Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

1502 linhas
54KB

  1. /* USB EHCI Host for Teensy 3.6
  2. * Copyright 2017 Paul Stoffregen (paul@pjrc.com)
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the
  6. * "Software"), to deal in the Software without restriction, including
  7. * without limitation the rights to use, copy, modify, merge, publish,
  8. * distribute, sublicense, and/or sell copies of the Software, and to
  9. * permit persons to whom the Software is furnished to do so, subject to
  10. * the following conditions:
  11. *
  12. * The above copyright notice and this permission notice shall be included
  13. * in all copies or substantial portions of the Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  16. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  17. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  18. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
  19. * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  20. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  21. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  22. */
  23. #ifndef USB_HOST_TEENSY36_
  24. #define USB_HOST_TEENSY36_
  25. #include <stdint.h>
  26. #if !defined(__MK66FX1M0__)
  27. #error "USBHost_t36 only works with Teensy 3.6. Please select it in Tools > Boards"
  28. #endif
  29. // Dear inquisitive reader, USB is a complex protocol defined with
  30. // very specific terminology. To have any chance of understand this
  31. // source code, you absolutely must have solid knowledge of specific
  32. // USB terms such as host, device, endpoint, pipe, enumeration....
  33. // You really must also have at least a basic knowledge of the
  34. // different USB transfers: control, bulk, interrupt, isochronous.
  35. //
  36. // The USB 2.0 specification explains these in chapter 4 (pages 15
  37. // to 24), and provides more detail in the first part of chapter 5
  38. // (pages 25 to 55). The USB spec is published for free at
  39. // www.usb.org. Here is a convenient link to just the main PDF:
  40. //
  41. // https://www.pjrc.com/teensy/beta/usb20.pdf
  42. //
  43. // This is a huge file, but chapter 4 is short and easy to read.
  44. // If you're not familiar with the USB lingo, please do yourself
  45. // a favor by reading at least chapter 4 to get up to speed on the
  46. // meaning of these important USB concepts and terminology.
  47. //
  48. // If you wish to ask questions (which belong on the forum, not
  49. // github issues) or discuss development of this library, you
  50. // ABSOLUTELY MUST know the basic USB terminology from chapter 4.
  51. // Please repect other people's valuable time & effort by making
  52. // your best effort to read chapter 4 before asking USB questions!
  53. //#define USBHOST_PRINT_DEBUG
  54. /************************************************/
  55. /* Data Types */
  56. /************************************************/
  57. // These 6 types are the key to understanding how this USB Host
  58. // library really works.
  59. // USBHost is a static class controlling the hardware.
  60. // All common USB functionality is implemented here.
  61. class USBHost;
  62. // These 3 structures represent the actual USB entities
  63. // USBHost manipulates. One Device_t is created for
  64. // each active USB device. One Pipe_t is create for
  65. // each endpoint. Transfer_t structures are created
  66. // when any data transfer is added to the EHCI work
  67. // queues, and then returned to the free pool after the
  68. // data transfer completes and the driver has processed
  69. // the results.
  70. typedef struct Device_struct Device_t;
  71. typedef struct Pipe_struct Pipe_t;
  72. typedef struct Transfer_struct Transfer_t;
  73. typedef enum { CLAIM_NO=0, CLAIM_REPORT, CLAIM_INTERFACE} hidclaim_t;
  74. // All USB device drivers inherit use these classes.
  75. // Drivers build user-visible functionality on top
  76. // of these classes, which receive USB events from
  77. // USBHost.
  78. class USBDriver;
  79. class USBDriverTimer;
  80. /************************************************/
  81. /* Added Defines */
  82. /************************************************/
  83. // Keyboard special Keys
  84. #define KEYD_UP 0xDA
  85. #define KEYD_DOWN 0xD9
  86. #define KEYD_LEFT 0xD8
  87. #define KEYD_RIGHT 0xD7
  88. #define KEYD_INSERT 0xD1
  89. #define KEYD_DELETE 0xD4
  90. #define KEYD_PAGE_UP 0xD3
  91. #define KEYD_PAGE_DOWN 0xD6
  92. #define KEYD_HOME 0xD2
  93. #define KEYD_END 0xD5
  94. #define KEYD_F1 0xC2
  95. #define KEYD_F2 0xC3
  96. #define KEYD_F3 0xC4
  97. #define KEYD_F4 0xC5
  98. #define KEYD_F5 0xC6
  99. #define KEYD_F6 0xC7
  100. #define KEYD_F7 0xC8
  101. #define KEYD_F8 0xC9
  102. #define KEYD_F9 0xCA
  103. #define KEYD_F10 0xCB
  104. #define KEYD_F11 0xCC
  105. #define KEYD_F12 0xCD
  106. // USBSerial formats - Lets encode format into bits
  107. // Bits: 0-4 - Number of data bits
  108. // Bits: 5-7 - Parity (0=none, 1=odd, 2 = even)
  109. // bits: 8-9 - Stop bits. 0=1, 1=2
  110. #define USBHOST_SERIAL_7E1 0x047
  111. #define USBHOST_SERIAL_7O1 0x027
  112. #define USBHOST_SERIAL_8N1 0x08
  113. #define USBHOST_SERIAL_8N2 0x108
  114. #define USBHOST_SERIAL_8E1 0x048
  115. #define USBHOST_SERIAL_8O1 0x028
  116. /************************************************/
  117. /* Data Structure Definitions */
  118. /************************************************/
  119. // setup_t holds the 8 byte USB SETUP packet data.
  120. // These unions & structs allow convenient access to
  121. // the setup fields.
  122. typedef union {
  123. struct {
  124. union {
  125. struct {
  126. uint8_t bmRequestType;
  127. uint8_t bRequest;
  128. };
  129. uint16_t wRequestAndType;
  130. };
  131. uint16_t wValue;
  132. uint16_t wIndex;
  133. uint16_t wLength;
  134. };
  135. struct {
  136. uint32_t word1;
  137. uint32_t word2;
  138. };
  139. } setup_t;
  140. typedef struct {
  141. enum {STRING_BUF_SIZE=50};
  142. enum {STR_ID_MAN=0, STR_ID_PROD, STR_ID_SERIAL, STR_ID_CNT};
  143. uint8_t iStrings[STR_ID_CNT]; // Index into array for the three indexes
  144. uint8_t buffer[STRING_BUF_SIZE];
  145. } strbuf_t;
  146. #define DEVICE_STRUCT_STRING_BUF_SIZE 50
  147. // Device_t holds all the information about a USB device
  148. struct Device_struct {
  149. Pipe_t *control_pipe;
  150. Pipe_t *data_pipes;
  151. Device_t *next;
  152. USBDriver *drivers;
  153. strbuf_t *strbuf;
  154. uint8_t speed; // 0=12, 1=1.5, 2=480 Mbit/sec
  155. uint8_t address;
  156. uint8_t hub_address;
  157. uint8_t hub_port;
  158. uint8_t enum_state;
  159. uint8_t bDeviceClass;
  160. uint8_t bDeviceSubClass;
  161. uint8_t bDeviceProtocol;
  162. uint8_t bmAttributes;
  163. uint8_t bMaxPower;
  164. uint16_t idVendor;
  165. uint16_t idProduct;
  166. uint16_t LanguageID;
  167. };
  168. // Pipe_t holes all information about each USB endpoint/pipe
  169. // The first half is an EHCI QH structure for the pipe.
  170. struct Pipe_struct {
  171. // Queue Head (QH), EHCI page 46-50
  172. struct { // must be aligned to 32 byte boundary
  173. volatile uint32_t horizontal_link;
  174. volatile uint32_t capabilities[2];
  175. volatile uint32_t current;
  176. volatile uint32_t next;
  177. volatile uint32_t alt_next;
  178. volatile uint32_t token;
  179. volatile uint32_t buffer[5];
  180. } qh;
  181. Device_t *device;
  182. uint8_t type; // 0=control, 1=isochronous, 2=bulk, 3=interrupt
  183. uint8_t direction; // 0=out, 1=in (changes for control, others fixed)
  184. uint8_t start_mask;
  185. uint8_t complete_mask;
  186. Pipe_t *next;
  187. void (*callback_function)(const Transfer_t *);
  188. uint16_t periodic_interval;
  189. uint16_t periodic_offset;
  190. uint16_t bandwidth_interval;
  191. uint16_t bandwidth_offset;
  192. uint16_t bandwidth_shift;
  193. uint8_t bandwidth_stime;
  194. uint8_t bandwidth_ctime;
  195. uint32_t unused1;
  196. uint32_t unused2;
  197. uint32_t unused3;
  198. uint32_t unused4;
  199. uint32_t unused5;
  200. };
  201. // Transfer_t represents a single transaction on the USB bus.
