Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts | Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts | ||||
*/ | */ | ||||
#include "Wire.h" | |||||
#if defined(__arm__) && defined(CORE_TEENSY) | |||||
#if defined(__AVR__) | |||||
#include "kinetis.h" | |||||
#include <string.h> // for memcpy | |||||
#include "core_pins.h" | |||||
//#include "HardwareSerial.h" | |||||
#include "Wire.h" | #include "Wire.h" | ||||
uint8_t TwoWire::rxBuffer[BUFFER_LENGTH]; | |||||
uint8_t TwoWire::rxBufferIndex = 0; | |||||
uint8_t TwoWire::rxBufferLength = 0; | |||||
uint8_t TwoWire::txBuffer[BUFFER_LENGTH+1]; | |||||
uint8_t TwoWire::txBufferIndex = 0; | |||||
uint8_t TwoWire::txBufferLength = 0; | |||||
uint8_t TwoWire::transmitting = 0; | |||||
uint8_t TwoWire::sda_pin_num = 18; | |||||
uint8_t TwoWire::scl_pin_num = 19; | |||||
void (*TwoWire::user_onRequest)(void) = NULL; | |||||
void (*TwoWire::user_onReceive)(int) = NULL; | |||||
TwoWire::TwoWire() | |||||
{ | |||||
} | |||||
static uint8_t slave_mode = 0; | |||||
static uint8_t irqcount=0; | |||||
void TwoWire::begin(void) | |||||
{ | |||||
//serial_begin(BAUD2DIV(115200)); | |||||
//serial_print("\nWire Begin\n"); | |||||
slave_mode = 0; | |||||
SIM_SCGC4 |= SIM_SCGC4_I2C0; // TODO: use bitband | |||||
I2C0_C1 = 0; | |||||
// On Teensy 3.0 external pullup resistors *MUST* be used | |||||
// the PORT_PCR_PE bit is ignored when in I2C mode | |||||
// I2C will not work at all without pullup resistors | |||||
// It might seem like setting PORT_PCR_PE & PORT_PCR_PS | |||||
// would enable pullup resistors. However, there seems | |||||
// to be a bug in chip while I2C is enabled, where setting | |||||
// those causes the port to be driven strongly high. | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
setClock(100000); | |||||
I2C0_C2 = I2C_C2_HDRS; | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
//pinMode(3, OUTPUT); | |||||
//pinMode(4, OUTPUT); | |||||
} | |||||
void TwoWire::setClock(uint32_t frequency) | |||||
{ | |||||
if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; | |||||
#if F_BUS == 120000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV1152; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV288; // 416 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV128; // 0.94 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 108000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV1024; // 105 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV256; // 422 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV112; // 0.96 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 96000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV960; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV240; // 400 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV96; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 90000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV896; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV224; // 402 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV88; // 1.02 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 80000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV768; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV192; // 416 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV80; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 72000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV640; // 112 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV192; // 375 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV72; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 64000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV640; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV160; // 400 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV64; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 60000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x2C; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1C; // 416 kHz | |||||
} else { | |||||
I2C0_F = 0x12; // 938 kHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 56000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x2B; // 109 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1C; // 389 kHz | |||||
} else { | |||||
I2C0_F = 0x0E; // 1 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 54000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV512; // 105 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV128; // 422 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV56; // 0.96 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 48000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x27; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1A; // 400 kHz | |||||
} else { | |||||
I2C0_F = 0x0D; // 1 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 40000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x29; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x19; // 416 kHz | |||||
} else { | |||||
I2C0_F = 0x0B; // 1 MHz | |||||
} | |||||
I2C0_FLT = 3; | |||||
#elif F_BUS == 36000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x28; // 113 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x19; // 375 kHz | |||||
} else { | |||||
I2C0_F = 0x0A; // 1 MHz | |||||
} | |||||
I2C0_FLT = 3; | |||||
#elif F_BUS == 24000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x1F; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x12; // 375 kHz | |||||
} else { | |||||
I2C0_F = 0x02; // 1 MHz | |||||
} | |||||
I2C0_FLT = 2; | |||||
#elif F_BUS == 16000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x20; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x07; // 400 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 800 MHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 8000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x14; // 100 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 400 kHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 4000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x07; // 100 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 200 kHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = 0x00; // 100 kHz | |||||
I2C0_FLT = 1; | |||||
#else | |||||
#error "F_BUS must be 120, 108, 96, 9, 80, 72, 64, 60, 56, 54, 48, 40, 36, 24, 16, 8, 4 or 2 MHz" | |||||
#endif | |||||
} | |||||
void TwoWire::setSDA(uint8_t pin) | |||||
{ | |||||
if (pin == sda_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = 0; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = 0; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = 0; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (pin == 18) { | |||||
CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 17) { | |||||
CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (pin == 34) { | |||||
CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 8) { | |||||
CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 48) { | |||||
CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
} | |||||
sda_pin_num = pin; | |||||
} | |||||
void TwoWire::setSCL(uint8_t pin) | |||||
{ | |||||
