interrupt endpoints. Each entry uses
- // 12 bytes (4 for a pointer, 8 for bandwidth management).
- // Supported values: 8, 16, 32, 64, 128, 256, 512, 1024
- #if defined(USBHS_PERIODIC_LIST_SIZE)
- #define PERIODIC_LIST_SIZE (USBHS_PERIODIC_LIST_SIZE)
- #else
- #define PERIODIC_LIST_SIZE 32
- #endif
-
- // The EHCI periodic schedule, used for interrupt pipes/endpoints
- static uint32_t periodictable[PERIODIC_LIST_SIZE] __attribute__ ((aligned(4096), used));
- static uint8_t uframe_bandwidth[PERIODIC_LIST_SIZE*8];
-
- // State of the 1 and only physical USB host port on Teensy 3.6
- static uint8_t port_state;
- #define PORT_STATE_DISCONNECTED 0
- #define PORT_STATE_DEBOUNCE 1
- #define PORT_STATE_RESET 2
- #define PORT_STATE_RECOVERY 3
- #define PORT_STATE_ACTIVE 4
-
- // The device currently connected, or NULL when no device
- static Device_t *rootdev=NULL;
-
- // List of all queued transfers in the asychronous schedule (control & bulk).
- // When the EHCI completes these transfers, this list is how we locate them
- // in memory.
- static Transfer_t *async_followup_first=NULL;
- static Transfer_t *async_followup_last=NULL;
-
- // List of all queued transfers in the asychronous schedule (interrupt endpoints)
- // When the EHCI completes these transfers, this list is how we locate them
- // in memory.
- static Transfer_t *periodic_followup_first=NULL;
- static Transfer_t *periodic_followup_last=NULL;
-
- // List of all pending timers. This double linked list is stored in
- // chronological order. Each timer is stored with the number of
- // microseconds which need to elapsed from the prior timer on this
- // list, to allow efficient servicing from the timer interrupt.
- static USBDriverTimer *active_timers=NULL;
-
-
- static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
- uint32_t pid, uint32_t data01, bool irq);
- static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last);
- static void remove_from_async_followup_list(Transfer_t *transfer);
- static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last);
- static void remove_from_periodic_followup_list(Transfer_t *transfer);
-
- #define print USBHost::print_
- #define println USBHost::println_
-
- void USBHost::begin()
- {
- #if defined(__MK66FX1M0__)
- // Teensy 3.6 has USB host power controlled by PTE6
- PORTE_PCR6 = PORT_PCR_MUX(1);
- GPIOE_PDDR |= (1<<6);
- GPIOE_PSOR = (1<<6); // turn on USB host power
- delay(10);
- println("sizeof Device = ", sizeof(Device_t));
- println("sizeof Pipe = ", sizeof(Pipe_t));
- println("sizeof Transfer = ", sizeof(Transfer_t));
- if ((sizeof(Pipe_t) & 0x1F) || (sizeof(Transfer_t) & 0x1F)) {
- println("ERROR: Pipe_t & Transfer_t must be multiples of 32 bytes!");
- while (1) ; // die here
- }
-
- // configure the MPU to allow USBHS DMA to access memory
- MPU_RGDAAC0 |= 0x30000000;
- //println("MPU_RGDAAC0 = ", MPU_RGDAAC0, HEX);
-
- // turn on clocks
- MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz
- OSC0_CR |= OSC_ERCLKEN;
- SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator
- SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock
- println("power up USBHS PHY");
- SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit
- //SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237
- SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS;
- USBHSDCD_CLOCK = 33 << 2;
- //print("init USBHS PHY & PLL");
- // init process: page 1681-1682
- USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698
- USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
- //USBPHY_CTRL_SET = USBPHY_CTRL_FSDLL_RST_EN; // TODO: what does this do??
- USBPHY_TRIM_OVERRIDE_EN_SET = 1;
- USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE |
- USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS;
- // wait for the PLL to lock
- int pll_count=0;
- while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) {
- pll_count++;
- }
- //println("PLL locked, waited ", pll_count);
-
- // turn on power to PHY
- USBPHY_PWD = 0;
-
- // sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change
- //USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :)
-
- // sanity check, output clocks on pin 9 for testing
- //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz
- //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash
- //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL
- //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz
- //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK
- //CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9)
-
-
- #elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
- // Teensy 4.0 PLL & USB PHY powerup
- while (1) {
- uint32_t n = CCM_ANALOG_PLL_USB2;
- if (n & CCM_ANALOG_PLL_USB2_DIV_SELECT) {
- CCM_ANALOG_PLL_USB2_CLR = 0xC000; // get out of 528 MHz mode
- CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_BYPASS;
- CCM_ANALOG_PLL_USB2_CLR = CCM_ANALOG_PLL_USB2_POWER |
- CCM_ANALOG_PLL_USB2_DIV_SELECT |
- CCM_ANALOG_PLL_USB2_ENABLE |
- CCM_ANALOG_PLL_USB2_EN_USB_CLKS;
- continue;
- }
- if (!(n & CCM_ANALOG_PLL_USB2_ENABLE)) {
- CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_ENABLE; // enable
- continue;
- }
- if (!(n & CCM_ANALOG_PLL_USB2_POWER)) {
- CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_POWER; // power up
- continue;
- }
- if (!(n & CCM_ANALOG_PLL_USB2_LOCK)) {
- continue; // wait for lock
- }
- if (n & CCM_ANALOG_PLL_USB2_BYPASS) {
- CCM_ANALOG_PLL_USB2_CLR = CCM_ANALOG_PLL_USB2_BYPASS; // turn off bypass
- continue;
- }
- if (!(n & CCM_ANALOG_PLL_USB2_EN_USB_CLKS)) {
- CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_EN_USB_CLKS; // enable
- continue;
- }
- println("USB2 PLL running");
- break; // USB2 PLL up and running
- }
- // turn on USB clocks (should already be on)
- CCM_CCGR6 |= CCM_CCGR6_USBOH3(CCM_CCGR_ON);