  202. // The first portion is an EHCI qTD structure. Transfer_t are
  203. // allocated as-needed from a memory pool, loaded with pointers
  204. // to the actual data buffers, linked into a followup list,
  205. // and placed on ECHI Queue Heads. When the ECHI interrupt
  206. // occurs, the followup lists are used to find the Transfer_t
  207. // in memory. Callbacks are made, and then the Transfer_t are
  208. // returned to the memory pool.
  209. struct Transfer_struct {
  210. // Queue Element Transfer Descriptor (qTD), EHCI pg 40-45
  211. struct { // must be aligned to 32 byte boundary
  212. volatile uint32_t next;
  213. volatile uint32_t alt_next;
  214. volatile uint32_t token;
  215. volatile uint32_t buffer[5];
  216. } qtd;
  217. // Linked list of queued, not-yet-completed transfers
  218. Transfer_t *next_followup;
  219. Transfer_t *prev_followup;
  220. Pipe_t *pipe;
  221. // Data to be used by callback function. When a group
  222. // of Transfer_t are created, these fields and the
  223. // interrupt-on-complete bit in the qTD token are only
  224. // set in the last Transfer_t of the list.
  225. void *buffer;
  226. uint32_t length;
  227. setup_t setup;
  228. USBDriver *driver;
  229. };
  230. /************************************************/
  231. /* Main USB EHCI Controller */
  232. /************************************************/
  233. class USBHost {
  234. public:
  235. static void begin();
  236. static void Task();
  237. static void countFree(uint32_t &devices, uint32_t &pipes, uint32_t &trans, uint32_t &strs);
  238. protected:
  239. static Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
  240. uint32_t direction, uint32_t maxlen, uint32_t interval=0);
  241. static bool queue_Control_Transfer(Device_t *dev, setup_t *setup,
  242. void *buf, USBDriver *driver);
  243. static bool queue_Data_Transfer(Pipe_t *pipe, void *buffer,
  244. uint32_t len, USBDriver *driver);
  245. static Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port);
  246. static void disconnect_Device(Device_t *dev);
  247. static void enumeration(const Transfer_t *transfer);
  248. static void driver_ready_for_device(USBDriver *driver);
  249. static volatile bool enumeration_busy;
  250. public: // Maybe others may want/need to contribute memory example HID devices may want to add transfers.
  251. static void contribute_Devices(Device_t *devices, uint32_t num);
  252. static void contribute_Pipes(Pipe_t *pipes, uint32_t num);
  253. static void contribute_Transfers(Transfer_t *transfers, uint32_t num);
  254. static void contribute_String_Buffers(strbuf_t *strbuf, uint32_t num);
  255. private:
  256. static void isr();
  257. static void convertStringDescriptorToASCIIString(uint8_t string_index, Device_t *dev, const Transfer_t *transfer);
  258. static void claim_drivers(Device_t *dev);
  259. static uint32_t assign_address(void);
  260. static bool queue_Transfer(Pipe_t *pipe, Transfer_t *transfer);
  261. static void init_Device_Pipe_Transfer_memory(void);
  262. static Device_t * allocate_Device(void);
  263. static void delete_Pipe(Pipe_t *pipe);
  264. static void free_Device(Device_t *q);
  265. static Pipe_t * allocate_Pipe(void);
  266. static void free_Pipe(Pipe_t *q);
  267. static Transfer_t * allocate_Transfer(void);
  268. static void free_Transfer(Transfer_t *q);
  269. static strbuf_t * allocate_string_buffer(void);
  270. static void free_string_buffer(strbuf_t *strbuf);
  271. static bool allocate_interrupt_pipe_bandwidth(Pipe_t *pipe,
  272. uint32_t maxlen, uint32_t interval);
  273. static void add_qh_to_periodic_schedule(Pipe_t *pipe);
  274. static bool followup_Transfer(Transfer_t *transfer);
  275. static void followup_Error(void);
  276. protected:
  277. #ifdef USBHOST_PRINT_DEBUG
  278. static void print_(const Transfer_t *transfer);
  279. static void print_(const Transfer_t *first, const Transfer_t *last);
  280. static void print_token(uint32_t token);
  281. static void print_(const Pipe_t *pipe);
  282. static void print_driverlist(const char *name, const USBDriver *driver);
  283. static void print_qh_list(const Pipe_t *list);
  284. static void print_hexbytes(const void *ptr, uint32_t len);
  285. static void print_(const char *s) { Serial.print(s); }
  286. static void print_(int n) { Serial.print(n); }
  287. static void print_(unsigned int n) { Serial.print(n); }
  288. static void print_(long n) { Serial.print(n); }
  289. static void print_(unsigned long n) { Serial.print(n); }
  290. static void println_(const char *s) { Serial.println(s); }
  291. static void println_(int n) { Serial.println(n); }
  292. static void println_(unsigned int n) { Serial.println(n); }
  293. static void println_(long n) { Serial.println(n); }
  294. static void println_(unsigned long n) { Serial.println(n); }
  295. static void println_() { Serial.println(); }
  296. static void print_(uint32_t n, uint8_t b) { Serial.print(n, b); }
  297. static void println_(uint32_t n, uint8_t b) { Serial.println(n, b); }
  298. static void print_(const char *s, int n, uint8_t b = DEC) {
  299. Serial.print(s); Serial.print(n, b); }
  300. static void print_(const char *s, unsigned int n, uint8_t b = DEC) {
  301. Serial.print(s); Serial.print(n, b); }
  302. static void print_(const char *s, long n, uint8_t b = DEC) {
  303. Serial.print(s); Serial.print(n, b); }
  304. static void print_(const char *s, unsigned long n, uint8_t b = DEC) {
  305. Serial.print(s); Serial.print(n, b); }
  306. static void println_(const char *s, int n, uint8_t b = DEC) {
  307. Serial.print(s); Serial.println(n, b); }
  308. static void println_(const char *s, unsigned int n, uint8_t b = DEC) {
  309. Serial.print(s); Serial.println(n, b); }
  310. static void println_(const char *s, long n, uint8_t b = DEC) {
  311. Serial.print(s); Serial.println(n, b); }
  312. static void println_(const char *s, unsigned long n, uint8_t b = DEC) {
  313. Serial.print(s); Serial.println(n, b); }
  314. friend class USBDriverTimer; // for access to print & println
  315. #else
  316. static void print_(const Transfer_t *transfer) {}
  317. static void print_(const Transfer_t *first, const Transfer_t *last) {}
  318. static void print_token(uint32_t token) {}
  319. static void print_(const Pipe_t *pipe) {}
  320. static void print_driverlist(const char *name, const USBDriver *driver) {}
  321. static void print_qh_list(const Pipe_t *list) {}
  322. static void print_hexbytes(const void *ptr, uint32_t len) {}
  323. static void print_(const char *s) {}
  324. static void print_(int n) {}
  325. static void print_(unsigned int n) {}
  326. static void print_(long n) {}
  327. static void print_(unsigned long n) {}
  328. static void println_(const char *s) {}
  329. static void println_(int n) {}
  330. static void println_(unsigned int n) {}
  331. static void println_(long n) {}
  332. static void println_(unsigned long n) {}
  333. static void println_() {}
  334. static void print_(uint32_t n, uint8_t b) {}
  335. static void println_(uint32_t n, uint8_t b) {}
  336. static void print_(const char *s, int n, uint8_t b = DEC) {}
  337. static void print_(const char *s, unsigned int n, uint8_t b = DEC) {}
  338. static void print_(const char *s, long n, uint8_t b = DEC) {}
  339. static void print_(const char *s, unsigned long n, uint8_t b = DEC) {}
  340. static void println_(const char *s, int n, uint8_t b = DEC) {}
  341. static void println_(const char *s, unsigned int n, uint8_t b = DEC) {}
  342. static void println_(const char *s, long n, uint8_t b = DEC) {}
  343. static void println_(const char *s, unsigned long n, uint8_t b = DEC) {}
  344. #endif
  345. static void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
  346. uint32_t wValue, uint32_t wIndex, uint32_t wLength) {
  347. s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
  348. s.word2 = wIndex | (wLength << 16);
  349. }
  350. };
  351. /************************************************/
  352. /* USB Device Driver Common Base Class */
  353. /************************************************/
  354. // All USB device drivers inherit from this base class.