if (pin == scl_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = 0; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = 0; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = 0; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (pin == 19) { | |||||
CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 16) { | |||||
CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (pin == 33) { | |||||
CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 7) { | |||||
CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 47) { | |||||
CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
} | |||||
scl_pin_num = pin; | |||||
} | |||||
void TwoWire::begin(uint8_t address) | |||||
{ | |||||
begin(); | |||||
I2C0_A1 = address << 1; | |||||
slave_mode = 1; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
NVIC_ENABLE_IRQ(IRQ_I2C0); | |||||
} | |||||
void TwoWire::end() | |||||
{ | |||||
if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; | |||||
NVIC_DISABLE_IRQ(IRQ_I2C0); | |||||
I2C0_C1 = 0; | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = 0; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = 0; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = 0; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = 0; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = 0; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = 0; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = 0; | |||||
#endif | |||||
} | |||||
SIM_SCGC4 &= ~SIM_SCGC4_I2C0; // TODO: use bitband | |||||
} | |||||
void i2c0_isr(void) | |||||
{ | |||||
uint8_t status, c1, data; | |||||
static uint8_t receiving=0; | |||||
status = I2C0_S; | |||||
//serial_print("."); | |||||
if (status & I2C_S_ARBL) { | |||||
// Arbitration Lost | |||||
I2C0_S = I2C_S_ARBL; | |||||
//serial_print("a"); | |||||
if (receiving && TwoWire::rxBufferLength > 0) { | |||||
// TODO: does this detect the STOP condition in slave receive mode? | |||||
} | |||||
if (!(status & I2C_S_IAAS)) return; | |||||
} | |||||
if (status & I2C_S_IAAS) { | |||||
//serial_print("\n"); | |||||
// Addressed As A Slave | |||||
if (status & I2C_S_SRW) { | |||||
//serial_print("T"); | |||||
// Begin Slave Transmit | |||||
receiving = 0; | |||||
TwoWire::txBufferLength = 0; | |||||
if (TwoWire::user_onRequest != NULL) { | |||||
TwoWire::user_onRequest(); | |||||
} | |||||
if (TwoWire::txBufferLength == 0) { | |||||
// is this correct, transmitting a single zero | |||||
// when we should send nothing? Arduino's AVR | |||||
// implementation does this, but is it ok? | |||||
TwoWire::txBufferLength = 1; | |||||
TwoWire::txBuffer[0] = 0; | |||||
} | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; | |||||
I2C0_D = TwoWire::txBuffer[0]; | |||||
TwoWire::txBufferIndex = 1; | |||||
} else { | |||||
// Begin Slave Receive | |||||
//serial_print("R"); | |||||
receiving = 1; | |||||
TwoWire::rxBufferLength = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
data = I2C0_D; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
return; | |||||
} | |||||
#if defined(KINETISL) | |||||
c1 = I2C0_FLT; | |||||
if ((c1 & I2C_FLT_STOPF) && (c1 & I2C_FLT_STOPIE)) { | |||||
I2C0_FLT = c1 & ~I2C_FLT_STOPIE; | |||||
if (TwoWire::user_onReceive != NULL) { | |||||
TwoWire::rxBufferIndex = 0; | |||||
TwoWire::user_onReceive(TwoWire::rxBufferLength); | |||||
} | |||||
} | |||||
#endif | |||||
c1 = I2C0_C1; | |||||
if (c1 & I2C_C1_TX) { | |||||
// Continue Slave Transmit | |||||
//serial_print("t"); | |||||
if ((status & I2C_S_RXAK) == 0) { | |||||
//serial_print("."); | |||||
// Master ACK'd previous byte | |||||
if (TwoWire::txBufferIndex < TwoWire::txBufferLength) { | |||||
I2C0_D = TwoWire::txBuffer[TwoWire::txBufferIndex++]; | |||||
} else { | |||||
I2C0_D = 0; | |||||
} | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; | |||||
} else { | |||||
//serial_print("*"); | |||||
// Master did not ACK previous byte | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
data = I2C0_D; | |||||
} | |||||
} else { | |||||
// Continue Slave Receive | |||||
irqcount = 0; | |||||
#if defined(KINETISK) | |||||
attachInterrupt(18, TwoWire::sda_rising_isr, RISING); | |||||
#elif defined(KINETISL) | |||||
I2C0_FLT |= I2C_FLT_STOPIE; | |||||
#endif | |||||
//digitalWriteFast(4, HIGH); | |||||
data = I2C0_D; | |||||
//serial_phex(data); | |||||
if (TwoWire::rxBufferLength < BUFFER_LENGTH && receiving) { | |||||
TwoWire::rxBuffer[TwoWire::rxBufferLength++] = data; | |||||
} | |||||
//digitalWriteFast(4, LOW); | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
} | |||||
// Detects the stop condition that terminates a slave receive transfer. | |||||
// Sadly, the I2C in Kinetis K series lacks the stop detect interrupt | |||||
// This pin change interrupt hack is needed to detect the stop condition | |||||
void TwoWire::sda_rising_isr(void) | |||||
{ | |||||
//digitalWrite(3, HIGH); | |||||
if (!(I2C0_S & I2C_S_BUSY)) { | |||||
detachInterrupt(18); | |||||
if (user_onReceive != NULL) { | |||||
rxBufferIndex = 0; | |||||
user_onReceive(rxBufferLength); | |||||
} | |||||
//delayMicroseconds(100); | |||||
} else { | |||||
if (++irqcount >= 2 || !slave_mode) { | |||||
detachInterrupt(18); | |||||
} | |||||
} | |||||
//digitalWrite(3, LOW); | |||||
} | |||||
// Chapter 44: Inter-Integrated Circuit (I2C) - Page 1012 | |||||
// I2C0_A1 // I2C Address Register 1 | |||||
// I2C0_F // I2C Frequency Divider register | |||||
// I2C0_C1 // I2C Control Register 1 | |||||
// I2C0_S // I2C Status register | |||||
// I2C0_D // I2C Data I/O register | |||||
// I2C0_C2 // I2C Control Register 2 | |||||
// I2C0_FLT // I2C Programmable Input Glitch Filter register | |||||
static uint8_t i2c_status(void) | |||||
{ | |||||
static uint32_t p=0xFFFF; | |||||
uint32_t s = I2C0_S; | |||||
if (s != p) { | |||||
//Serial.printf("(%02X)", s); | |||||
p = s; | |||||
} | |||||
return s; | |||||
} | |||||
static void i2c_wait(void) | |||||
{ | |||||
#if 0 | |||||
while (!(I2C0_S & I2C_S_IICIF)) ; // wait | |||||
I2C0_S = I2C_S_IICIF; | |||||
#endif | |||||
//Serial.write('^'); | |||||
while (1) { | |||||
if ((i2c_status() & I2C_S_IICIF)) break; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
} | |||||
void TwoWire::beginTransmission(uint8_t address) | |||||
{ | |||||
txBuffer[0] = (address << 1); | |||||
transmitting = 1; | |||||
txBufferLength = 1; | |||||
} | |||||
size_t TwoWire::write(uint8_t data) | |||||
{ | |||||
if (transmitting || slave_mode) { | |||||
if (txBufferLength >= BUFFER_LENGTH+1) { | |||||
setWriteError(); | |||||
return 0; | |||||
} | |||||
txBuffer[txBufferLength++] = data; | |||||
return 1; | |||||
} | |||||
return 0; | |||||
} | |||||
size_t TwoWire::write(const uint8_t *data, size_t quantity) | |||||
{ | |||||
if (transmitting || slave_mode) { | |||||
size_t avail = BUFFER_LENGTH+1 - txBufferLength; | |||||
if (quantity > avail) { | |||||
quantity = avail; | |||||
setWriteError(); | |||||
} | |||||
memcpy(txBuffer + txBufferLength, data, quantity); | |||||
txBufferLength += quantity; | |||||
return quantity; | |||||
} | |||||