- // turn on USB2 PHY
- USBPHY2_CTRL_CLR = USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE;
- USBPHY2_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
- USBPHY2_PWD = 0;
-
- #endif
- delay(10);
-
- // now with the PHY up and running, start up USBHS
- //print("begin ehci reset");
- USBHS_USBCMD |= USBHS_USBCMD_RST;
- int reset_count = 0;
- while (USBHS_USBCMD & USBHS_USBCMD_RST) {
- reset_count++;
- }
- println(" reset waited ", reset_count);
-
- init_Device_Pipe_Transfer_memory();
- for (int i=0; i < PERIODIC_LIST_SIZE; i++) {
- periodictable[i] = 1;
- }
- memset(uframe_bandwidth, 0, sizeof(uframe_bandwidth));
- port_state = PORT_STATE_DISCONNECTED;
-
- USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration
-
- // turn on the USBHS controller
- //USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode
- USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode
- USBHS_USBINTR = 0;
- USBHS_PERIODICLISTBASE = (uint32_t)periodictable;
- USBHS_FRINDEX = 0;
- USBHS_ASYNCLISTADDR = 0;
- USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS |
- USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE | USBHS_USBCMD_PSE |
- #if PERIODIC_LIST_SIZE == 8
- USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(3);
- #elif PERIODIC_LIST_SIZE == 16
- USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(2);
- #elif PERIODIC_LIST_SIZE == 32
- USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1);
- #elif PERIODIC_LIST_SIZE == 64
- USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(0);
- #elif PERIODIC_LIST_SIZE == 128
- USBHS_USBCMD_FS(3);
- #elif PERIODIC_LIST_SIZE == 256
- USBHS_USBCMD_FS(2);
- #elif PERIODIC_LIST_SIZE == 512
- USBHS_USBCMD_FS(1);
- #elif PERIODIC_LIST_SIZE == 1024
- USBHS_USBCMD_FS(0);
- #else
- #error "Unsupported PERIODIC_LIST_SIZE"
- #endif
-
- // turn on the USB port
- //USBHS_PORTSC1 = USBHS_PORTSC_PP;
- USBHS_PORTSC1 |= USBHS_PORTSC_PP;
- //USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec
- //USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off
-
- println("USBHS_ASYNCLISTADDR = ", USBHS_ASYNCLISTADDR, HEX);
- println("USBHS_PERIODICLISTBASE = ", USBHS_PERIODICLISTBASE, HEX);
- println("periodictable = ", (uint32_t)periodictable, HEX);
-
- // enable interrupts, after this point interruts to all the work
- attachInterruptVector(IRQ_USBHS, isr);
- NVIC_ENABLE_IRQ(IRQ_USBHS);
- USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0 | USBHS_USBINTR_TIE1;
- USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE;
- USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE;
-
- }
-
-
- // EHCI registers page default
- // -------------- ---- -------
- // USBHS_USBCMD 1599 00080000 USB Command
- // USBHS_USBSTS 1602 00000000 USB Status
- // USBHS_USBINTR 1606 00000000 USB Interrupt Enable
- // USBHS_FRINDEX 1609 00000000 Frame Index Register
- // USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address
- // USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address
- // USBHS_PORTSC1 1619 00002000 Port Status and Control
- // USBHS_USBMODE 1629 00005000 USB Mode
- // USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control
-
- // PORT_STATE_DISCONNECTED 0
- // PORT_STATE_DEBOUNCE 1
- // PORT_STATE_RESET 2
- // PORT_STATE_RECOVERY 3
- // PORT_STATE_ACTIVE 4
-
-
- void USBHost::isr()
- {
- uint32_t stat = USBHS_USBSTS;
- USBHS_USBSTS = stat; // clear pending interrupts
- //stat &= USBHS_USBINTR; // mask away unwanted interrupts
- #if 0
- println();
- println("ISR: ", stat, HEX);
- //if (stat & USBHS_USBSTS_UI) println(" USB Interrupt");
- if (stat & USBHS_USBSTS_UEI) println(" USB Error");
- if (stat & USBHS_USBSTS_PCI) println(" Port Change");
- //if (stat & USBHS_USBSTS_FRI) println(" Frame List Rollover");
- if (stat & USBHS_USBSTS_SEI) println(" System Error");
- //if (stat & USBHS_USBSTS_AAI) println(" Async Advance (doorbell)");
- if (stat & USBHS_USBSTS_URI) println(" Reset Recv");
- //if (stat & USBHS_USBSTS_SRI) println(" SOF");
- if (stat & USBHS_USBSTS_SLI) println(" Suspend");
- if (stat & USBHS_USBSTS_HCH) println(" Host Halted");
- //if (stat & USBHS_USBSTS_RCL) println(" Reclamation");
- //if (stat & USBHS_USBSTS_PS) println(" Periodic Sched En");
- //if (stat & USBHS_USBSTS_AS) println(" Async Sched En");
- if (stat & USBHS_USBSTS_NAKI) println(" NAK");
- if (stat & USBHS_USBSTS_UAI) println(" USB Async");
- if (stat & USBHS_USBSTS_UPI) println(" USB Periodic");
- if (stat & USBHS_USBSTS_TI0) println(" Timer0");
- if (stat & USBHS_USBSTS_TI1) println(" Timer1");
- #endif
-
- if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule
- //println("Async Followup");
- //print(async_followup_first, async_followup_last);
- Transfer_t *p = async_followup_first;
- while (p) {
- if (followup_Transfer(p)) {
- // transfer completed
- Transfer_t *next = p->next_followup;
- remove_from_async_followup_list(p);
- free_Transfer(p);
- p = next;
- } else {
- // transfer still pending
- p = p->next_followup;
- }
- }
- //print(async_followup_first, async_followup_last);
- }
- if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule
- //println("Periodic Followup");
- Transfer_t *p = periodic_followup_first;
- while (p) {
- if (followup_Transfer(p)) {
- // transfer completed
- Transfer_t *next = p->next_followup;
- remove_from_periodic_followup_list(p);
- free_Transfer(p);
- p = next;
- } else {
- // transfer still pending
- p = p->next_followup;
- }
- }
- }
- if (stat & USBHS_USBSTS_UEI) {
- followup_Error();
- }
-
- if (stat & USBHS_USBSTS_PCI) { // port change detected
- const uint32_t portstat = USBHS_PORTSC1;
- println("port change: ", portstat, HEX);
- USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC);
- if (portstat & USBHS_PORTSC_OCC) {
- println(" overcurrent change");
- }