  355. class USBDriver : public USBHost {
  356. public:
  357. operator bool() {
  358. Device_t *dev = *(Device_t * volatile *)&device;
  359. return dev != nullptr;
  360. }
  361. uint16_t idVendor() {
  362. Device_t *dev = *(Device_t * volatile *)&device;
  363. return (dev != nullptr) ? dev->idVendor : 0;
  364. }
  365. uint16_t idProduct() {
  366. Device_t *dev = *(Device_t * volatile *)&device;
  367. return (dev != nullptr) ? dev->idProduct : 0;
  368. }
  369. const uint8_t *manufacturer() {
  370. Device_t *dev = *(Device_t * volatile *)&device;
  371. if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
  372. return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_MAN]];
  373. }
  374. const uint8_t *product() {
  375. Device_t *dev = *(Device_t * volatile *)&device;
  376. if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
  377. return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_PROD]];
  378. }
  379. const uint8_t *serialNumber() {
  380. Device_t *dev = *(Device_t * volatile *)&device;
  381. if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
  382. return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]];
  383. }
  384. protected:
  385. USBDriver() : next(NULL), device(NULL) {}
  386. // Check if a driver wishes to claim a device or interface or group
  387. // of interfaces within a device. When this function returns true,
  388. // the driver is considered bound or loaded for that device. When
  389. // new devices are detected, enumeration.cpp calls this function on
  390. // all unbound driver objects, to give them an opportunity to bind
  391. // to the new device.
  392. // device has its vid&pid, class/subclass fields initialized
  393. // type is 0 for device level, 1 for interface level, 2 for IAD
  394. // descriptors points to the specific descriptor data
  395. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  396. // When an unknown (not chapter 9) control transfer completes, this
  397. // function is called for all drivers bound to the device. Return
  398. // true means this driver originated this control transfer, so no
  399. // more drivers need to be offered an opportunity to process it.
  400. // This function is optional, only needed if the driver uses control
  401. // transfers and wishes to be notified when they complete.
  402. virtual void control(const Transfer_t *transfer) { }
  403. // When any of the USBDriverTimer objects a driver creates generates
  404. // a timer event, this function is called.
  405. virtual void timer_event(USBDriverTimer *whichTimer) { }
  406. // When the user calls USBHost::Task, this Task function for all
  407. // active drivers is called, so they may update state and/or call
  408. // any attached user callback functions.
  409. virtual void Task() { }
  410. // When a device disconnects from the USB, this function is called.
  411. // The driver must free all resources it allocated and update any
  412. // internal state necessary to deal with the possibility of user
  413. // code continuing to call its API. However, pipes and transfers
  414. // are the handled by lower layers, so device drivers do not free
  415. // pipes they created or cancel transfers they had in progress.
  416. virtual void disconnect();
  417. // Drivers are managed by this single-linked list. All inactive
  418. // (not bound to any device) drivers are linked from
  419. // available_drivers in enumeration.cpp. When bound to a device,
  420. // drivers are linked from that Device_t drivers list.
  421. USBDriver *next;
  422. // The device this object instance is bound to. In words, this
  423. // is the specific device this driver is using. When not bound
  424. // to any device, this must be NULL. Drivers may set this to
  425. // any non-NULL value if they are in a state where they do not
  426. // wish to claim any device or interface (eg, if getting data
  427. // from the HID parser).
  428. Device_t *device;
  429. friend class USBHost;
  430. };
  431. // Device drivers may create these timer objects to schedule a timer call
  432. class USBDriverTimer {
  433. public:
  434. USBDriverTimer() { }
  435. USBDriverTimer(USBDriver *d) : driver(d) { }
  436. void init(USBDriver *d) { driver = d; };
  437. void start(uint32_t microseconds);
  438. void stop();
  439. void *pointer;
  440. uint32_t integer;
  441. uint32_t started_micros; // testing only
  442. private:
  443. USBDriver *driver;
  444. uint32_t usec;
  445. USBDriverTimer *next;
  446. USBDriverTimer *prev;
  447. friend class USBHost;
  448. };
  449. // Device drivers may inherit from this base class, if they wish to receive
  450. // HID input data fully decoded by the USBHIDParser driver
  451. class USBHIDParser;
  452. class USBHIDInput {
  453. public:
  454. operator bool() { return (mydevice != nullptr); }
  455. uint16_t idVendor() { return (mydevice != nullptr) ? mydevice->idVendor : 0; }
  456. uint16_t idProduct() { return (mydevice != nullptr) ? mydevice->idProduct : 0; }
  457. const uint8_t *manufacturer()
  458. { return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]]; }
  459. const uint8_t *product()
  460. { return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]]; }
  461. const uint8_t *serialNumber()
  462. { return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]]; }
  463. private:
  464. virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
  465. virtual bool hid_process_in_data(const Transfer_t *transfer) {return false;}
  466. virtual bool hid_process_out_data(const Transfer_t *transfer) {return false;}
  467. virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
  468. virtual void hid_input_data(uint32_t usage, int32_t value);
  469. virtual void hid_input_end();
  470. virtual void disconnect_collection(Device_t *dev);
  471. void add_to_list();
  472. USBHIDInput *next;
  473. friend class USBHIDParser;
  474. protected:
  475. Device_t *mydevice = NULL;
  476. };
  477. /************************************************/
  478. /* USB Device Drivers */
  479. /************************************************/
  480. class USBHub : public USBDriver {
  481. public:
  482. USBHub(USBHost &host) : debouncetimer(this), resettimer(this) { init(); }
  483. USBHub(USBHost *host) : debouncetimer(this), resettimer(this) { init(); }
  484. // Hubs with more more than 7 ports are built from two tiers of hubs
  485. // using 4 or 7 port hub chips. While the USB spec seems to allow
  486. // hubs to have up to 255 ports, in practice all hub chips on the
  487. // market are only 2, 3, 4 or 7 ports.