return 0; | |||||
} | |||||
void TwoWire::flush(void) | |||||
{ | |||||
} | |||||
uint8_t TwoWire::endTransmission(uint8_t sendStop) | |||||
{ | |||||
uint8_t i, status, ret=0; | |||||
// clear the status flags | |||||
I2C0_S = I2C_S_IICIF | I2C_S_ARBL; | |||||
// now take control of the bus... | |||||
if (I2C0_C1 & I2C_C1_MST) { | |||||
// we are already the bus master, so send a repeated start | |||||
//Serial.print("rstart:"); | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; | |||||
} else { | |||||
// we are not currently the bus master, so wait for bus ready | |||||
//Serial.print("busy:"); | |||||
uint32_t wait_begin = millis(); | |||||
while (i2c_status() & I2C_S_BUSY) { | |||||
//Serial.write('.') ; | |||||
if (millis() - wait_begin > 15) { | |||||
// bus stuck busy too long | |||||
I2C0_C1 = 0; | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
//Serial.println("abort"); | |||||
return 4; | |||||
} | |||||
} | |||||
// become the bus master in transmit mode (send start) | |||||
slave_mode = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
} | |||||
// wait until start condition establishes control of the bus | |||||
while (1) { | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_BUSY)) break; | |||||
} | |||||
// transmit the address and data | |||||
for (i=0; i < txBufferLength; i++) { | |||||
I2C0_D = txBuffer[i]; | |||||
//Serial.write('^'); | |||||
while (1) { | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_IICIF)) break; | |||||
if (!(status & I2C_S_BUSY)) break; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
//Serial.write('$'); | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_ARBL)) { | |||||
// we lost bus arbitration to another master | |||||
// TODO: what is the proper thing to do here?? | |||||
//Serial.printf(" c1=%02X ", I2C0_C1); | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
ret = 4; // 4:other error | |||||
break; | |||||
} | |||||
if (!(status & I2C_S_BUSY)) { | |||||
// suddenly lost control of the bus! | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
ret = 4; // 4:other error | |||||
break; | |||||
} | |||||
if (status & I2C_S_RXAK) { | |||||
// the slave device did not acknowledge | |||||
if (i == 0) { | |||||
ret = 2; // 2:received NACK on transmit of address | |||||
} else { | |||||
ret = 3; // 3:received NACK on transmit of data | |||||
} | |||||
sendStop = 1; | |||||
break; | |||||
} | |||||
} | |||||
if (sendStop) { | |||||
// send the stop condition | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
// TODO: do we wait for this somehow? | |||||
} | |||||
transmitting = 0; | |||||
//Serial.print(" ret="); | |||||
//Serial.println(ret); | |||||
return ret; | |||||
} | |||||
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t length, uint8_t sendStop) | |||||
{ | |||||
uint8_t tmp __attribute__((unused)); | |||||
uint8_t status, count=0; | |||||
rxBufferIndex = 0; | |||||
rxBufferLength = 0; | |||||
//serial_print("requestFrom\n"); | |||||
// clear the status flags | |||||
I2C0_S = I2C_S_IICIF | I2C_S_ARBL; | |||||
// now take control of the bus... | |||||
if (I2C0_C1 & I2C_C1_MST) { | |||||
// we are already the bus master, so send a repeated start | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; | |||||
} else { | |||||
// we are not currently the bus master, so wait for bus ready | |||||
while (i2c_status() & I2C_S_BUSY) ; | |||||
// become the bus master in transmit mode (send start) | |||||
slave_mode = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
} | |||||
// send the address | |||||
I2C0_D = (address << 1) | 1; | |||||
i2c_wait(); | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_RXAK) || (status & I2C_S_ARBL)) { | |||||
// the slave device did not acknowledge | |||||
// or we lost bus arbitration to another master | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
return 0; | |||||
} | |||||
if (length == 0) { | |||||
// TODO: does anybody really do zero length reads? | |||||
// if so, does this code really work? | |||||
I2C0_C1 = I2C_C1_IICEN | (sendStop ? 0 : I2C_C1_MST); | |||||
return 0; | |||||
} else if (length == 1) { | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; | |||||
} else { | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST; | |||||
} | |||||
tmp = I2C0_D; // initiate the first receive | |||||
while (length > 1) { | |||||
i2c_wait(); | |||||
length--; | |||||
if (length == 1) I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; | |||||
if (count < BUFFER_LENGTH) { | |||||
rxBuffer[count++] = I2C0_D; | |||||
} else { | |||||
tmp = I2C0_D; | |||||
} | |||||
} | |||||
i2c_wait(); | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
if (count < BUFFER_LENGTH) { | |||||
rxBuffer[count++] = I2C0_D; | |||||
} else { | |||||
tmp = I2C0_D; | |||||
} | |||||
if (sendStop) I2C0_C1 = I2C_C1_IICEN; | |||||
rxBufferLength = count; | |||||
return count; | |||||
} | |||||
int TwoWire::available(void) | |||||
{ | |||||
return rxBufferLength - rxBufferIndex; | |||||
} | |||||
int TwoWire::read(void) | |||||
{ | |||||
if (rxBufferIndex >= rxBufferLength) return -1; | |||||
return rxBuffer[rxBufferIndex++]; | |||||
} | |||||
int TwoWire::peek(void) | |||||
{ | |||||
if (rxBufferIndex >= rxBufferLength) return -1; | |||||
return rxBuffer[rxBufferIndex]; | |||||
} | |||||
// alternate function prototypes | |||||
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true); | |||||
} | |||||
uint8_t TwoWire::requestFrom(int address, int quantity) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true); | |||||
} | |||||
uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop); | |||||
} | |||||
void TwoWire::beginTransmission(int address) | |||||
{ | |||||
beginTransmission((uint8_t)address); | |||||
} | |||||
uint8_t TwoWire::endTransmission(void) | |||||
{ | |||||
return endTransmission(true); | |||||
} | |||||
void TwoWire::begin(int address) | |||||
{ | |||||
begin((uint8_t)address); | |||||
} | |||||
void TwoWire::onReceive( void (*function)(int) ) | |||||
{ | |||||
user_onReceive = function; | |||||
} | |||||
void TwoWire::onRequest( void (*function)(void) ) | |||||
{ | |||||
user_onRequest = function; | |||||
} | |||||
//TwoWire Wire = TwoWire(); | |||||
TwoWire Wire; | |||||
#endif // __MK20DX128__ || __MK20DX256__ | |||||
#if defined(__AVR__) | |||||
extern "C" { | extern "C" { | ||||
#include <stdlib.h> | #include <stdlib.h> | ||||
#include <string.h> | #include <string.h> |
#ifndef TwoWire_h | #ifndef TwoWire_h | ||||
#define TwoWire_h | #define TwoWire_h | ||||
#if defined(__arm__) && defined(TEENSYDUINO) | |||||
#include "WireKinetis.h" | |||||
#elif defined(__AVR__) | |||||
#include <inttypes.h> | #include <inttypes.h> | ||||
#include "Arduino.h" | #include "Arduino.h" | ||||
#define BUFFER_LENGTH 32 | #define BUFFER_LENGTH 32 | ||||
#define WIRE_HAS_END 1 | #define WIRE_HAS_END 1 | ||||
#if defined(__arm__) && defined(CORE_TEENSY) | |||||
extern "C" void i2c0_isr(void); | |||||
#endif | |||||
class TwoWire : public Stream | class TwoWire : public Stream | ||||
{ | { | ||||