- if (portstat & USBHS_PORTSC_CSC) {
- if (portstat & USBHS_PORTSC_CCS) {
- println(" connect");
- if (port_state == PORT_STATE_DISCONNECTED
- || port_state == PORT_STATE_DEBOUNCE) {
- // 100 ms debounce (USB 2.0: TATTDB, page 150 & 188)
- port_state = PORT_STATE_DEBOUNCE;
- USBHS_GPTIMER0LD = 100000; // microseconds
- USBHS_GPTIMER0CTL =
- USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- stat &= ~USBHS_USBSTS_TI0;
- }
- } else {
- println(" disconnect");
- port_state = PORT_STATE_DISCONNECTED;
- USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT;
- disconnect_Device(rootdev);
- rootdev = NULL;
- }
- }
- if (portstat & USBHS_PORTSC_PEC) {
- // PEC bit only detects disable
- println(" disable");
- } else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) {
- println(" port enabled");
- port_state = PORT_STATE_RECOVERY;
- // 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188)
- USBHS_GPTIMER0LD = 10000; // microseconds
- USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) {
- // turn on high-speed disconnect detector
- USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT;
- }
- }
- if (portstat & USBHS_PORTSC_FPR) {
- println(" force resume");
-
- }
- }
- if (stat & USBHS_USBSTS_TI0) { // timer 0 - used for built-in port events
- //println("timer0");
- if (port_state == PORT_STATE_DEBOUNCE) {
- port_state = PORT_STATE_RESET;
- // Since we have only 1 port, no other device can
- // be in reset or enumeration. If multiple ports
- // are ever supported, we would need to remain in
- // debounce if any other port was resetting or
- // enumerating a device.
- USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence
- println(" begin reset");
- } else if (port_state == PORT_STATE_RECOVERY) {
- port_state = PORT_STATE_ACTIVE;
- println(" end recovery");
- // HCSPARAMS TTCTRL page 1671
- uint32_t speed = (USBHS_PORTSC1 >> 26) & 3;
- rootdev = new_Device(speed, 0, 0);
- }
- }
- if (stat & USBHS_USBSTS_TI1) { // timer 1 - used for USBDriverTimer
- //println("timer1");
- USBDriverTimer *timer = active_timers;
- if (timer) {
- USBDriverTimer *next = timer->next;
- active_timers = next;
- if (next) {
- // more timers scheduled
- next->prev = NULL;
- USBHS_GPTIMER1LD = next->usec - 1;
- USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- }
- // TODO: call multiple timers if 0 elapsed between them?
- timer->driver->timer_event(timer); // call driver's timer()
- }
- }
- }
-
- void USBDriverTimer::start(uint32_t microseconds)
- {
- #if 0
- USBHost::print_("start_timer, us = ");
- USBHost::print_(microseconds);
- USBHost::print_(", driver = ");
- USBHost::print_((uint32_t)driver, HEX);
- USBHost::print_(", this = ");
- USBHost::println_((uint32_t)this, HEX);
- #endif
- if (!driver) return;
- if (microseconds < 100) return; // minimum timer duration
- started_micros = micros();
- if (active_timers == NULL) {
- // schedule is empty, just add this timer
- usec = microseconds;
- next = NULL;
- prev = NULL;
- active_timers = this;
- USBHS_GPTIMER1LD = microseconds - 1;
- USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- return;
- }
- uint32_t remain = USBHS_GPTIMER1CTL & 0xFFFFFF;
- //USBHDBGSerial.print("remain = ");
- //USBHDBGSerial.println(remain);
- if (microseconds < remain) {
- // this timer event is before any on the schedule
- __disable_irq();
- USBHS_GPTIMER1CTL = 0;
- USBHS_USBSTS = USBHS_USBSTS_TI1; // TODO: UPI & UAI safety?!
- usec = microseconds;
- next = active_timers;
- prev = NULL;
- active_timers->usec = remain - microseconds;
- active_timers->prev = this;
- active_timers = this;
- USBHS_GPTIMER1LD = microseconds - 1;
- USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- __enable_irq();
- return;
- }
- // add this timer to the schedule, somewhere after the first timer
- microseconds -= remain;
- USBDriverTimer *list = active_timers;
- while (list->next) {
- list = list->next;
- if (microseconds < list->usec) {
- // add timer into middle of list
- list->usec -= microseconds;
- usec = microseconds;
- next = list;
- prev = list->prev;
- list->prev = this;
- prev->next = this;
- return;
- }
- microseconds -= list->usec;
- }
- // add timer to the end of the schedule
- usec = microseconds;
- next = NULL;
- prev = list;
- list->next = this;
- }
-
- void USBDriverTimer::stop()
- {
- __disable_irq();
- if (active_timers) {
- if (active_timers == this) {
- USBHS_GPTIMER1CTL = 0;
- if (next) {
- uint32_t usec_til_next = USBHS_GPTIMER1CTL & 0xFFFFFF;
- usec_til_next += next->usec;
- next->usec = usec_til_next;
- USBHS_GPTIMER1LD = usec_til_next;
- USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
- next->prev = NULL;
- active_timers = next;
- } else {
- active_timers = NULL;
- }
- } else {
- for (USBDriverTimer *t = active_timers->next; t; t = t->next) {
- if (t == this) {
- t->prev->next = t->next;
- if (t->next) {
- t->next->usec += t->usec;
- t->next->prev = t->prev;
- }
- break;
- }
- }
- }
- }
- __enable_irq();
- }
-
-
- static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag,
- uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control,
- uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address)
- {
- return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) |
- (max_packet_length << 16) | (head_of_list << 15) |
- (data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) |
- (inactivate << 7) | (address << 0) );
- }
-
- static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number,
- uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask)
- {
- return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) |
- (split_completion_mask << 8) | (interrupt_schedule_mask << 0) );
- }
-
-
-
- // Create a new pipe. It's QH is added to the async or periodic schedule,
- // and a halt qTD is added to the QH, so we can grow the qTD list later.