  488. enum { MAXPORTS = 7 };
  489. typedef uint8_t portbitmask_t;
  490. enum {
  491. PORT_OFF = 0,
  492. PORT_DISCONNECT = 1,
  493. PORT_DEBOUNCE1 = 2,
  494. PORT_DEBOUNCE2 = 3,
  495. PORT_DEBOUNCE3 = 4,
  496. PORT_DEBOUNCE4 = 5,
  497. PORT_DEBOUNCE5 = 6,
  498. PORT_RESET = 7,
  499. PORT_RECOVERY = 8,
  500. PORT_ACTIVE = 9
  501. };
  502. protected:
  503. virtual bool claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len);
  504. virtual void control(const Transfer_t *transfer);
  505. virtual void timer_event(USBDriverTimer *whichTimer);
  506. virtual void disconnect();
  507. void init();
  508. bool can_send_control_now();
  509. void send_poweron(uint32_t port);
  510. void send_getstatus(uint32_t port);
  511. void send_clearstatus_connect(uint32_t port);
  512. void send_clearstatus_enable(uint32_t port);
  513. void send_clearstatus_suspend(uint32_t port);
  514. void send_clearstatus_overcurrent(uint32_t port);
  515. void send_clearstatus_reset(uint32_t port);
  516. void send_setreset(uint32_t port);
  517. static void callback(const Transfer_t *transfer);
  518. void status_change(const Transfer_t *transfer);
  519. void new_port_status(uint32_t port, uint32_t status);
  520. void start_debounce_timer(uint32_t port);
  521. void stop_debounce_timer(uint32_t port);
  522. private:
  523. Device_t mydevices[MAXPORTS];
  524. Pipe_t mypipes[2] __attribute__ ((aligned(32)));
  525. Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
  526. strbuf_t mystring_bufs[1];
  527. USBDriverTimer debouncetimer;
  528. USBDriverTimer resettimer;
  529. setup_t setup;
  530. Pipe_t *changepipe;
  531. Device_t *devicelist[MAXPORTS];
  532. uint32_t changebits;
  533. uint32_t statusbits;
  534. uint8_t hub_desc[16];
  535. uint8_t endpoint;
  536. uint8_t interval;
  537. uint8_t numports;
  538. uint8_t characteristics;
  539. uint8_t powertime;
  540. uint8_t sending_control_transfer;
  541. uint8_t port_doing_reset;
  542. uint8_t port_doing_reset_speed;
  543. uint8_t portstate[MAXPORTS];
  544. portbitmask_t send_pending_poweron;
  545. portbitmask_t send_pending_getstatus;
  546. portbitmask_t send_pending_clearstatus_connect;
  547. portbitmask_t send_pending_clearstatus_enable;
  548. portbitmask_t send_pending_clearstatus_suspend;
  549. portbitmask_t send_pending_clearstatus_overcurrent;
  550. portbitmask_t send_pending_clearstatus_reset;
  551. portbitmask_t send_pending_setreset;
  552. portbitmask_t debounce_in_use;
  553. static volatile bool reset_busy;
  554. };
  555. //--------------------------------------------------------------------------
  556. class USBHIDParser : public USBDriver {
  557. public:
  558. USBHIDParser(USBHost &host) { init(); }
  559. static void driver_ready_for_hid_collection(USBHIDInput *driver);
  560. bool sendPacket(const uint8_t *buffer);
  561. protected:
  562. enum { TOPUSAGE_LIST_LEN = 4 };
  563. enum { USAGE_LIST_LEN = 24 };
  564. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  565. virtual void control(const Transfer_t *transfer);
  566. virtual void disconnect();
  567. static void in_callback(const Transfer_t *transfer);
  568. static void out_callback(const Transfer_t *transfer);
  569. void in_data(const Transfer_t *transfer);
  570. void out_data(const Transfer_t *transfer);
  571. bool check_if_using_report_id();
  572. void parse();
  573. USBHIDInput * find_driver(uint32_t topusage);
  574. void parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len);
  575. void init();
  576. // Atempt for RAWhid to take over processing of data
  577. //
  578. uint16_t inSize(void) {return in_size;}
  579. uint16_t outSize(void) {return out_size;}
  580. uint8_t activeSendMask(void) {return txstate;}
  581. private:
  582. Pipe_t *in_pipe;
  583. Pipe_t *out_pipe;
  584. static USBHIDInput *available_hid_drivers_list;
  585. //uint32_t topusage_list[TOPUSAGE_LIST_LEN];
  586. USBHIDInput *topusage_drivers[TOPUSAGE_LIST_LEN];
  587. uint16_t in_size;
  588. uint16_t out_size;
  589. setup_t setup;
  590. uint8_t descriptor[512];
  591. uint8_t report[64];
  592. uint16_t descsize;
  593. bool use_report_id;
  594. Pipe_t mypipes[3] __attribute__ ((aligned(32)));
  595. Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
  596. strbuf_t mystring_bufs[1];
  597. uint8_t txstate = 0;
  598. uint8_t *tx1 = nullptr;
  599. uint8_t *tx2 = nullptr;
  600. bool hid_driver_claimed_control_ = false;
  601. };
  602. //--------------------------------------------------------------------------
  603. class KeyboardController : public USBDriver , public USBHIDInput {
  604. public:
  605. typedef union {
  606. struct {
  607. uint8_t numLock : 1;
  608. uint8_t capsLock : 1;
  609. uint8_t scrollLock : 1;
  610. uint8_t compose : 1;
  611. uint8_t kana : 1;
  612. uint8_t reserved : 3;
  613. };
  614. uint8_t byte;
  615. } KBDLeds_t;
  616. public:
  617. KeyboardController(USBHost &host) { init(); }
  618. KeyboardController(USBHost *host) { init(); }
  619. // Some methods are in both public classes so we need to figure out which one to use
  620. operator bool() { return (device != nullptr); }
  621. // Main boot keyboard functions.
  622. uint16_t getKey() { return keyCode; }
  623. uint8_t getModifiers() { return modifiers; }
  624. uint8_t getOemKey() { return keyOEM; }
  625. void attachPress(void (*f)(int unicode)) { keyPressedFunction = f; }
  626. void attachRelease(void (*f)(int unicode)) { keyReleasedFunction = f; }
  627. void LEDS(uint8_t leds);
  628. uint8_t LEDS() {return leds_.byte;}
  629. void updateLEDS(void);
  630. bool numLock() {return leds_.numLock;}
  631. bool capsLock() {return leds_.capsLock;}
  632. bool scrollLock() {return leds_.scrollLock;}
  633. void numLock(bool f);
  634. void capsLock(bool f);
  635. void scrollLock(bool f);
  636. // Added for extras information.
  637. void attachExtrasPress(void (*f)(uint32_t top, uint16_t code)) { extrasKeyPressedFunction = f; }
  638. void attachExtrasRelease(void (*f)(uint32_t top, uint16_t code)) { extrasKeyReleasedFunction = f; }
  639. enum {MAX_KEYS_DOWN=4};
  640. protected:
  641. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  642. virtual void control(const Transfer_t *transfer);
  643. virtual void disconnect();
  644. static void callback(const Transfer_t *transfer);
  645. void new_data(const Transfer_t *transfer);
  646. void init();
  647. protected: // HID functions for extra keyboard data.
  648. virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
  649. virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
  650. virtual void hid_input_data(uint32_t usage, int32_t value);
  651. virtual void hid_input_end();
  652. virtual void disconnect_collection(Device_t *dev);
  653. private:
  654. void update();
  655. uint16_t convert_to_unicode(uint32_t mod, uint32_t key);
  656. void key_press(uint32_t mod, uint32_t key);
  657. void key_release(uint32_t mod, uint32_t key);
  658. void (*keyPressedFunction)(int unicode);
  659. void (*keyReleasedFunction)(int unicode);
  660. Pipe_t *datapipe;
  661. setup_t setup;
  662. uint8_t report[8];
  663. uint16_t keyCode;
  664. uint8_t modifiers;
  665. uint8_t keyOEM;
  666. uint8_t prev_report[8];
  667. KBDLeds_t leds_ = {0};
  668. Pipe_t mypipes[2] __attribute__ ((aligned(32)));
  669. Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
  670. strbuf_t mystring_bufs[1];
  671. // Added to process secondary HID data.
  672. void (*extrasKeyPressedFunction)(uint32_t top, uint16_t code);
  673. void (*extrasKeyReleasedFunction)(uint32_t top, uint16_t code);
  674. uint32_t topusage_ = 0; // What top report am I processing?
  675. uint8_t collections_claimed_ = 0;
  676. volatile bool hid_input_begin_ = false;
  677. volatile bool hid_input_data_ = false; // did we receive any valid data with report?