private: | private: | ||||
static void (*user_onRequest)(void); | static void (*user_onRequest)(void); | ||||
static void (*user_onReceive)(int); | static void (*user_onReceive)(int); | ||||
static void sda_rising_isr(void); | static void sda_rising_isr(void); | ||||
#if defined(__arm__) && defined(CORE_TEENSY) | |||||
static uint8_t sda_pin_num; | |||||
static uint8_t scl_pin_num; | |||||
friend void i2c0_isr(void); | |||||
#endif | |||||
public: | public: | ||||
TwoWire(); | TwoWire(); | ||||
void begin(); | void begin(); | ||||
extern TwoWire Wire; | extern TwoWire Wire; | ||||
#if defined(__arm__) && defined(CORE_TEENSY) | |||||
class TWBRemulation | |||||
{ | |||||
public: | |||||
inline TWBRemulation & operator = (int val) __attribute__((always_inline)) { | |||||
if (val == 12 || val == ((F_CPU / 400000) - 16) / 2) { // 22, 52, 112 | |||||
I2C0_C1 = 0; | |||||
#if F_BUS == 120000000 | |||||
I2C0_F = I2C_F_DIV288; // 416 kHz | |||||
#elif F_BUS == 108000000 | |||||
I2C0_F = I2C_F_DIV256; // 422 kHz | |||||
#elif F_BUS == 96000000 | |||||
I2C0_F = I2C_F_DIV240; // 400 kHz | |||||
#elif F_BUS == 90000000 | |||||
I2C0_F = I2C_F_DIV224; // 402 kHz | |||||
#elif F_BUS == 80000000 | |||||
I2C0_F = I2C_F_DIV192; // 416 kHz | |||||
#elif F_BUS == 72000000 | |||||
I2C0_F = I2C_F_DIV192; // 375 kHz | |||||
#elif F_BUS == 64000000 | |||||
I2C0_F = I2C_F_DIV160; // 400 kHz | |||||
#elif F_BUS == 60000000 | |||||
I2C0_F = I2C_F_DIV144; // 416 kHz | |||||
#elif F_BUS == 56000000 | |||||
I2C0_F = I2C_F_DIV144; // 389 kHz | |||||
#elif F_BUS == 54000000 | |||||
I2C0_F = I2C_F_DIV128; // 422 kHz | |||||
#elif F_BUS == 48000000 | |||||
I2C0_F = I2C_F_DIV112; // 400 kHz | |||||
#elif F_BUS == 40000000 | |||||
I2C0_F = I2C_F_DIV96; // 416 kHz | |||||
#elif F_BUS == 36000000 | |||||
I2C0_F = I2C_F_DIV96; // 375 kHz | |||||
#elif F_BUS == 24000000 | |||||
I2C0_F = I2C_F_DIV64; // 375 kHz | |||||
#elif F_BUS == 16000000 | |||||
I2C0_F = I2C_F_DIV40; // 400 kHz | |||||
#elif F_BUS == 8000000 | |||||
I2C0_F = I2C_F_DIV20; // 400 kHz | |||||
#elif F_BUS == 4000000 | |||||
I2C0_F = I2C_F_DIV20; // 200 kHz | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = I2C_F_DIV20; // 100 kHz | |||||
#endif | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
} else if (val == 72 || val == ((F_CPU / 100000) - 16) / 2) { // 112, 232, 472 | |||||
I2C0_C1 = 0; | |||||
#if F_BUS == 120000000 | |||||
I2C0_F = I2C_F_DIV1152; // 104 kHz | |||||
#elif F_BUS == 108000000 | |||||
I2C0_F = I2C_F_DIV1024; // 105 kHz | |||||
#elif F_BUS == 96000000 | |||||
I2C0_F = I2C_F_DIV960; // 100 kHz | |||||
#elif F_BUS == 90000000 | |||||
I2C0_F = I2C_F_DIV896; // 100 kHz | |||||
#elif F_BUS == 80000000 | |||||
I2C0_F = I2C_F_DIV768; // 104 kHz | |||||
#elif F_BUS == 72000000 | |||||
I2C0_F = I2C_F_DIV640; // 112 kHz | |||||
#elif F_BUS == 64000000 | |||||
I2C0_F = I2C_F_DIV640; // 100 kHz | |||||
#elif F_BUS == 60000000 | |||||
I2C0_F = I2C_F_DIV576; // 104 kHz | |||||
#elif F_BUS == 56000000 | |||||
I2C0_F = I2C_F_DIV512; // 109 kHz | |||||
#elif F_BUS == 54000000 | |||||
I2C0_F = I2C_F_DIV512; // 105 kHz | |||||
#elif F_BUS == 48000000 | |||||
I2C0_F = I2C_F_DIV480; // 100 kHz | |||||
#elif F_BUS == 40000000 | |||||
I2C0_F = I2C_F_DIV384; // 104 kHz | |||||
#elif F_BUS == 36000000 | |||||
I2C0_F = I2C_F_DIV320; // 113 kHz | |||||
#elif F_BUS == 24000000 | |||||
I2C0_F = I2C_F_DIV240; // 100 kHz | |||||
#elif F_BUS == 16000000 | |||||
I2C0_F = I2C_F_DIV160; // 100 kHz | |||||
#elif F_BUS == 8000000 | |||||
I2C0_F = I2C_F_DIV80; // 100 kHz | |||||
#elif F_BUS == 4000000 | |||||
I2C0_F = I2C_F_DIV40; // 100 kHz | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = I2C_F_DIV20; // 100 kHz | |||||
#endif | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
} | |||||
return *this; | |||||
} | |||||
inline operator int () const __attribute__((always_inline)) { | |||||
#if F_BUS == 120000000 | |||||
if (I2C0_F == I2C_F_DIV288) return 12; | |||||
#elif F_BUS == 108000000 | |||||
if (I2C0_F == I2C_F_DIV256) return 12; | |||||
#elif F_BUS == 96000000 | |||||
if (I2C0_F == I2C_F_DIV240) return 12; | |||||
#elif F_BUS == 90000000 | |||||
if (I2C0_F == I2C_F_DIV224) return 12; | |||||
#elif F_BUS == 80000000 | |||||
if (I2C0_F == I2C_F_DIV192) return 12; | |||||
#elif F_BUS == 72000000 | |||||
if (I2C0_F == I2C_F_DIV192) return 12; | |||||
#elif F_BUS == 64000000 | |||||
if (I2C0_F == I2C_F_DIV160) return 12; | |||||
#elif F_BUS == 60000000 | |||||
if (I2C0_F == I2C_F_DIV144) return 12; | |||||
#elif F_BUS == 56000000 | |||||
if (I2C0_F == I2C_F_DIV144) return 12; | |||||
#elif F_BUS == 54000000 | |||||
if (I2C0_F == I2C_F_DIV128) return 12; | |||||
#elif F_BUS == 48000000 | |||||
if (I2C0_F == I2C_F_DIV112) return 12; | |||||
#elif F_BUS == 40000000 | |||||
if (I2C0_F == I2C_F_DIV96) return 12; | |||||
#elif F_BUS == 36000000 | |||||
if (I2C0_F == I2C_F_DIV96) return 12; | |||||
#elif F_BUS == 24000000 | |||||
if (I2C0_F == I2C_F_DIV64) return 12; | |||||
#elif F_BUS == 16000000 | |||||
if (I2C0_F == I2C_F_DIV40) return 12; | |||||
#elif F_BUS == 8000000 | |||||
if (I2C0_F == I2C_F_DIV20) return 12; | |||||
#elif F_BUS == 4000000 | |||||
if (I2C0_F == I2C_F_DIV20) return 12; | |||||
#endif | |||||
return 72; | |||||
} | |||||
}; | |||||
extern TWBRemulation TWBR; | |||||
#endif | #endif | ||||
#endif | #endif | ||||
/* | |||||
TwoWire.cpp - TWI/I2C library for Wiring & Arduino | |||||
Copyright (c) 2006 Nicholas Zambetti. All right reserved. | |||||
This library is free software; you can redistribute it and/or | |||||
modify it under the terms of the GNU Lesser General Public | |||||
License as published by the Free Software Foundation; either | |||||
version 2.1 of the License, or (at your option) any later version. | |||||
This library is distributed in the hope that it will be useful, | |||||
but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
Lesser General Public License for more details. | |||||
You should have received a copy of the GNU Lesser General Public | |||||
License along with this library; if not, write to the Free Software | |||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |||||
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts | |||||
*/ | |||||
#include "Wire.h" | |||||
#if defined(__arm__) && defined(CORE_TEENSY) | |||||
#include "kinetis.h" | |||||
#include <string.h> // for memcpy | |||||
#include "core_pins.h" | |||||
//#include "HardwareSerial.h" | |||||
#include "Wire.h" | |||||
uint8_t TwoWire::rxBuffer[BUFFER_LENGTH]; | |||||
uint8_t TwoWire::rxBufferIndex = 0; | |||||
uint8_t TwoWire::rxBufferLength = 0; | |||||
uint8_t TwoWire::txBuffer[BUFFER_LENGTH+1]; | |||||
uint8_t TwoWire::txBufferIndex = 0; | |||||
uint8_t TwoWire::txBufferLength = 0; | |||||
uint8_t TwoWire::transmitting = 0; | |||||
uint8_t TwoWire::sda_pin_num = 18; | |||||
uint8_t TwoWire::scl_pin_num = 19; | |||||
void (*TwoWire::user_onRequest)(void) = NULL; | |||||
void (*TwoWire::user_onReceive)(int) = NULL; | |||||
TwoWire::TwoWire() | |||||
{ | |||||
} | |||||