- // dev: device owning this pipe/endpoint
- // type: 0=control, 2=bulk, 3=interrupt
- // endpoint: 0 for control, 1-15 for bulk or interrupt
- // direction: 0=OUT, 1=IN (unused for control)
- // maxlen: maximum packet size
- // interval: polling interval for interrupt, power of 2, unused if control or bulk
- //
- Pipe_t * USBHost::new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
- uint32_t direction, uint32_t maxlen, uint32_t interval)
- {
- Pipe_t *pipe;
- Transfer_t *halt;
- uint32_t c=0, dtc=0;
-
- println("new_Pipe");
- pipe = allocate_Pipe();
- if (!pipe) return NULL;
- halt = allocate_Transfer();
- if (!halt) {
- free_Pipe(pipe);
- return NULL;
- }
- memset(pipe, 0, sizeof(Pipe_t));
- memset(halt, 0, sizeof(Transfer_t));
- halt->qtd.next = 1;
- halt->qtd.token = 0x40;
- pipe->device = dev;
- pipe->qh.next = (uint32_t)halt;
- pipe->qh.alt_next = 1;
- pipe->direction = direction;
- pipe->type = type;
- if (type == 3) {
- // interrupt transfers require bandwidth & microframe scheduling
- if (!allocate_interrupt_pipe_bandwidth(pipe, maxlen, interval)) {
- free_Transfer(halt);
- free_Pipe(pipe);
- return NULL;
- }
- }
- if (endpoint > 0) {
- // if non-control pipe, update dev->data_pipes list
- Pipe_t *p = dev->data_pipes;
- if (p == NULL) {
- dev->data_pipes = pipe;
- } else {
- while (p->next) p = p->next;
- p->next = pipe;
- }
- }
- if (type == 0) {
- // control
- if (dev->speed < 2) c = 1;
- dtc = 1;
- } else if (type == 2) {
- // bulk
- } else if (type == 3) {
- // interrupt
- //pipe->qh.token = 0x80000000; // TODO: OUT starts with DATA0 or DATA1?
- }
- pipe->qh.capabilities[0] = QH_capabilities1(15, c, maxlen, 0,
- dtc, dev->speed, endpoint, 0, dev->address);
- pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port,
- dev->hub_address, pipe->complete_mask, pipe->start_mask);
-
- if (type == 0 || type == 2) {
- // control or bulk: add to async queue
- Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR;
- if (list == NULL) {
- pipe->qh.capabilities[0] |= 0x8000; // H bit
- pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH
- USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh);
- USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule
- //println(" first in async list");
- } else {
- // EHCI 1.0: section 4.8.1, page 72
- pipe->qh.horizontal_link = list->qh.horizontal_link;
- list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2;
- //println(" added to async list");
- }
- } else if (type == 3) {
- // interrupt: add to periodic schedule
- add_qh_to_periodic_schedule(pipe);
- }
- return pipe;
- }
-
-
-
- // Fill in the qTD fields (token & data)
- // t the Transfer qTD to initialize
- // buf data to transfer
- // len length of data
- // pid type of packet: 0=OUT, 1=IN, 2=SETUP
- // data01 value of DATA0/DATA1 toggle on 1st packet
- // irq whether to generate an interrupt when transfer complete
- //
- static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
- uint32_t pid, uint32_t data01, bool irq)
- {
- t->qtd.alt_next = 1; // 1=terminate
- if (data01) data01 = 0x80000000;
- t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80;
- uint32_t addr = (uint32_t)buf;
- t->qtd.buffer[0] = addr;
- addr &= 0xFFFFF000;
- t->qtd.buffer[1] = addr + 0x1000;
- t->qtd.buffer[2] = addr + 0x2000;
- t->qtd.buffer[3] = addr + 0x3000;
- t->qtd.buffer[4] = addr + 0x4000;
- }
-
-
-
- // Create a Control Transfer and queue it
- //
- bool USBHost::queue_Control_Transfer(Device_t *dev, setup_t *setup, void *buf, USBDriver *driver)
- {
- Transfer_t *transfer, *data, *status;
- uint32_t status_direction;
-
- //println("new_Control_Transfer");
- if (setup->wLength > 16384) return false; // max 16K data for control
- transfer = allocate_Transfer();
- if (!transfer) {
- println(" error allocating setup transfer");
- return false;
- }
- status = allocate_Transfer();
- if (!status) {
- println(" error allocating status transfer");
- free_Transfer(transfer);
- return false;
- }
- if (setup->wLength > 0) {
- data = allocate_Transfer();
- if (!data) {
- println(" error allocating data transfer");
- free_Transfer(transfer);
- free_Transfer(status);
- return false;
- }
- uint32_t pid = (setup->bmRequestType & 0x80) ? 1 : 0;
- init_qTD(data, buf, setup->wLength, pid, 1, false);
- transfer->qtd.next = (uint32_t)data;
- data->qtd.next = (uint32_t)status;
- status_direction = pid ^ 1;
- } else {
- transfer->qtd.next = (uint32_t)status;
- status_direction = 1; // always IN, USB 2.0 page 226
- }
- //println("setup address ", (uint32_t)setup, HEX);
- init_qTD(transfer, setup, 8, 2, 0, false);
- init_qTD(status, NULL, 0, status_direction, 1, true);
- status->pipe = dev->control_pipe;
- status->buffer = buf;
- status->length = setup->wLength;
- status->setup.word1 = setup->word1;
- status->setup.word2 = setup->word2;
- status->driver = driver;
- status->qtd.next = 1;
- return queue_Transfer(dev->control_pipe, transfer);
- }
-
-
- // Create a Bulk or Interrupt Transfer and queue it
- //
- bool USBHost::queue_Data_Transfer(Pipe_t *pipe, void *buffer, uint32_t len, USBDriver *driver)
- {
- Transfer_t *transfer, *data, *next;
- uint8_t *p = (uint8_t *)buffer;
- uint32_t count;
- bool last = false;
-
- // TODO: option for zero length packet? Maybe in Pipe_t fields?