  678. uint8_t count_keys_down_ = 0;
  679. uint16_t keys_down[MAX_KEYS_DOWN];
  680. };
  681. class MouseController : public USBHIDInput {
  682. public:
  683. MouseController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
  684. bool available() { return mouseEvent; }
  685. void mouseDataClear();
  686. uint8_t getButtons() { return buttons; }
  687. int getMouseX() { return mouseX; }
  688. int getMouseY() { return mouseY; }
  689. int getWheel() { return wheel; }
  690. int getWheelH() { return wheelH; }
  691. protected:
  692. virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
  693. virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
  694. virtual void hid_input_data(uint32_t usage, int32_t value);
  695. virtual void hid_input_end();
  696. virtual void disconnect_collection(Device_t *dev);
  697. private:
  698. uint8_t collections_claimed = 0;
  699. volatile bool mouseEvent = false;
  700. volatile bool hid_input_begin_ = false;
  701. uint8_t buttons = 0;
  702. int mouseX = 0;
  703. int mouseY = 0;
  704. int wheel = 0;
  705. int wheelH = 0;
  706. };
  707. //--------------------------------------------------------------------------
  708. class JoystickController : public USBDriver, public USBHIDInput {
  709. public:
  710. JoystickController(USBHost &host) { init(); }
  711. uint16_t idVendor();
  712. uint16_t idProduct();
  713. const uint8_t *manufacturer();
  714. const uint8_t *product();
  715. const uint8_t *serialNumber();
  716. operator bool() { return ((device != nullptr) || (mydevice != nullptr)); } // override as in both USBDriver and in USBHIDInput
  717. bool available() { return joystickEvent; }
  718. void joystickDataClear();
  719. uint32_t getButtons() { return buttons; }
  720. int getAxis(uint32_t index) { return (index < (sizeof(axis)/sizeof(axis[0]))) ? axis[index] : 0; }
  721. uint32_t axisMask() {return axis_mask_;}
  722. enum { AXIS_COUNT = 10 };
  723. protected:
  724. // From USBDriver
  725. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  726. virtual void control(const Transfer_t *transfer);
  727. virtual void disconnect();
  728. // From USBHIDInput
  729. virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
  730. virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
  731. virtual void hid_input_data(uint32_t usage, int32_t value);
  732. virtual void hid_input_end();
  733. virtual void disconnect_collection(Device_t *dev);
  734. private:
  735. // Class specific
  736. void init();
  737. bool anychange = false;
  738. volatile bool joystickEvent = false;
  739. uint32_t buttons = 0;
  740. int axis[AXIS_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  741. uint32_t axis_mask_ = 0; // which axis have valid data
  742. // Used by HID code
  743. uint8_t collections_claimed = 0;
  744. // Used by USBDriver code
  745. static void rx_callback(const Transfer_t *transfer);
  746. static void tx_callback(const Transfer_t *transfer);
  747. void rx_data(const Transfer_t *transfer);
  748. void tx_data(const Transfer_t *transfer);
  749. Pipe_t mypipes[3] __attribute__ ((aligned(32)));
  750. Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
  751. strbuf_t mystring_bufs[1];
  752. uint16_t rx_size_ = 0;
  753. uint16_t tx_size_ = 0;
  754. Pipe_t *rxpipe_;
  755. Pipe_t *txpipe_;
  756. uint8_t rxbuf_[64]; // receive circular buffer
  757. // Mapping table to say which devices we handle
  758. typedef struct {
  759. uint16_t idVendor;
  760. uint16_t idProduct;
  761. } product_vendor_mapping_t;
  762. static product_vendor_mapping_t pid_vid_mapping[];
  763. };
  764. //--------------------------------------------------------------------------
  765. class MIDIDevice : public USBDriver {
  766. public:
  767. enum { SYSEX_MAX_LEN = 290 };
  768. // Message type names for compatibility with Arduino MIDI library 4.3.1
  769. enum MidiType {
  770. InvalidType = 0x00, // For notifying errors
  771. NoteOff = 0x80, // Note Off
  772. NoteOn = 0x90, // Note On
  773. AfterTouchPoly = 0xA0, // Polyphonic AfterTouch
  774. ControlChange = 0xB0, // Control Change / Channel Mode
  775. ProgramChange = 0xC0, // Program Change
  776. AfterTouchChannel = 0xD0, // Channel (monophonic) AfterTouch
  777. PitchBend = 0xE0, // Pitch Bend
  778. SystemExclusive = 0xF0, // System Exclusive
  779. TimeCodeQuarterFrame = 0xF1, // System Common - MIDI Time Code Quarter Frame
  780. SongPosition = 0xF2, // System Common - Song Position Pointer
  781. SongSelect = 0xF3, // System Common - Song Select
  782. TuneRequest = 0xF6, // System Common - Tune Request
  783. Clock = 0xF8, // System Real Time - Timing Clock
  784. Start = 0xFA, // System Real Time - Start
  785. Continue = 0xFB, // System Real Time - Continue
  786. Stop = 0xFC, // System Real Time - Stop
  787. ActiveSensing = 0xFE, // System Real Time - Active Sensing
  788. SystemReset = 0xFF, // System Real Time - System Reset
  789. };
  790. MIDIDevice(USBHost &host) { init(); }
  791. MIDIDevice(USBHost *host) { init(); }
  792. void sendNoteOff(uint8_t note, uint8_t velocity, uint8_t channel, uint8_t cable=0) {
  793. send(0x80, note, velocity, channel, cable);
  794. }
  795. void sendNoteOn(uint8_t note, uint8_t velocity, uint8_t channel, uint8_t cable=0) {
  796. send(0x90, note, velocity, channel, cable);
  797. }
  798. void sendPolyPressure(uint8_t note, uint8_t pressure, uint8_t channel, uint8_t cable=0) {
  799. send(0xA0, note, pressure, channel, cable);
  800. }
  801. void sendAfterTouchPoly(uint8_t note, uint8_t pressure, uint8_t channel, uint8_t cable=0) {
  802. send(0xA0, note, pressure, channel, cable);
  803. }
  804. void sendControlChange(uint8_t control, uint8_t value, uint8_t channel, uint8_t cable=0) {
  805. send(0xB0, control, value, channel, cable);
  806. }
  807. void sendProgramChange(uint8_t program, uint8_t channel, uint8_t cable=0) {
  808. send(0xC0, program, 0, channel, cable);
  809. }
  810. void sendAfterTouch(uint8_t pressure, uint8_t channel, uint8_t cable=0) {
  811. send(0xD0, pressure, 0, channel, cable);
  812. }
  813. void sendPitchBend(int value, uint8_t channel, uint8_t cable=0) {
  814. if (value < -8192) {
  815. value = -8192;
  816. } else if (value > 8191) {
  817. value = 8191;
  818. }
  819. value += 8192;
  820. send(0xE0, value, value >> 7, channel, cable);
  821. }
  822. void sendSysEx(uint32_t length, const uint8_t *data, bool hasTerm=false, uint8_t cable=0) {
  823. //if (cable >= MIDI_NUM_CABLES) return;
  824. if (hasTerm) {
  825. send_sysex_buffer_has_term(data, length, cable);
  826. } else {
  827. send_sysex_add_term_bytes(data, length, cable);
  828. }
  829. }
  830. void sendRealTime(uint8_t type, uint8_t cable=0) {
  831. switch (type) {
  832. case 0xF8: // Clock
  833. case 0xFA: // Start
  834. case 0xFB: // Continue
  835. case 0xFC: // Stop
  836. case 0xFE: // ActiveSensing
  837. case 0xFF: // SystemReset
  838. send(type, 0, 0, 0, cable);
  839. break;
  840. default: // Invalid Real Time marker
  841. break;
  842. }
  843. }
  844. void sendTimeCodeQuarterFrame(uint8_t type, uint8_t value, uint8_t cable=0) {
  845. send(0xF1, ((type & 0x07) << 4) | (value & 0x0F), 0, 0, cable);
  846. }
  847. void sendSongPosition(uint16_t beats, uint8_t cable=0) {
  848. send(0xF2, beats, beats >> 7, 0, cable);
  849. }
  850. void sendSongSelect(uint8_t song, uint8_t cable=0) {
  851. send(0xF3, song, 0, 0, cable);
  852. }
  853. void sendTuneRequest(uint8_t cable=0) {
  854. send(0xF6, 0, 0, 0, cable);
  855. }
  856. void beginRpn(uint16_t number, uint8_t channel, uint8_t cable=0) {
  857. sendControlChange(101, number >> 7, channel, cable);
  858. sendControlChange(100, number, channel, cable);
  859. }
  860. void sendRpnValue(uint16_t value, uint8_t channel, uint8_t cable=0) {
  861. sendControlChange(6, value >> 7, channel, cable);
  862. sendControlChange(38, value, channel, cable);
  863. }
  864. void sendRpnIncrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
  865. sendControlChange(96, amount, channel, cable);
  866. }
  867. void sendRpnDecrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
  868. sendControlChange(97, amount, channel, cable);
  869. }
  870. void endRpn(uint8_t channel, uint8_t cable=0) {
  871. sendControlChange(101, 0x7F, channel, cable);
  872. sendControlChange(100, 0x7F, channel, cable);
  873. }
  874. void beginNrpn(uint16_t number, uint8_t channel, uint8_t cable=0) {
  875. sendControlChange(99, number >> 7, channel, cable);
  876. sendControlChange(98, number, channel, cable);
  877. }
  878. void sendNrpnValue(uint16_t value, uint8_t channel, uint8_t cable=0) {
  879. sendControlChange(6, value >> 7, channel, cable);
  880. sendControlChange(38, value, channel, cable);
  881. }
  882. void sendNrpnIncrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
  883. sendControlChange(96, amount, channel, cable);
  884. }