static uint8_t slave_mode = 0; | |||||
static uint8_t irqcount=0; | |||||
void TwoWire::begin(void) | |||||
{ | |||||
//serial_begin(BAUD2DIV(115200)); | |||||
//serial_print("\nWire Begin\n"); | |||||
slave_mode = 0; | |||||
SIM_SCGC4 |= SIM_SCGC4_I2C0; // TODO: use bitband | |||||
I2C0_C1 = 0; | |||||
// On Teensy 3.0 external pullup resistors *MUST* be used | |||||
// the PORT_PCR_PE bit is ignored when in I2C mode | |||||
// I2C will not work at all without pullup resistors | |||||
// It might seem like setting PORT_PCR_PE & PORT_PCR_PS | |||||
// would enable pullup resistors. However, there seems | |||||
// to be a bug in chip while I2C is enabled, where setting | |||||
// those causes the port to be driven strongly high. | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
setClock(100000); | |||||
I2C0_C2 = I2C_C2_HDRS; | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
//pinMode(3, OUTPUT); | |||||
//pinMode(4, OUTPUT); | |||||
} | |||||
void TwoWire::setClock(uint32_t frequency) | |||||
{ | |||||
if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; | |||||
#if F_BUS == 120000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV1152; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV288; // 416 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV128; // 0.94 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 108000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV1024; // 105 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV256; // 422 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV112; // 0.96 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 96000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV960; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV240; // 400 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV96; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 90000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV896; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV224; // 402 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV88; // 1.02 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 80000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV768; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV192; // 416 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV80; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 72000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV640; // 112 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV192; // 375 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV72; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 64000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV640; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV160; // 400 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV64; // 1.0 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 60000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x2C; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1C; // 416 kHz | |||||
} else { | |||||
I2C0_F = 0x12; // 938 kHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 56000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x2B; // 109 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1C; // 389 kHz | |||||
} else { | |||||
I2C0_F = 0x0E; // 1 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 54000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = I2C_F_DIV512; // 105 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = I2C_F_DIV128; // 422 kHz | |||||
} else { | |||||
I2C0_F = I2C_F_DIV56; // 0.96 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 48000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x27; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x1A; // 400 kHz | |||||
} else { | |||||
I2C0_F = 0x0D; // 1 MHz | |||||
} | |||||
I2C0_FLT = 4; | |||||
#elif F_BUS == 40000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x29; // 104 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x19; // 416 kHz | |||||
} else { | |||||
I2C0_F = 0x0B; // 1 MHz | |||||
} | |||||
I2C0_FLT = 3; | |||||
#elif F_BUS == 36000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x28; // 113 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x19; // 375 kHz | |||||
} else { | |||||
I2C0_F = 0x0A; // 1 MHz | |||||
} | |||||
I2C0_FLT = 3; | |||||
#elif F_BUS == 24000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x1F; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x12; // 375 kHz | |||||
} else { | |||||
I2C0_F = 0x02; // 1 MHz | |||||
} | |||||
I2C0_FLT = 2; | |||||
#elif F_BUS == 16000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x20; // 100 kHz | |||||
} else if (frequency < 1000000) { | |||||
I2C0_F = 0x07; // 400 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 800 MHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 8000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x14; // 100 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 400 kHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 4000000 | |||||
if (frequency < 400000) { | |||||
I2C0_F = 0x07; // 100 kHz | |||||
} else { | |||||
I2C0_F = 0x00; // 200 kHz | |||||
} | |||||
I2C0_FLT = 1; | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = 0x00; // 100 kHz | |||||
I2C0_FLT = 1; | |||||
#else | |||||
#error "F_BUS must be 120, 108, 96, 9, 80, 72, 64, 60, 56, 54, 48, 40, 36, 24, 16, 8, 4 or 2 MHz" | |||||
#endif | |||||
} | |||||
void TwoWire::setSDA(uint8_t pin) | |||||
{ | |||||
if (pin == sda_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = 0; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = 0; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = 0; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (pin == 18) { | |||||
CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 17) { | |||||
CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (pin == 34) { | |||||
CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 8) { | |||||
CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 48) { | |||||
CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
} | |||||
sda_pin_num = pin; | |||||
} | |||||
void TwoWire::setSCL(uint8_t pin) | |||||
{ | |||||
if (pin == scl_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = 0; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = 0; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = 0; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (pin == 19) { | |||||
CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 16) { | |||||
CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (pin == 33) { | |||||
CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 7) { | |||||
CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
} else if (pin == 47) { | |||||
CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; | |||||
#endif | |||||
} | |||||
} | |||||
scl_pin_num = pin; | |||||
} | |||||
void TwoWire::begin(uint8_t address) | |||||
{ | |||||
begin(); | |||||
I2C0_A1 = address << 1; | |||||
slave_mode = 1; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
NVIC_ENABLE_IRQ(IRQ_I2C0); | |||||
} | |||||