-
- //println("new_Data_Transfer");
- // allocate qTDs
- transfer = allocate_Transfer();
- if (!transfer) return false;
- data = transfer;
- if (len) {
- for (count=((len-1) >> 14); count; count--) {
- next = allocate_Transfer();
- if (!next) {
- // free already-allocated qTDs
- while (1) {
- next = (Transfer_t *)transfer->qtd.next;
- free_Transfer(transfer);
- if (transfer == data) break;
- transfer = next;
- }
- return false;
- }
- data->qtd.next = (uint32_t)next;
- data = next;
- }
- }
- // last qTD needs info for followup
- data->qtd.next = 1;
- data->pipe = pipe;
- data->buffer = buffer;
- data->length = len;
- data->setup.word1 = 0;
- data->setup.word2 = 0;
- data->driver = driver;
- // initialize all qTDs
- data = transfer;
- while (1) {
- uint32_t count = len;
- if (count > 16384) {
- count = 16384;
- } else {
- last = true;
- }
- init_qTD(data, p, count, pipe->direction, 0, last);
- if (last) break;
- p += count;
- len -= count;
- data = (Transfer_t *)(data->qtd.next);
- }
- return queue_Transfer(pipe, transfer);
- }
-
-
- bool USBHost::queue_Transfer(Pipe_t *pipe, Transfer_t *transfer)
- {
- // find halt qTD
- Transfer_t *halt = (Transfer_t *)(pipe->qh.next);
- while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next);
- // transfer's token
- uint32_t token = transfer->qtd.token;
- // transfer becomes new halt qTD
- transfer->qtd.token = 0x40;
- // copy transfer non-token fields to halt
- halt->qtd.next = transfer->qtd.next;
- halt->qtd.alt_next = transfer->qtd.alt_next;
- halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize memcpy, all
- halt->qtd.buffer[1] = transfer->qtd.buffer[1]; // fields except token
- halt->qtd.buffer[2] = transfer->qtd.buffer[2];
- halt->qtd.buffer[3] = transfer->qtd.buffer[3];
- halt->qtd.buffer[4] = transfer->qtd.buffer[4];
- halt->pipe = pipe;
- halt->buffer = transfer->buffer;
- halt->length = transfer->length;
- halt->setup = transfer->setup;
- halt->driver = transfer->driver;
- // find the last qTD we're adding
- Transfer_t *last = halt;
- while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next);
- // last points to transfer (which becomes new halt)
- last->qtd.next = (uint32_t)transfer;
- transfer->qtd.next = 1;
- // link all the new qTD by next_followup & prev_followup
- Transfer_t *prev = NULL;
- Transfer_t *p = halt;
- while (p->qtd.next != (uint32_t)transfer) {
- Transfer_t *next = (Transfer_t *)p->qtd.next;
- p->prev_followup = prev;
- p->next_followup = next;
- prev = p;
- p = next;
- }
- p->prev_followup = prev;
- p->next_followup = NULL;
- //print(halt, p);
- // add them to a followup list
- if (pipe->type == 0 || pipe->type == 2) {
- // control or bulk
- add_to_async_followup_list(halt, p);
- } else {
- // interrupt
- add_to_periodic_followup_list(halt, p);
- }
- // old halt becomes new transfer, this commits all new qTDs to QH
- halt->qtd.token = token;
- return true;
- }
-
- bool USBHost::followup_Transfer(Transfer_t *transfer)
- {
- //print(" Followup ", (uint32_t)transfer, HEX);
- //println(" token=", transfer->qtd.token, HEX);
-
- if (!(transfer->qtd.token & 0x80)) {
- // TODO: check error status
- if (transfer->qtd.token & 0x8000) {
- // this transfer caused an interrupt
- if (transfer->pipe->callback_function) {
- // do the callback
- (*(transfer->pipe->callback_function))(transfer);
- }
- }
- // do callback function...
- //println(" completed");
- return true;
- }
- return false;
- }
-
- void USBHost::followup_Error(void)
- {
- println("ERROR Followup");
- Transfer_t *p = async_followup_first;
- while (p) {
- if (followup_Transfer(p)) {
- // transfer completed
- Transfer_t *next = p->next_followup;
- remove_from_async_followup_list(p);
- println(" remove from followup list");
- if (p->qtd.token & 0x40) {
- Pipe_t *haltedpipe = p->pipe;
- free_Transfer(p);
- // traverse the rest of the list for unfinished work
- // from this halted pipe. Remove from the followup
- // list and put onto our own temporary list
- Transfer_t *first = NULL;
- Transfer_t *last = NULL;
- p = next;
- while (p) {
- Transfer_t *next2 = p->next_followup;
- if (p->pipe == haltedpipe) {
- println(" stray halted ", (uint32_t)p, HEX);
- remove_from_async_followup_list(p);
- if (first == NULL) {
- first = p;
- last = p;
- } else {
- last->next_followup = p;
- }
- p->next_followup = NULL;
- if (next == p) next = next2;
- }
- p = next2;
- }
- // halted pipe (probably) still has unfinished transfers
- // find the halted pipe's dummy halt transfer
- p = (Transfer_t *)(haltedpipe->qh.next & ~0x1F);
- while (p && ((p->qtd.token & 0x40) == 0)) {
- print(" qtd: ", (uint32_t)p, HEX);
- print(", token=", (uint32_t)p->qtd.token, HEX);
- println(", next=", (uint32_t)p->qtd.next, HEX);
- p = (Transfer_t *)(p->qtd.next & ~0x1F);
- }
- if (p) {
- // unhalt the pipe, "forget" unfinished transfers
- // hopefully they're all on the list we made!
- println(" dummy halt: ", (uint32_t)p, HEX);
- haltedpipe->qh.next = (uint32_t)p;
- haltedpipe->qh.current = 0;
- haltedpipe->qh.token = 0;
- } else {
- println(" no dummy halt found, yikes!");
- // TODO: this should never happen, but what if it does?
- }
-
- // Do any driver callbacks belonging to the unfinished
- // transfers. This is done last, after retoring the
- // pipe to a working state (if possible) so the driver
- // callback can use the pipe.