  885. void sendNrpnDecrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
  886. sendControlChange(97, amount, channel, cable);
  887. }
  888. void endNrpn(uint8_t channel, uint8_t cable=0) {
  889. sendControlChange(99, 0x7F, channel, cable);
  890. sendControlChange(98, 0x7F, channel, cable);
  891. }
  892. void send(uint8_t type, uint8_t data1, uint8_t data2, uint8_t channel, uint8_t cable=0) {
  893. //if (cable >= MIDI_NUM_CABLES) return;
  894. if (type < 0xF0) {
  895. if (type < 0x80) return;
  896. type &= 0xF0;
  897. write_packed((type << 8) | (type >> 4) | ((cable & 0x0F) << 4)
  898. | (((channel - 1) & 0x0F) << 8) | ((data1 & 0x7F) << 16)
  899. | ((data2 & 0x7F) << 24));
  900. } else if (type >= 0xF8 || type == 0xF6) {
  901. write_packed((type << 8) | 0x0F | ((cable & 0x0F) << 4));
  902. } else if (type == 0xF1 || type == 0xF3) {
  903. write_packed((type << 8) | 0x02 | ((cable & 0x0F) << 4)
  904. | ((data1 & 0x7F) << 16));
  905. } else if (type == 0xF2) {
  906. write_packed((type << 8) | 0x03 | ((cable & 0x0F) << 4)
  907. | ((data1 & 0x7F) << 16) | ((data2 & 0x7F) << 24));
  908. }
  909. }
  910. void send_now(void) __attribute__((always_inline)) {
  911. }
  912. bool read(uint8_t channel=0);
  913. uint8_t getType(void) {
  914. return msg_type;
  915. };
  916. uint8_t getCable(void) {
  917. return msg_cable;
  918. }
  919. uint8_t getChannel(void) {
  920. return msg_channel;
  921. };
  922. uint8_t getData1(void) {
  923. return msg_data1;
  924. };
  925. uint8_t getData2(void) {
  926. return msg_data2;
  927. };
  928. uint8_t * getSysExArray(void) {
  929. return msg_sysex;
  930. }
  931. void setHandleNoteOff(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
  932. // type: 0x80 NoteOff
  933. handleNoteOff = fptr;
  934. }
  935. void setHandleNoteOn(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
  936. // type: 0x90 NoteOn
  937. handleNoteOn = fptr;
  938. }
  939. void setHandleVelocityChange(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
  940. // type: 0xA0 AfterTouchPoly
  941. handleVelocityChange = fptr;
  942. }
  943. void setHandleAfterTouchPoly(void (*fptr)(uint8_t channel, uint8_t note, uint8_t pressure)) {
  944. // type: 0xA0 AfterTouchPoly
  945. handleVelocityChange = fptr;
  946. }
  947. void setHandleControlChange(void (*fptr)(uint8_t channel, uint8_t control, uint8_t value)) {
  948. // type: 0xB0 ControlChange
  949. handleControlChange = fptr;
  950. }
  951. void setHandleProgramChange(void (*fptr)(uint8_t channel, uint8_t program)) {
  952. // type: 0xC0 ProgramChange
  953. handleProgramChange = fptr;
  954. }
  955. void setHandleAfterTouch(void (*fptr)(uint8_t channel, uint8_t pressure)) {
  956. // type: 0xD0 AfterTouchChannel
  957. handleAfterTouch = fptr;
  958. }
  959. void setHandleAfterTouchChannel(void (*fptr)(uint8_t channel, uint8_t pressure)) {
  960. // type: 0xD0 AfterTouchChannel
  961. handleAfterTouch = fptr;
  962. }
  963. void setHandlePitchChange(void (*fptr)(uint8_t channel, int pitch)) {
  964. // type: 0xE0 PitchBend
  965. handlePitchChange = fptr;
  966. }
  967. void setHandleSysEx(void (*fptr)(const uint8_t *data, uint16_t length, bool complete)) {
  968. // type: 0xF0 SystemExclusive - multiple calls for message bigger than buffer
  969. handleSysExPartial = (void (*)(const uint8_t *, uint16_t, uint8_t))fptr;
  970. }
  971. void setHandleSystemExclusive(void (*fptr)(const uint8_t *data, uint16_t length, bool complete)) {
  972. // type: 0xF0 SystemExclusive - multiple calls for message bigger than buffer
  973. handleSysExPartial = (void (*)(const uint8_t *, uint16_t, uint8_t))fptr;
  974. }
  975. void setHandleSystemExclusive(void (*fptr)(uint8_t *data, unsigned int size)) {
  976. // type: 0xF0 SystemExclusive - single call, message larger than buffer is truncated
  977. handleSysExComplete = fptr;
  978. }
  979. void setHandleTimeCodeQuarterFrame(void (*fptr)(uint8_t data)) {
  980. // type: 0xF1 TimeCodeQuarterFrame
  981. handleTimeCodeQuarterFrame = fptr;
  982. }
  983. void setHandleSongPosition(void (*fptr)(uint16_t beats)) {
  984. // type: 0xF2 SongPosition
  985. handleSongPosition = fptr;
  986. }
  987. void setHandleSongSelect(void (*fptr)(uint8_t songnumber)) {
  988. // type: 0xF3 SongSelect
  989. handleSongSelect = fptr;
  990. }
  991. void setHandleTuneRequest(void (*fptr)(void)) {
  992. // type: 0xF6 TuneRequest
  993. handleTuneRequest = fptr;
  994. }
  995. void setHandleClock(void (*fptr)(void)) {
  996. // type: 0xF8 Clock
  997. handleClock = fptr;
  998. }
  999. void setHandleStart(void (*fptr)(void)) {
  1000. // type: 0xFA Start
  1001. handleStart = fptr;
  1002. }
  1003. void setHandleContinue(void (*fptr)(void)) {
  1004. // type: 0xFB Continue
  1005. handleContinue = fptr;
  1006. }
  1007. void setHandleStop(void (*fptr)(void)) {
  1008. // type: 0xFC Stop
  1009. handleStop = fptr;
  1010. }
  1011. void setHandleActiveSensing(void (*fptr)(void)) {
  1012. // type: 0xFE ActiveSensing
  1013. handleActiveSensing = fptr;
  1014. }
  1015. void setHandleSystemReset(void (*fptr)(void)) {
  1016. // type: 0xFF SystemReset
  1017. handleSystemReset = fptr;
  1018. }
  1019. void setHandleRealTimeSystem(void (*fptr)(uint8_t realtimebyte)) {
  1020. // type: 0xF8-0xFF - if more specific handler not configured
  1021. handleRealTimeSystem = fptr;
  1022. }
  1023. protected:
  1024. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  1025. virtual void disconnect();
  1026. static void rx_callback(const Transfer_t *transfer);
  1027. static void tx_callback(const Transfer_t *transfer);
  1028. void rx_data(const Transfer_t *transfer);
  1029. void tx_data(const Transfer_t *transfer);
  1030. void init();
  1031. void write_packed(uint32_t data);
  1032. void send_sysex_buffer_has_term(const uint8_t *data, uint32_t length, uint8_t cable);
  1033. void send_sysex_add_term_bytes(const uint8_t *data, uint32_t length, uint8_t cable);
  1034. void sysex_byte(uint8_t b);
  1035. private:
  1036. Pipe_t *rxpipe;
  1037. Pipe_t *txpipe;
  1038. enum { MAX_PACKET_SIZE = 64 };
  1039. enum { RX_QUEUE_SIZE = 80 }; // must be more than MAX_PACKET_SIZE/4
  1040. uint32_t rx_buffer[MAX_PACKET_SIZE/4];
  1041. uint32_t tx_buffer1[MAX_PACKET_SIZE/4];
  1042. uint32_t tx_buffer2[MAX_PACKET_SIZE/4];
  1043. uint16_t rx_size;
  1044. uint16_t tx_size;
  1045. uint32_t rx_queue[RX_QUEUE_SIZE];
  1046. bool rx_packet_queued;
  1047. uint16_t rx_head;
  1048. uint16_t rx_tail;
  1049. volatile uint8_t tx1_count;
  1050. volatile uint8_t tx2_count;
  1051. uint8_t rx_ep;
  1052. uint8_t tx_ep;
  1053. uint8_t rx_ep_type;
  1054. uint8_t tx_ep_type;
  1055. uint8_t msg_cable;
  1056. uint8_t msg_channel;
  1057. uint8_t msg_type;
  1058. uint8_t msg_data1;
  1059. uint8_t msg_data2;
  1060. uint8_t msg_sysex[SYSEX_MAX_LEN];
  1061. uint8_t msg_sysex_len;
  1062. void (*handleNoteOff)(uint8_t ch, uint8_t note, uint8_t vel);
  1063. void (*handleNoteOn)(uint8_t ch, uint8_t note, uint8_t vel);
  1064. void (*handleVelocityChange)(uint8_t ch, uint8_t note, uint8_t vel);
  1065. void (*handleControlChange)(uint8_t ch, uint8_t control, uint8_t value);
  1066. void (*handleProgramChange)(uint8_t ch, uint8_t program);
  1067. void (*handleAfterTouch)(uint8_t ch, uint8_t pressure);
  1068. void (*handlePitchChange)(uint8_t ch, int pitch);
  1069. void (*handleSysExPartial)(const uint8_t *data, uint16_t length, uint8_t complete);
  1070. void (*handleSysExComplete)(uint8_t *data, unsigned int size);
  1071. void (*handleTimeCodeQuarterFrame)(uint8_t data);
  1072. void (*handleSongPosition)(uint16_t beats);
  1073. void (*handleSongSelect)(uint8_t songnumber);
  1074. void (*handleTuneRequest)(void);
  1075. void (*handleClock)(void);
  1076. void (*handleStart)(void);
  1077. void (*handleContinue)(void);
  1078. void (*handleStop)(void);
  1079. void (*handleActiveSensing)(void);
  1080. void (*handleSystemReset)(void);
  1081. void (*handleRealTimeSystem)(uint8_t rtb);
  1082. Pipe_t mypipes[3] __attribute__ ((aligned(32)));
  1083. Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
  1084. strbuf_t mystring_bufs[1];
  1085. };
  1086. //--------------------------------------------------------------------------
  1087. class USBSerial: public USBDriver, public Stream {
  1088. public:
  1089. // FIXME: need different USBSerial, with bigger buffers for 480 Mbit & faster speed
  1090. enum { BUFFER_SIZE = 648 }; // must hold at least 6 max size packets, plus 2 extra bytes
  1091. enum { DEFAULT_WRITE_TIMEOUT = 3500};
  1092. USBSerial(USBHost &host) : txtimer(this) { init(); }
  1093. void begin(uint32_t baud, uint32_t format=USBHOST_SERIAL_8N1);
  1094. void end(void);
  1095. uint32_t writeTimeout() {return write_timeout_;}
  1096. void writeTimeOut(uint32_t write_timeout) {write_timeout_ = write_timeout;} // Will not impact current ones.