void TwoWire::end() | |||||
{ | |||||
if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; | |||||
NVIC_DISABLE_IRQ(IRQ_I2C0); | |||||
I2C0_C1 = 0; | |||||
if (sda_pin_num == 18) { | |||||
CORE_PIN18_CONFIG = 0; | |||||
} else if (sda_pin_num == 17) { | |||||
CORE_PIN17_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (sda_pin_num == 34) { | |||||
CORE_PIN34_CONFIG = 0; | |||||
} else if (sda_pin_num == 8) { | |||||
CORE_PIN8_CONFIG = 0; | |||||
} else if (sda_pin_num == 48) { | |||||
CORE_PIN48_CONFIG = 0; | |||||
#endif | |||||
} | |||||
if (scl_pin_num == 19) { | |||||
CORE_PIN19_CONFIG = 0; | |||||
} else if (scl_pin_num == 16) { | |||||
CORE_PIN16_CONFIG = 0; | |||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) | |||||
} else if (scl_pin_num == 33) { | |||||
CORE_PIN33_CONFIG = 0; | |||||
} else if (scl_pin_num == 7) { | |||||
CORE_PIN7_CONFIG = 0; | |||||
} else if (scl_pin_num == 47) { | |||||
CORE_PIN47_CONFIG = 0; | |||||
#endif | |||||
} | |||||
SIM_SCGC4 &= ~SIM_SCGC4_I2C0; // TODO: use bitband | |||||
} | |||||
void i2c0_isr(void) | |||||
{ | |||||
uint8_t status, c1, data; | |||||
static uint8_t receiving=0; | |||||
status = I2C0_S; | |||||
//serial_print("."); | |||||
if (status & I2C_S_ARBL) { | |||||
// Arbitration Lost | |||||
I2C0_S = I2C_S_ARBL; | |||||
//serial_print("a"); | |||||
if (receiving && TwoWire::rxBufferLength > 0) { | |||||
// TODO: does this detect the STOP condition in slave receive mode? | |||||
} | |||||
if (!(status & I2C_S_IAAS)) return; | |||||
} | |||||
if (status & I2C_S_IAAS) { | |||||
//serial_print("\n"); | |||||
// Addressed As A Slave | |||||
if (status & I2C_S_SRW) { | |||||
//serial_print("T"); | |||||
// Begin Slave Transmit | |||||
receiving = 0; | |||||
TwoWire::txBufferLength = 0; | |||||
if (TwoWire::user_onRequest != NULL) { | |||||
TwoWire::user_onRequest(); | |||||
} | |||||
if (TwoWire::txBufferLength == 0) { | |||||
// is this correct, transmitting a single zero | |||||
// when we should send nothing? Arduino's AVR | |||||
// implementation does this, but is it ok? | |||||
TwoWire::txBufferLength = 1; | |||||
TwoWire::txBuffer[0] = 0; | |||||
} | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; | |||||
I2C0_D = TwoWire::txBuffer[0]; | |||||
TwoWire::txBufferIndex = 1; | |||||
} else { | |||||
// Begin Slave Receive | |||||
//serial_print("R"); | |||||
receiving = 1; | |||||
TwoWire::rxBufferLength = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
data = I2C0_D; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
return; | |||||
} | |||||
#if defined(KINETISL) | |||||
c1 = I2C0_FLT; | |||||
if ((c1 & I2C_FLT_STOPF) && (c1 & I2C_FLT_STOPIE)) { | |||||
I2C0_FLT = c1 & ~I2C_FLT_STOPIE; | |||||
if (TwoWire::user_onReceive != NULL) { | |||||
TwoWire::rxBufferIndex = 0; | |||||
TwoWire::user_onReceive(TwoWire::rxBufferLength); | |||||
} | |||||
} | |||||
#endif | |||||
c1 = I2C0_C1; | |||||
if (c1 & I2C_C1_TX) { | |||||
// Continue Slave Transmit | |||||
//serial_print("t"); | |||||
if ((status & I2C_S_RXAK) == 0) { | |||||
//serial_print("."); | |||||
// Master ACK'd previous byte | |||||
if (TwoWire::txBufferIndex < TwoWire::txBufferLength) { | |||||
I2C0_D = TwoWire::txBuffer[TwoWire::txBufferIndex++]; | |||||
} else { | |||||
I2C0_D = 0; | |||||
} | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; | |||||
} else { | |||||
//serial_print("*"); | |||||
// Master did not ACK previous byte | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; | |||||
data = I2C0_D; | |||||
} | |||||
} else { | |||||
// Continue Slave Receive | |||||
irqcount = 0; | |||||
#if defined(KINETISK) | |||||
attachInterrupt(18, TwoWire::sda_rising_isr, RISING); | |||||
#elif defined(KINETISL) | |||||
I2C0_FLT |= I2C_FLT_STOPIE; | |||||
#endif | |||||
//digitalWriteFast(4, HIGH); | |||||
data = I2C0_D; | |||||
//serial_phex(data); | |||||
if (TwoWire::rxBufferLength < BUFFER_LENGTH && receiving) { | |||||
TwoWire::rxBuffer[TwoWire::rxBufferLength++] = data; | |||||
} | |||||
//digitalWriteFast(4, LOW); | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
} | |||||
// Detects the stop condition that terminates a slave receive transfer. | |||||
// Sadly, the I2C in Kinetis K series lacks the stop detect interrupt | |||||
// This pin change interrupt hack is needed to detect the stop condition | |||||
void TwoWire::sda_rising_isr(void) | |||||
{ | |||||
//digitalWrite(3, HIGH); | |||||
if (!(I2C0_S & I2C_S_BUSY)) { | |||||
detachInterrupt(18); | |||||
if (user_onReceive != NULL) { | |||||
rxBufferIndex = 0; | |||||
user_onReceive(rxBufferLength); | |||||
} | |||||
//delayMicroseconds(100); | |||||
} else { | |||||
if (++irqcount >= 2 || !slave_mode) { | |||||
detachInterrupt(18); | |||||
} | |||||
} | |||||
//digitalWrite(3, LOW); | |||||
} | |||||
// Chapter 44: Inter-Integrated Circuit (I2C) - Page 1012 | |||||
// I2C0_A1 // I2C Address Register 1 | |||||
// I2C0_F // I2C Frequency Divider register | |||||
// I2C0_C1 // I2C Control Register 1 | |||||
// I2C0_S // I2C Status register | |||||
// I2C0_D // I2C Data I/O register | |||||
// I2C0_C2 // I2C Control Register 2 | |||||
// I2C0_FLT // I2C Programmable Input Glitch Filter register | |||||
static uint8_t i2c_status(void) | |||||
{ | |||||
static uint32_t p=0xFFFF; | |||||
uint32_t s = I2C0_S; | |||||
if (s != p) { | |||||
//Serial.printf("(%02X)", s); | |||||
p = s; | |||||
} | |||||
return s; | |||||
} | |||||
static void i2c_wait(void) | |||||
{ | |||||
#if 0 | |||||
while (!(I2C0_S & I2C_S_IICIF)) ; // wait | |||||
I2C0_S = I2C_S_IICIF; | |||||
#endif | |||||
//Serial.write('^'); | |||||
while (1) { | |||||
if ((i2c_status() & I2C_S_IICIF)) break; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
} | |||||
void TwoWire::beginTransmission(uint8_t address) | |||||
{ | |||||
txBuffer[0] = (address << 1); | |||||
transmitting = 1; | |||||
txBufferLength = 1; | |||||
} | |||||
size_t TwoWire::write(uint8_t data) | |||||
{ | |||||
if (transmitting || slave_mode) { | |||||
if (txBufferLength >= BUFFER_LENGTH+1) { | |||||
setWriteError(); | |||||
return 0; | |||||
} | |||||
txBuffer[txBufferLength++] = data; | |||||
return 1; | |||||
} | |||||
return 0; | |||||
} | |||||
size_t TwoWire::write(const uint8_t *data, size_t quantity) | |||||
{ | |||||
if (transmitting || slave_mode) { | |||||
size_t avail = BUFFER_LENGTH+1 - txBufferLength; | |||||
if (quantity > avail) { | |||||
quantity = avail; | |||||
setWriteError(); | |||||
} | |||||
memcpy(txBuffer + txBufferLength, data, quantity); | |||||
txBufferLength += quantity; | |||||
return quantity; | |||||
} | |||||
return 0; | |||||
} | |||||
void TwoWire::flush(void) | |||||
{ | |||||
} | |||||
uint8_t TwoWire::endTransmission(uint8_t sendStop) | |||||
{ | |||||
uint8_t i, status, ret=0; | |||||
// clear the status flags | |||||
I2C0_S = I2C_S_IICIF | I2C_S_ARBL; | |||||
// now take control of the bus... | |||||
if (I2C0_C1 & I2C_C1_MST) { | |||||
// we are already the bus master, so send a repeated start | |||||