- p = first;
- while (p) {
- uint32_t token = p->qtd.token;
- if (token & 0x8000 && haltedpipe->callback_function) {
- // driver expects a callback
- p->qtd.token = token | 0x40;
- (*(p->pipe->callback_function))(p);
- }
- Transfer_t *next2 = p->next_followup;
- free_Transfer(p);
- p = next2;
- }
- } else {
- free_Transfer(p);
- }
- p = next;
- } else {
- // transfer still pending
- println(" remain on followup list");
- p = p->next_followup;
- }
- }
- // TODO: handle errors from periodic schedule!
- }
-
- static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last)
- {
- last->next_followup = NULL; // always add to end of list
- if (async_followup_last == NULL) {
- first->prev_followup = NULL;
- async_followup_first = first;
- } else {
- first->prev_followup = async_followup_last;
- async_followup_last->next_followup = first;
- }
- async_followup_last = last;
- }
-
- static void remove_from_async_followup_list(Transfer_t *transfer)
- {
- Transfer_t *next = transfer->next_followup;
- Transfer_t *prev = transfer->prev_followup;
- if (prev) {
- prev->next_followup = next;
- } else {
- async_followup_first = next;
- }
- if (next) {
- next->prev_followup = prev;
- } else {
- async_followup_last = prev;
- }
- }
-
- static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last)
- {
- last->next_followup = NULL; // always add to end of list
- if (periodic_followup_last == NULL) {
- first->prev_followup = NULL;
- periodic_followup_first = first;
- } else {
- first->prev_followup = periodic_followup_last;
- periodic_followup_last->next_followup = first;
- }
- periodic_followup_last = last;
- }
-
- static void remove_from_periodic_followup_list(Transfer_t *transfer)
- {
- Transfer_t *next = transfer->next_followup;
- Transfer_t *prev = transfer->prev_followup;
- if (prev) {
- prev->next_followup = next;
- } else {
- periodic_followup_first = next;
- }
- if (next) {
- next->prev_followup = prev;
- } else {
- periodic_followup_last = prev;
- }
- }
-
-
- static uint32_t max4(uint32_t n1, uint32_t n2, uint32_t n3, uint32_t n4)
- {
- if (n1 > n2) {
- // can't be n2
- if (n1 > n3) {
- // can't be n3
- if (n1 > n4) return n1;
- } else {
- // can't be n1
- if (n3 > n4) return n3;
- }
- } else {
- // can't be n1
- if (n2 > n3) {
- // can't be n3
- if (n2 > n4) return n2;
- } else {
- // can't be n2
- if (n3 > n4) return n3;
- }
- }
- return n4;
- }
-
- static uint32_t round_to_power_of_two(uint32_t n, uint32_t maxnum)
- {
- for (uint32_t pow2num=1; pow2num < maxnum; pow2num <<= 1) {
- if (n <= (pow2num | (pow2num >> 1))) return pow2num;
- }
- return maxnum;
- }
-
- // Allocate bandwidth for an interrupt pipe. Given the packet size
- // and other parameters, find the best place to schedule this pipe.
- // Returns true if enough bandwidth is available, and the best
- // frame offset, smask and cmask. Or returns false if no group
- // of microframes has enough bandwidth available.
- //
- // pipe:
- // device->speed [in] 0=full speed, 1=low speed, 2=high speed
- // direction [in] 0=OUT, 1=IN
- // start_mask [out] uframes to start transfer
- // complete_mask [out] uframes to complete transfer (FS & LS only)
- // periodic_interval [out] fream repeat level: 1, 2, 4, 8... PERIODIC_LIST_SIZE
- // periodic_offset [out] frame repeat offset: 0 to periodic_interval-1
- // maxlen: [in] maximum packet length
- // interval: [in] polling interval: LS+FS: frames, HS: 2^(n-1) uframes
- //
- bool USBHost::allocate_interrupt_pipe_bandwidth(Pipe_t *pipe, uint32_t maxlen, uint32_t interval)
- {
- println("allocate_interrupt_pipe_bandwidth");
- if (interval == 0) interval = 1;
- maxlen = (maxlen * 76459) >> 16; // worst case bit stuffing
- if (pipe->device->speed == 2) {
- // high speed 480 Mbit/sec
- println(" ep interval = ", interval);
- if (interval > 15) interval = 15;
- interval = 1 << (interval - 1);
- if (interval > PERIODIC_LIST_SIZE*8) interval = PERIODIC_LIST_SIZE*8;
- println(" interval = ", interval);
- uint32_t pinterval = interval >> 3;
- pipe->periodic_interval = (pinterval > 0) ? pinterval : 1;
- uint32_t stime = (55 + 32 + maxlen) >> 5; // time units: 32 bytes or 533 ns
- uint32_t best_offset = 0xFFFFFFFF;
- uint32_t best_bandwidth = 0xFFFFFFFF;
- for (uint32_t offset=0; offset < interval; offset++) {
- // for each possible uframe offset, find the worst uframe bandwidth
- uint32_t max_bandwidth = 0;
- for (uint32_t i=offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
- uint32_t bandwidth = uframe_bandwidth[i] + stime;
- if (bandwidth > max_bandwidth) max_bandwidth = bandwidth;
- }
- // remember which uframe offset is the best
- if (max_bandwidth < best_bandwidth) {
- best_bandwidth = max_bandwidth;
- best_offset = offset;
- }
- }
- print(" best_bandwidth = ", best_bandwidth);
- //print(best_bandwidth);
- println(", at offset = ", best_offset);
- //println(best_offset);
- // a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
- // fail if the best found needs more than 80% (234 * 0.8) in any uframe
- if (best_bandwidth > 187) return false;
- // save essential bandwidth specs, for cleanup in delete_Pipe
- pipe->bandwidth_interval = interval;
- pipe->bandwidth_offset = best_offset;
- pipe->bandwidth_stime = stime;
- for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
- uframe_bandwidth[i] += stime;
- }
- if (interval == 1) {
- pipe->start_mask = 0xFF;
- } else if (interval == 2) {
- pipe->start_mask = 0x55 << (best_offset & 1);
- } else if (interval <= 4) {
- pipe->start_mask = 0x11 << (best_offset & 3);
- } else {
- pipe->start_mask = 0x01 << (best_offset & 7);
- }
- pipe->periodic_offset = best_offset >> 3;
- pipe->complete_mask = 0;
- } else {
- // full speed 12 Mbit/sec or low speed 1.5 Mbit/sec
- interval = round_to_power_of_two(interval, PERIODIC_LIST_SIZE);
- pipe->periodic_interval = interval;
- uint32_t stime, ctime;
- if (pipe->direction == 0) {
- // for OUT direction, SSPLIT will carry the data payload
- // TODO: how much time to SSPLIT & CSPLIT actually take?