  1097. virtual int available(void);
  1098. virtual int peek(void);
  1099. virtual int read(void);
  1100. virtual int availableForWrite();
  1101. virtual size_t write(uint8_t c);
  1102. virtual void flush(void);
  1103. using Print::write;
  1104. protected:
  1105. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  1106. virtual void control(const Transfer_t *transfer);
  1107. virtual void disconnect();
  1108. virtual void timer_event(USBDriverTimer *whichTimer);
  1109. private:
  1110. static void rx_callback(const Transfer_t *transfer);
  1111. static void tx_callback(const Transfer_t *transfer);
  1112. void rx_data(const Transfer_t *transfer);
  1113. void tx_data(const Transfer_t *transfer);
  1114. void rx_queue_packets(uint32_t head, uint32_t tail);
  1115. void init();
  1116. static bool check_rxtx_ep(uint32_t &rxep, uint32_t &txep);
  1117. bool init_buffers(uint32_t rsize, uint32_t tsize);
  1118. void ch341_setBaud(uint8_t byte_index);
  1119. private:
  1120. Pipe_t mypipes[3] __attribute__ ((aligned(32)));
  1121. Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
  1122. strbuf_t mystring_bufs[1];
  1123. USBDriverTimer txtimer;
  1124. uint32_t bigbuffer[(BUFFER_SIZE+3)/4];
  1125. setup_t setup;
  1126. uint8_t setupdata[16]; //
  1127. uint32_t baudrate;
  1128. uint32_t format_;
  1129. uint32_t write_timeout_ = DEFAULT_WRITE_TIMEOUT;
  1130. Pipe_t *rxpipe;
  1131. Pipe_t *txpipe;
  1132. uint8_t *rx1; // location for first incoming packet
  1133. uint8_t *rx2; // location for second incoming packet
  1134. uint8_t *rxbuf; // receive circular buffer
  1135. uint8_t *tx1; // location for first outgoing packet
  1136. uint8_t *tx2; // location for second outgoing packet
  1137. uint8_t *txbuf;
  1138. volatile uint16_t rxhead;// receive head
  1139. volatile uint16_t rxtail;// receive tail
  1140. volatile uint16_t txhead;
  1141. volatile uint16_t txtail;
  1142. uint16_t rxsize;// size of receive circular buffer
  1143. uint16_t txsize;// size of transmit circular buffer
  1144. volatile uint8_t rxstate;// bitmask: which receive packets are queued
  1145. volatile uint8_t txstate;
  1146. uint8_t pending_control;
  1147. uint8_t setup_state; // PL2303 - has several steps... Could use pending control?
  1148. uint8_t pl2303_v1; // Which version do we have
  1149. uint8_t pl2303_v2;
  1150. uint8_t interface;
  1151. bool control_queued;
  1152. typedef enum { UNKNOWN=0, CDCACM, FTDI, PL2303, CH341, CP210X } sertype_t;
  1153. sertype_t sertype;
  1154. typedef struct {
  1155. uint16_t idVendor;
  1156. uint16_t idProduct;
  1157. sertype_t sertype;
  1158. } product_vendor_mapping_t;
  1159. static product_vendor_mapping_t pid_vid_mapping[];
  1160. };
  1161. //--------------------------------------------------------------------------
  1162. class AntPlus: public USBDriver {
  1163. // Please post any AntPlus feedback or contributions on this forum thread:
  1164. // https://forum.pjrc.com/threads/43110-Ant-libarary-and-USB-driver-for-Teensy-3-5-6
  1165. public:
  1166. AntPlus(USBHost &host) : /* txtimer(this),*/ updatetimer(this) { init(); }
  1167. void begin(const uint8_t key=0);
  1168. void onStatusChange(void (*function)(int channel, int status)) {
  1169. user_onStatusChange = function;
  1170. }
  1171. void onDeviceID(void (*function)(int channel, int devId, int devType, int transType)) {
  1172. user_onDeviceID = function;
  1173. }
  1174. void onHeartRateMonitor(void (*f)(int bpm, int msec, int seqNum), uint32_t devid=0) {
  1175. profileSetup_HRM(&ant.dcfg[PROFILE_HRM], devid);
  1176. memset(&hrm, 0, sizeof(hrm));
  1177. user_onHeartRateMonitor = f;
  1178. }
  1179. void onSpeedCadence(void (*f)(float speed, float distance, float rpm), uint32_t devid=0) {
  1180. profileSetup_SPDCAD(&ant.dcfg[PROFILE_SPDCAD], devid);
  1181. memset(&spdcad, 0, sizeof(spdcad));
  1182. user_onSpeedCadence = f;
  1183. }
  1184. void onSpeed(void (*f)(float speed, float distance), uint32_t devid=0) {
  1185. profileSetup_SPEED(&ant.dcfg[PROFILE_SPEED], devid);
  1186. memset(&spd, 0, sizeof(spd));
  1187. user_onSpeed = f;
  1188. }
  1189. void onCadence(void (*f)(float rpm), uint32_t devid=0) {
  1190. profileSetup_CADENCE(&ant.dcfg[PROFILE_CADENCE], devid);
  1191. memset(&cad, 0, sizeof(cad));
  1192. user_onCadence = f;
  1193. }
  1194. void setWheelCircumference(float meters) {
  1195. wheelCircumference = meters * 1000.0f;
  1196. }
  1197. protected:
  1198. virtual void Task();
  1199. virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
  1200. virtual void disconnect();
  1201. virtual void timer_event(USBDriverTimer *whichTimer);
  1202. private:
  1203. static void rx_callback(const Transfer_t *transfer);
  1204. static void tx_callback(const Transfer_t *transfer);
  1205. void rx_data(const Transfer_t *transfer);
  1206. void tx_data(const Transfer_t *transfer);
  1207. void init();
  1208. size_t write(const void *data, const size_t size);
  1209. int read(void *data, const size_t size);
  1210. void transmit();
  1211. private:
  1212. Pipe_t mypipes[2] __attribute__ ((aligned(32)));
  1213. Transfer_t mytransfers[3] __attribute__ ((aligned(32)));
  1214. strbuf_t mystring_bufs[1];
  1215. //USBDriverTimer txtimer;
  1216. USBDriverTimer updatetimer;
  1217. Pipe_t *rxpipe;
  1218. Pipe_t *txpipe;
  1219. bool first_update;
  1220. uint8_t txbuffer[240];
  1221. uint8_t rxpacket[64];
  1222. volatile uint16_t txhead;
  1223. volatile uint16_t txtail;
  1224. volatile bool txready;
  1225. volatile uint8_t rxlen;
  1226. volatile bool do_polling;
  1227. private:
  1228. enum _eventi {
  1229. EVENTI_MESSAGE = 0,
  1230. EVENTI_CHANNEL,
  1231. EVENTI_TOTAL
  1232. };
  1233. enum _profiles {
  1234. PROFILE_HRM = 0,
  1235. PROFILE_SPDCAD,
  1236. PROFILE_POWER,
  1237. PROFILE_STRIDE,
  1238. PROFILE_SPEED,
  1239. PROFILE_CADENCE,
  1240. PROFILE_TOTAL
  1241. };
  1242. typedef struct {
  1243. uint8_t channel;
  1244. uint8_t RFFreq;
  1245. uint8_t networkNumber;
  1246. uint8_t stub;
  1247. uint8_t searchTimeout;
  1248. uint8_t channelType;
  1249. uint8_t deviceType;
  1250. uint8_t transType;
  1251. uint16_t channelPeriod;
  1252. uint16_t searchWaveform;
  1253. uint32_t deviceNumber; // deviceId
  1254. struct {
  1255. uint8_t chanIdOnce;
  1256. uint8_t keyAccepted;
  1257. uint8_t profileValid;
  1258. uint8_t channelStatus;
  1259. uint8_t channelStatusOld;
  1260. } flags;
  1261. } TDCONFIG;
  1262. struct {
  1263. uint8_t initOnce;
  1264. uint8_t key; // key index
  1265. int iDevice; // index to the antplus we're interested in, if > one found
  1266. TDCONFIG dcfg[PROFILE_TOTAL]; // channel config, we're using one channel per device