//Serial.print("rstart:"); | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; | |||||
} else { | |||||
// we are not currently the bus master, so wait for bus ready | |||||
//Serial.print("busy:"); | |||||
uint32_t wait_begin = millis(); | |||||
while (i2c_status() & I2C_S_BUSY) { | |||||
//Serial.write('.') ; | |||||
if (millis() - wait_begin > 15) { | |||||
// bus stuck busy too long | |||||
I2C0_C1 = 0; | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
//Serial.println("abort"); | |||||
return 4; | |||||
} | |||||
} | |||||
// become the bus master in transmit mode (send start) | |||||
slave_mode = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
} | |||||
// wait until start condition establishes control of the bus | |||||
while (1) { | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_BUSY)) break; | |||||
} | |||||
// transmit the address and data | |||||
for (i=0; i < txBufferLength; i++) { | |||||
I2C0_D = txBuffer[i]; | |||||
//Serial.write('^'); | |||||
while (1) { | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_IICIF)) break; | |||||
if (!(status & I2C_S_BUSY)) break; | |||||
} | |||||
I2C0_S = I2C_S_IICIF; | |||||
//Serial.write('$'); | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_ARBL)) { | |||||
// we lost bus arbitration to another master | |||||
// TODO: what is the proper thing to do here?? | |||||
//Serial.printf(" c1=%02X ", I2C0_C1); | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
ret = 4; // 4:other error | |||||
break; | |||||
} | |||||
if (!(status & I2C_S_BUSY)) { | |||||
// suddenly lost control of the bus! | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
ret = 4; // 4:other error | |||||
break; | |||||
} | |||||
if (status & I2C_S_RXAK) { | |||||
// the slave device did not acknowledge | |||||
if (i == 0) { | |||||
ret = 2; // 2:received NACK on transmit of address | |||||
} else { | |||||
ret = 3; // 3:received NACK on transmit of data | |||||
} | |||||
sendStop = 1; | |||||
break; | |||||
} | |||||
} | |||||
if (sendStop) { | |||||
// send the stop condition | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
// TODO: do we wait for this somehow? | |||||
} | |||||
transmitting = 0; | |||||
//Serial.print(" ret="); | |||||
//Serial.println(ret); | |||||
return ret; | |||||
} | |||||
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t length, uint8_t sendStop) | |||||
{ | |||||
uint8_t tmp __attribute__((unused)); | |||||
uint8_t status, count=0; | |||||
rxBufferIndex = 0; | |||||
rxBufferLength = 0; | |||||
//serial_print("requestFrom\n"); | |||||
// clear the status flags | |||||
I2C0_S = I2C_S_IICIF | I2C_S_ARBL; | |||||
// now take control of the bus... | |||||
if (I2C0_C1 & I2C_C1_MST) { | |||||
// we are already the bus master, so send a repeated start | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; | |||||
} else { | |||||
// we are not currently the bus master, so wait for bus ready | |||||
while (i2c_status() & I2C_S_BUSY) ; | |||||
// become the bus master in transmit mode (send start) | |||||
slave_mode = 0; | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
} | |||||
// send the address | |||||
I2C0_D = (address << 1) | 1; | |||||
i2c_wait(); | |||||
status = i2c_status(); | |||||
if ((status & I2C_S_RXAK) || (status & I2C_S_ARBL)) { | |||||
// the slave device did not acknowledge | |||||
// or we lost bus arbitration to another master | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
return 0; | |||||
} | |||||
if (length == 0) { | |||||
// TODO: does anybody really do zero length reads? | |||||
// if so, does this code really work? | |||||
I2C0_C1 = I2C_C1_IICEN | (sendStop ? 0 : I2C_C1_MST); | |||||
return 0; | |||||
} else if (length == 1) { | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; | |||||
} else { | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST; | |||||
} | |||||
tmp = I2C0_D; // initiate the first receive | |||||
while (length > 1) { | |||||
i2c_wait(); | |||||
length--; | |||||
if (length == 1) I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; | |||||
if (count < BUFFER_LENGTH) { | |||||
rxBuffer[count++] = I2C0_D; | |||||
} else { | |||||
tmp = I2C0_D; | |||||
} | |||||
} | |||||
i2c_wait(); | |||||
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; | |||||
if (count < BUFFER_LENGTH) { | |||||
rxBuffer[count++] = I2C0_D; | |||||
} else { | |||||
tmp = I2C0_D; | |||||
} | |||||
if (sendStop) I2C0_C1 = I2C_C1_IICEN; | |||||
rxBufferLength = count; | |||||
return count; | |||||
} | |||||
int TwoWire::available(void) | |||||
{ | |||||
return rxBufferLength - rxBufferIndex; | |||||
} | |||||
int TwoWire::read(void) | |||||
{ | |||||
if (rxBufferIndex >= rxBufferLength) return -1; | |||||
return rxBuffer[rxBufferIndex++]; | |||||
} | |||||
int TwoWire::peek(void) | |||||
{ | |||||
if (rxBufferIndex >= rxBufferLength) return -1; | |||||
return rxBuffer[rxBufferIndex]; | |||||
} | |||||
// alternate function prototypes | |||||
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true); | |||||
} | |||||
uint8_t TwoWire::requestFrom(int address, int quantity) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true); | |||||
} | |||||
uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop) | |||||
{ | |||||
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop); | |||||
} | |||||
void TwoWire::beginTransmission(int address) | |||||
{ | |||||
beginTransmission((uint8_t)address); | |||||
} | |||||
uint8_t TwoWire::endTransmission(void) | |||||
{ | |||||
return endTransmission(true); | |||||
} | |||||
void TwoWire::begin(int address) | |||||
{ | |||||
begin((uint8_t)address); | |||||
} | |||||
void TwoWire::onReceive( void (*function)(int) ) | |||||
{ | |||||
user_onReceive = function; | |||||
} | |||||
void TwoWire::onRequest( void (*function)(void) ) | |||||
{ | |||||
user_onRequest = function; | |||||
} | |||||
//TwoWire Wire = TwoWire(); | |||||
TwoWire Wire; | |||||
#endif // __MK20DX128__ || __MK20DX256__ | |||||
/* | |||||
TwoWire.h - TWI/I2C library for Arduino & Wiring | |||||
Copyright (c) 2006 Nicholas Zambetti. All right reserved. | |||||
This library is free software; you can redistribute it and/or | |||||
modify it under the terms of the GNU Lesser General Public | |||||
License as published by the Free Software Foundation; either | |||||
version 2.1 of the License, or (at your option) any later version. | |||||
This library is distributed in the hope that it will be useful, | |||||
but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
Lesser General Public License for more details. | |||||
You should have received a copy of the GNU Lesser General Public | |||||
License along with this library; if not, write to the Free Software | |||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |||||
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts | |||||
*/ | |||||
#ifndef TwoWireKinetis_h | |||||
#define TwoWireKinetis_h | |||||
#if defined(__arm__) && defined(TEENSYDUINO) | |||||
extern "C" void i2c0_isr(void); | |||||
#include <inttypes.h> | |||||
#include "Arduino.h" | |||||
#define BUFFER_LENGTH 32 | |||||