- // they're not documented in 5.7 or 5.11.3.
- stime = (100 + 32 + maxlen) >> 5;
- ctime = (55 + 32) >> 5;
- } else {
- // for IN direction, data payload in CSPLIT
- stime = (40 + 32) >> 5;
- ctime = (70 + 32 + maxlen) >> 5;
- }
- // TODO: should we take Single-TT hubs into account, avoid
- // scheduling overlapping SSPLIT & CSPLIT to the same hub?
- // TODO: even if Multi-TT, do we need to worry about packing
- // too many into the same uframe?
- uint32_t best_shift = 0;
- uint32_t best_offset = 0xFFFFFFFF;
- uint32_t best_bandwidth = 0xFFFFFFFF;
- for (uint32_t offset=0; offset < interval; offset++) {
- // for each 1ms frame offset, compute the worst uframe usage
- uint32_t max_bandwidth = 0;
- for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
- for (uint32_t j=0; j <= 3; j++) { // max 3 without FSTN
- // at each location, find worst uframe usage
- // for SSPLIT+CSPLITs
- uint32_t n = (i << 3) + j;
- uint32_t bw1 = uframe_bandwidth[n+0] + stime;
- uint32_t bw2 = uframe_bandwidth[n+2] + ctime;
- uint32_t bw3 = uframe_bandwidth[n+3] + ctime;
- uint32_t bw4 = uframe_bandwidth[n+4] + ctime;
- max_bandwidth = max4(bw1, bw2, bw3, bw4);
- // remember the best usage found
- if (max_bandwidth < best_bandwidth) {
- best_bandwidth = max_bandwidth;
- best_offset = i;
- best_shift = j;
- }
- }
- }
- }
- print(" best_bandwidth = ", best_bandwidth);
- //println(best_bandwidth);
- print(", at offset = ", best_offset);
- //print(best_offset);
- println(", shift= ", best_shift);
- //println(best_shift);
- // a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
- // fail if the best found needs more than 80% (234 * 0.8) in any uframe
- if (best_bandwidth > 187) return false;
- // save essential bandwidth specs, for cleanup in delete_Pipe
- pipe->bandwidth_interval = interval;
- pipe->bandwidth_offset = best_offset;
- pipe->bandwidth_shift = best_shift;
- pipe->bandwidth_stime = stime;
- pipe->bandwidth_ctime = ctime;
- for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE; i += interval) {
- uint32_t n = (i << 3) + best_shift;
- uframe_bandwidth[n+0] += stime;
- uframe_bandwidth[n+2] += ctime;
- uframe_bandwidth[n+3] += ctime;
- uframe_bandwidth[n+4] += ctime;
- }
- pipe->start_mask = 0x01 << best_shift;
- pipe->complete_mask = 0x1C << best_shift;
- pipe->periodic_offset = best_offset;
- }
- return true;
- }
-
- // put a new pipe into the periodic schedule tree
- // according to periodic_interval and periodic_offset
- //
- void USBHost::add_qh_to_periodic_schedule(Pipe_t *pipe)
- {
- // quick hack for testing, just put it into the first table entry
- //println("add_qh_to_periodic_schedule: ", (uint32_t)pipe, HEX);
- #if 0
- pipe->qh.horizontal_link = periodictable[0];
- periodictable[0] = (uint32_t)&(pipe->qh) | 2; // 2=QH
- println("init periodictable with ", periodictable[0], HEX);
- #else
- uint32_t interval = pipe->periodic_interval;
- uint32_t offset = pipe->periodic_offset;
- //println(" interval = ", interval);
- //println(" offset = ", offset);
-
- // By an interative miracle, hopefully make an inverted tree of EHCI figure 4-18, page 93
- for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
- //print(" old slot ", i);
- //print(": ");
- //print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
- uint32_t num = periodictable[i];
- Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
- if ((num & 1) || ((num & 6) == 2 && node->periodic_interval < interval)) {
- //println(" add to slot ", i);
- pipe->qh.horizontal_link = num;
- periodictable[i] = (uint32_t)&(pipe->qh) | 2; // 2=QH
- } else {
- //println(" traverse list ", i);
- // TODO: skip past iTD, siTD when/if we support isochronous
- while (node->periodic_interval >= interval) {
- if (node == pipe) goto nextslot;
- //print(" num ", num, HEX);
- //print(" node ", (uint32_t)node, HEX);
- //println("->", node->qh.horizontal_link, HEX);
- if (node->qh.horizontal_link & 1) break;
- num = node->qh.horizontal_link;
- node = (Pipe_t *)(num & 0xFFFFFFE0);
- }
- Pipe_t *n = node;
- do {
- if (n == pipe) goto nextslot;
- n = (Pipe_t *)(n->qh.horizontal_link & 0xFFFFFFE0);
- } while (n != NULL);
- //print(" adding at node ", (uint32_t)node, HEX);
- //print(", num=", num, HEX);
- //println(", node->qh.horizontal_link=", node->qh.horizontal_link, HEX);
- pipe->qh.horizontal_link = node->qh.horizontal_link;
- node->qh.horizontal_link = (uint32_t)pipe | 2; // 2=QH
- // TODO: is it really necessary to keep doing the outer
- // loop? Does adding it here satisfy all cases? If so
- // we could avoid extra work by just returning here.