  1267. } ant;
  1268. void (*user_onStatusChange)(int channel, int status);
  1269. void (*user_onDeviceID)(int channel, int devId, int devType, int transType);
  1270. void (*user_onHeartRateMonitor)(int beatsPerMinute, int milliseconds, int sequenceNumber);
  1271. void (*user_onSpeedCadence)(float speed, float distance, float cadence);
  1272. void (*user_onSpeed)(float speed, float distance);
  1273. void (*user_onCadence)(float cadence);
  1274. void dispatchPayload(TDCONFIG *cfg, const uint8_t *payload, const int len);
  1275. static const uint8_t *getAntKey(const uint8_t keyIdx);
  1276. static uint8_t calcMsgChecksum (const uint8_t *buffer, const uint8_t len);
  1277. static uint8_t * findStreamSync(uint8_t *stream, const size_t rlen, int *pos);
  1278. static int msgCheckIntegrity(uint8_t *stream, const int len);
  1279. static int msgGetLength(uint8_t *stream);
  1280. int handleMessages(uint8_t *buffer, int tBytes);
  1281. void sendMessageChannelStatus(TDCONFIG *cfg, const uint32_t channelStatus);
  1282. void message_channel(const int chan, const int eventId,
  1283. const uint8_t *payload, const size_t dataLength);
  1284. void message_response(const int chan, const int msgId,
  1285. const uint8_t *payload, const size_t dataLength);
  1286. void message_event(const int channel, const int msgId,
  1287. const uint8_t *payload, const size_t dataLength);
  1288. int ResetSystem();
  1289. int RequestMessage(const int channel, const int message);
  1290. int SetNetworkKey(const int netNumber, const uint8_t *key);
  1291. int SetChannelSearchTimeout(const int channel, const int searchTimeout);
  1292. int SetChannelPeriod(const int channel, const int period);
  1293. int SetChannelRFFreq(const int channel, const int freq);
  1294. int SetSearchWaveform(const int channel, const int wave);
  1295. int OpenChannel(const int channel);
  1296. int CloseChannel(const int channel);
  1297. int AssignChannel(const int channel, const int channelType, const int network);
  1298. int SetChannelId(const int channel, const int deviceNum, const int deviceType,
  1299. const int transmissionType);
  1300. int SendBurstTransferPacket(const int channelSeq, const uint8_t *data);
  1301. int SendBurstTransfer(const int channel, const uint8_t *data, const int nunPackets);
  1302. int SendBroadcastData(const int channel, const uint8_t *data);
  1303. int SendAcknowledgedData(const int channel, const uint8_t *data);
  1304. int SendExtAcknowledgedData(const int channel, const int devNum, const int devType,
  1305. const int TranType, const uint8_t *data);
  1306. int SendExtBroadcastData(const int channel, const int devNum, const int devType,
  1307. const int TranType, const uint8_t *data);
  1308. int SendExtBurstTransferPacket(const int chanSeq, const int devNum,
  1309. const int devType, const int TranType, const uint8_t *data);
  1310. int SendExtBurstTransfer(const int channel, const int devNum, const int devType,
  1311. const int tranType, const uint8_t *data, const int nunPackets);
  1312. static void profileSetup_HRM(TDCONFIG *cfg, const uint32_t deviceId);
  1313. static void profileSetup_SPDCAD(TDCONFIG *cfg, const uint32_t deviceId);
  1314. static void profileSetup_POWER(TDCONFIG *cfg, const uint32_t deviceId);
  1315. static void profileSetup_STRIDE(TDCONFIG *cfg, const uint32_t deviceId);
  1316. static void profileSetup_SPEED(TDCONFIG *cfg, const uint32_t deviceId);
  1317. static void profileSetup_CADENCE(TDCONFIG *cfg, const uint32_t deviceId);
  1318. struct {
  1319. struct {
  1320. uint8_t bpm;
  1321. uint8_t sequence;
  1322. uint16_t time;
  1323. } previous;
  1324. } hrm;
  1325. void payload_HRM(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1326. struct {
  1327. struct {
  1328. uint16_t cadenceTime;
  1329. uint16_t cadenceCt;
  1330. uint16_t speedTime;
  1331. uint16_t speedCt;
  1332. } previous;
  1333. float distance;
  1334. } spdcad;
  1335. void payload_SPDCAD(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1336. /* struct {
  1337. struct {
  1338. uint8_t sequence;
  1339. uint16_t pedalPowerContribution;
  1340. uint8_t pedalPower;
  1341. uint8_t instantCadence;
  1342. uint16_t sumPower;
  1343. uint16_t instantPower;
  1344. } current;
  1345. struct {
  1346. uint16_t stub;
  1347. } previous;
  1348. } pwr; */
  1349. void payload_POWER(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1350. /* struct {
  1351. struct {
  1352. uint16_t speed;
  1353. uint16_t cadence;
  1354. uint8_t strides;
  1355. } current;
  1356. struct {
  1357. uint8_t strides;
  1358. uint16_t speed;
  1359. uint16_t cadence;
  1360. } previous;
  1361. } stride; */
  1362. void payload_STRIDE(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1363. struct {
  1364. struct {
  1365. uint16_t speedTime;
  1366. uint16_t speedCt;
  1367. } previous;
  1368. float distance;
  1369. } spd;
  1370. void payload_SPEED(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1371. struct {
  1372. struct {
  1373. uint16_t cadenceTime;
  1374. uint16_t cadenceCt;
  1375. } previous;
  1376. } cad;
  1377. void payload_CADENCE(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
  1378. uint16_t wheelCircumference; // default is WHEEL_CIRCUMFERENCE (2122cm)
  1379. };
  1380. //--------------------------------------------------------------------------
  1381. class RawHIDController : public USBHIDInput {
  1382. public:
  1383. RawHIDController(USBHost &host, uint32_t usage = 0) : fixed_usage_(usage) { init(); }
  1384. uint32_t usage(void) {return usage_;}
  1385. void attachReceive(bool (*f)(uint32_t usage, const uint8_t *data, uint32_t len)) {receiveCB = f;}
  1386. bool sendPacket(const uint8_t *buffer);
  1387. protected:
  1388. virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
  1389. virtual bool hid_process_in_data(const Transfer_t *transfer);
  1390. virtual bool hid_process_out_data(const Transfer_t *transfer);
  1391. virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
  1392. virtual void hid_input_data(uint32_t usage, int32_t value);
  1393. virtual void hid_input_end();
  1394. virtual void disconnect_collection(Device_t *dev);
  1395. private:
  1396. void init();
  1397. USBHIDParser *driver_;
  1398. enum { MAX_PACKET_SIZE = 64 };
  1399. bool (*receiveCB)(uint32_t usage, const uint8_t *data, uint32_t len) = nullptr;
  1400. uint8_t collections_claimed = 0;
  1401. //volatile bool hid_input_begin_ = false;
  1402. uint32_t fixed_usage_;
  1403. uint32_t usage_ = 0;
  1404. // See if we can contribute transfers
  1405. Transfer_t mytransfers[2] __attribute__ ((aligned(32)));
  1406. };
  1407. #endif