#define WIRE_HAS_END 1 | |||||
class TwoWire : public Stream | |||||
{ | |||||
private: | |||||
static uint8_t rxBuffer[]; | |||||
static uint8_t rxBufferIndex; | |||||
static uint8_t rxBufferLength; | |||||
static uint8_t txAddress; | |||||
static uint8_t txBuffer[]; | |||||
static uint8_t txBufferIndex; | |||||
static uint8_t txBufferLength; | |||||
static uint8_t transmitting; | |||||
static void onRequestService(void); | |||||
static void onReceiveService(uint8_t*, int); | |||||
static void (*user_onRequest)(void); | |||||
static void (*user_onReceive)(int); | |||||
static void sda_rising_isr(void); | |||||
static uint8_t sda_pin_num; | |||||
static uint8_t scl_pin_num; | |||||
friend void i2c0_isr(void); | |||||
public: | |||||
TwoWire(); | |||||
void begin(); | |||||
void begin(uint8_t); | |||||
void begin(int); | |||||
void end(); | |||||
void setClock(uint32_t); | |||||
void setSDA(uint8_t); | |||||
void setSCL(uint8_t); | |||||
void beginTransmission(uint8_t); | |||||
void beginTransmission(int); | |||||
uint8_t endTransmission(void); | |||||
uint8_t endTransmission(uint8_t); | |||||
uint8_t requestFrom(uint8_t, uint8_t); | |||||
uint8_t requestFrom(uint8_t, uint8_t, uint8_t); | |||||
uint8_t requestFrom(int, int); | |||||
uint8_t requestFrom(int, int, int); | |||||
virtual size_t write(uint8_t); | |||||
virtual size_t write(const uint8_t *, size_t); | |||||
virtual int available(void); | |||||
virtual int read(void); | |||||
virtual int peek(void); | |||||
virtual void flush(void); | |||||
void onReceive( void (*)(int) ); | |||||
void onRequest( void (*)(void) ); | |||||
// added by Teensyduino installer, for compatibility | |||||
// with pre-1.0 sketches and libraries | |||||
void send(uint8_t b) { write(b); } | |||||
void send(uint8_t *s, uint8_t n) { write(s, n); } | |||||
void send(int n) { write((uint8_t)n); } | |||||
void send(char *s) { write(s); } | |||||
uint8_t receive(void) { | |||||
int c = read(); | |||||
if (c < 0) return 0; | |||||
return c; | |||||
} | |||||
inline size_t write(unsigned long n) { return write((uint8_t)n); } | |||||
inline size_t write(long n) { return write((uint8_t)n); } | |||||
inline size_t write(unsigned int n) { return write((uint8_t)n); } | |||||
inline size_t write(int n) { return write((uint8_t)n); } | |||||
using Print::write; | |||||
}; | |||||
extern TwoWire Wire; | |||||
class TWBRemulation | |||||
{ | |||||
public: | |||||
inline TWBRemulation & operator = (int val) __attribute__((always_inline)) { | |||||
if (val == 12 || val == ((F_CPU / 400000) - 16) / 2) { // 22, 52, 112 | |||||
I2C0_C1 = 0; | |||||
#if F_BUS == 120000000 | |||||
I2C0_F = I2C_F_DIV288; // 416 kHz | |||||
#elif F_BUS == 108000000 | |||||
I2C0_F = I2C_F_DIV256; // 422 kHz | |||||
#elif F_BUS == 96000000 | |||||
I2C0_F = I2C_F_DIV240; // 400 kHz | |||||
#elif F_BUS == 90000000 | |||||
I2C0_F = I2C_F_DIV224; // 402 kHz | |||||
#elif F_BUS == 80000000 | |||||
I2C0_F = I2C_F_DIV192; // 416 kHz | |||||
#elif F_BUS == 72000000 | |||||
I2C0_F = I2C_F_DIV192; // 375 kHz | |||||
#elif F_BUS == 64000000 | |||||
I2C0_F = I2C_F_DIV160; // 400 kHz | |||||
#elif F_BUS == 60000000 | |||||
I2C0_F = I2C_F_DIV144; // 416 kHz | |||||
#elif F_BUS == 56000000 | |||||
I2C0_F = I2C_F_DIV144; // 389 kHz | |||||
#elif F_BUS == 54000000 | |||||
I2C0_F = I2C_F_DIV128; // 422 kHz | |||||
#elif F_BUS == 48000000 | |||||
I2C0_F = I2C_F_DIV112; // 400 kHz | |||||
#elif F_BUS == 40000000 | |||||
I2C0_F = I2C_F_DIV96; // 416 kHz | |||||
#elif F_BUS == 36000000 | |||||
I2C0_F = I2C_F_DIV96; // 375 kHz | |||||
#elif F_BUS == 24000000 | |||||
I2C0_F = I2C_F_DIV64; // 375 kHz | |||||
#elif F_BUS == 16000000 | |||||
I2C0_F = I2C_F_DIV40; // 400 kHz | |||||
#elif F_BUS == 8000000 | |||||
I2C0_F = I2C_F_DIV20; // 400 kHz | |||||
#elif F_BUS == 4000000 | |||||
I2C0_F = I2C_F_DIV20; // 200 kHz | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = I2C_F_DIV20; // 100 kHz | |||||
#endif | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
} else if (val == 72 || val == ((F_CPU / 100000) - 16) / 2) { // 112, 232, 472 | |||||
I2C0_C1 = 0; | |||||
#if F_BUS == 120000000 | |||||
I2C0_F = I2C_F_DIV1152; // 104 kHz | |||||
#elif F_BUS == 108000000 | |||||
I2C0_F = I2C_F_DIV1024; // 105 kHz | |||||
#elif F_BUS == 96000000 | |||||
I2C0_F = I2C_F_DIV960; // 100 kHz | |||||
#elif F_BUS == 90000000 | |||||
I2C0_F = I2C_F_DIV896; // 100 kHz | |||||
#elif F_BUS == 80000000 | |||||
I2C0_F = I2C_F_DIV768; // 104 kHz | |||||
#elif F_BUS == 72000000 | |||||
I2C0_F = I2C_F_DIV640; // 112 kHz | |||||
#elif F_BUS == 64000000 | |||||
I2C0_F = I2C_F_DIV640; // 100 kHz | |||||
#elif F_BUS == 60000000 | |||||
I2C0_F = I2C_F_DIV576; // 104 kHz | |||||
#elif F_BUS == 56000000 | |||||
I2C0_F = I2C_F_DIV512; // 109 kHz | |||||
#elif F_BUS == 54000000 | |||||
I2C0_F = I2C_F_DIV512; // 105 kHz | |||||
#elif F_BUS == 48000000 | |||||
I2C0_F = I2C_F_DIV480; // 100 kHz | |||||
#elif F_BUS == 40000000 | |||||
I2C0_F = I2C_F_DIV384; // 104 kHz | |||||
#elif F_BUS == 36000000 | |||||
I2C0_F = I2C_F_DIV320; // 113 kHz | |||||
#elif F_BUS == 24000000 | |||||
I2C0_F = I2C_F_DIV240; // 100 kHz | |||||
#elif F_BUS == 16000000 | |||||
I2C0_F = I2C_F_DIV160; // 100 kHz | |||||
#elif F_BUS == 8000000 | |||||
I2C0_F = I2C_F_DIV80; // 100 kHz | |||||
#elif F_BUS == 4000000 | |||||
I2C0_F = I2C_F_DIV40; // 100 kHz | |||||
#elif F_BUS == 2000000 | |||||
I2C0_F = I2C_F_DIV20; // 100 kHz | |||||
#endif | |||||
I2C0_C1 = I2C_C1_IICEN; | |||||
} | |||||
return *this; | |||||
} | |||||
inline operator int () const __attribute__((always_inline)) { | |||||
#if F_BUS == 120000000 | |||||
if (I2C0_F == I2C_F_DIV288) return 12; | |||||
#elif F_BUS == 108000000 | |||||
if (I2C0_F == I2C_F_DIV256) return 12; | |||||
#elif F_BUS == 96000000 | |||||
if (I2C0_F == I2C_F_DIV240) return 12; | |||||
#elif F_BUS == 90000000 | |||||
if (I2C0_F == I2C_F_DIV224) return 12; | |||||
#elif F_BUS == 80000000 | |||||
if (I2C0_F == I2C_F_DIV192) return 12; | |||||
#elif F_BUS == 72000000 | |||||
if (I2C0_F == I2C_F_DIV192) return 12; | |||||
#elif F_BUS == 64000000 | |||||
if (I2C0_F == I2C_F_DIV160) return 12; | |||||
#elif F_BUS == 60000000 | |||||
if (I2C0_F == I2C_F_DIV144) return 12; | |||||
#elif F_BUS == 56000000 | |||||
if (I2C0_F == I2C_F_DIV144) return 12; | |||||
#elif F_BUS == 54000000 | |||||
if (I2C0_F == I2C_F_DIV128) return 12; | |||||
#elif F_BUS == 48000000 | |||||
if (I2C0_F == I2C_F_DIV112) return 12; | |||||
#elif F_BUS == 40000000 | |||||
if (I2C0_F == I2C_F_DIV96) return 12; | |||||
#elif F_BUS == 36000000 | |||||
if (I2C0_F == I2C_F_DIV96) return 12; | |||||
#elif F_BUS == 24000000 | |||||
if (I2C0_F == I2C_F_DIV64) return 12; | |||||
#elif F_BUS == 16000000 | |||||
if (I2C0_F == I2C_F_DIV40) return 12; | |||||
#elif F_BUS == 8000000 | |||||
if (I2C0_F == I2C_F_DIV20) return 12; | |||||
#elif F_BUS == 4000000 | |||||
if (I2C0_F == I2C_F_DIV20) return 12; | |||||
#endif | |||||
return 72; | |||||
} | |||||
}; | |||||
extern TWBRemulation TWBR; | |||||
#endif | |||||
#endif |