- }
- nextslot:
- //print(" new slot ", i);
- //print(": ");
- //print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
- {}
- }
- #endif
- #if 0
- println("Periodic Schedule:");
- for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
- if (i < 10) print(" ");
- print(i);
- print(": ");
- print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
- }
- #endif
- }
-
-
- void USBHost::delete_Pipe(Pipe_t *pipe)
- {
- println("delete_Pipe ", (uint32_t)pipe, HEX);
-
- // halt pipe, find and free all Transfer_t
-
- // EHCI 1.0, 4.8.2 page 72: "Software should first deactivate
- // all active qTDs, wait for the queue head to go inactive"
- //
- // http://www.spinics.net/lists/linux-usb/msg131607.html
- // http://www.spinics.net/lists/linux-usb/msg131936.html
- //
- // In practice it's not feasible to wait for an active QH to become
- // inactive before removing it, for several reasons. For one, the QH may
- // _never_ become inactive (if the endpoint NAKs indefinitely). For
- // another, the procedure given in the spec (deactivate the qTDs on the
- // queue) is racy, since the controller can perform a new overlay or
- // writeback at any time.
-
- bool isasync = (pipe->type == 0 || pipe->type == 2);
- if (isasync) {
- // find the next QH in the async schedule loop
- Pipe_t *next = (Pipe_t *)(pipe->qh.horizontal_link & 0xFFFFFFE0);
- if (next == pipe) {
- // removing the only QH, so just shut down the async schedule
- println(" shut down async schedule");
- USBHS_USBCMD &= ~USBHS_USBCMD_ASE; // disable async schedule
- while (USBHS_USBSTS & USBHS_USBSTS_AS) ; // busy loop wait
- USBHS_ASYNCLISTADDR = 0;
- } else {
- // find the previous QH in the async schedule loop
- println(" remove QH from async schedule");
- Pipe_t *prev = next;
- while (1) {
- Pipe_t *n = (Pipe_t *)(prev->qh.horizontal_link & 0xFFFFFFE0);
- if (n == pipe) break;
- prev = n;
- }
- // if removing the one with H bit, set another
- if (pipe->qh.capabilities[0] & 0x8000) {
- prev->qh.capabilities[0] |= 0x8000; // set H bit
- }
- // link the previous QH, we're no longer in the loop
- prev->qh.horizontal_link = pipe->qh.horizontal_link;
- // do the Async Advance Doorbell handshake to wait to be
- // sure the EHCI no longer references the removed QH
- USBHS_USBCMD |= USBHS_USBCMD_IAA;
- while (!(USBHS_USBSTS & USBHS_USBSTS_AAI)) ; // busy loop wait
- USBHS_USBSTS = USBHS_USBSTS_AAI;
- // TODO: does this write interfere UPI & UAI (bits 18 & 19) ??
- }
- // find & free all the transfers which completed
- println(" Free transfers");
- Transfer_t *t = async_followup_first;
- while (t) {
- print(" * ", (uint32_t)t);
- Transfer_t *next = t->next_followup;
- if (t->pipe == pipe) {
- print(" * remove");
- remove_from_async_followup_list(t);
-
- // Only free if not in QH list
- Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
- while (((uint32_t)tr & 0xFFFFFFE0) && (tr != t)){
- tr = (Transfer_t *)(tr->qtd.next);
- }
- if (tr == t) {
- println(" * defer free until QH");
- } else {
- println(" * free");
- free_Transfer(t); // The later code should actually free it...
- }
- } else {
- println("");
- }
- t = next;
- }
- } else {
- // remove from the periodic schedule
- for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
- uint32_t num = periodictable[i];
- if (num & 1) continue;
- Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
- if (node == pipe) {
- periodictable[i] = pipe->qh.horizontal_link;
- continue;
- }
- Pipe_t *prev = node;
- while (1) {
- num = node->qh.horizontal_link;
- if (num & 1) break;
- node = (Pipe_t *)(num & 0xFFFFFFE0);
- if (node == pipe) {
- prev->qh.horizontal_link = node->qh.horizontal_link;
- break;
- }
- prev = node;
- }
- }
- // subtract bandwidth from uframe_bandwidth array
- if (pipe->device->speed == 2) {
- uint32_t interval = pipe->bandwidth_interval;
- uint32_t offset = pipe->bandwidth_offset;
- uint32_t stime = pipe->bandwidth_stime;
- for (uint32_t i=offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
- uframe_bandwidth[i] -= stime;
- }
- } else {
- uint32_t interval = pipe->bandwidth_interval;
- uint32_t offset = pipe->bandwidth_offset;
- uint32_t shift = pipe->bandwidth_shift;
- uint32_t stime = pipe->bandwidth_stime;
- uint32_t ctime = pipe->bandwidth_ctime;
- for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
- uint32_t n = (i << 3) + shift;
- uframe_bandwidth[n+0] -= stime;
- uframe_bandwidth[n+2] -= ctime;
- uframe_bandwidth[n+3] -= ctime;
- uframe_bandwidth[n+4] -= ctime;
- }
- }
-
- // find & free all the transfers which completed
- println(" Free transfers");
- Transfer_t *t = periodic_followup_first;
- while (t) {
- print(" * ", (uint32_t)t);
- Transfer_t *next = t->next_followup;
- if (t->pipe == pipe) {
- print(" * remove");
- remove_from_periodic_followup_list(t);
-
- // Only free if not in QH list
- Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
- while (((uint32_t)tr & 0xFFFFFFE0) && (tr != t)){
- tr = (Transfer_t *)(tr->qtd.next);
- }
- if (tr == t) {
- println(" * defer free until QH");
- } else {
- println(" * free");
- free_Transfer(t); // The later code should actually free it...
- }
- } else {
- println("");
- }
- t = next;
- }
- }
- //
- // TODO: do we need to look at pipe->qh.current ??
- //
- // free all the transfers still attached to the QH
- println(" Free transfers attached to QH");
- Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
- while ((uint32_t)tr & 0xFFFFFFE0) {
- println(" * ", (uint32_t)tr);
- Transfer_t *next = (Transfer_t *)(tr->qtd.next);
- free_Transfer(tr);
- tr = next;
- }
- // hopefully we found everything...
- free_Pipe(pipe);
- println("* Delete Pipe completed");
- }
-
|