/* Wire Library for Teensy LC & 3.X * Copyright (c) 2014-2017, Paul Stoffregen, paul@pjrc.com * * Development of this I2C library was funded by PJRC.COM, LLC by sales of * Teensy and related products. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef TwoWireIMXRT_h #define TwoWireIMXRT_h #if defined(__IMXRT1052__) || defined(__IMXRT1062__) #include #include #define BUFFER_LENGTH 32 //#define WIRE_HAS_END 1 #define WIRE_IMPLEMENT_WIRE #define WIRE_IMPLEMENT_WIRE1 #define WIRE_IMPLEMENT_WIRE2 class TwoWire : public Stream { public: // Hardware description struct static const uint8_t cnt_sda_pins = 2; static const uint8_t cnt_scl_pins = 2; typedef struct { const uint8_t pin; // The pin number const uint32_t mux_val; // Value to set for mux; volatile uint32_t *select_input_register; // Which register controls the selection const uint32_t select_val; // Value for that selection } pin_info_t; typedef struct { volatile uint32_t &clock_gate_register; uint32_t clock_gate_mask; pin_info_t sda_pins[cnt_sda_pins]; pin_info_t scl_pins[cnt_scl_pins]; IRQ_NUMBER_t irq; } I2C_Hardware_t; static const I2C_Hardware_t i2c1_hardware; static const I2C_Hardware_t i2c2_hardware; static const I2C_Hardware_t i2c3_hardware; static const I2C_Hardware_t i2c4_hardware; public: constexpr TwoWire(IMXRT_LPI2C_t *myport, const I2C_Hardware_t &myhardware) : port(myport), hardware(myhardware) { } void begin(); void begin(uint8_t address); void begin(int address) { begin((uint8_t)address); } void end(); void setClock(uint32_t frequency); void setSDA(uint8_t pin); void setSCL(uint8_t pin); void beginTransmission(uint8_t address) { txBuffer[0] = (address << 1); transmitting = 1; txBufferLength = 1; } void beginTransmission(int address) { beginTransmission((uint8_t)address); } uint8_t endTransmission(uint8_t sendStop); uint8_t endTransmission(void) { return endTransmission(1); } uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop); uint8_t requestFrom(uint8_t address, uint8_t quantity) { return requestFrom(address, quantity, (uint8_t)1); } uint8_t requestFrom(int address, int quantity, int sendStop) { return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)(sendStop ? 1 : 0)); } uint8_t requestFrom(int address, int quantity) { return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)1); } uint8_t requestFrom(uint8_t addr, uint8_t qty, uint32_t iaddr, uint8_t n, uint8_t stop); virtual size_t write(uint8_t data); virtual size_t write(const uint8_t *data, size_t quantity); virtual int available(void) { return rxBufferLength - rxBufferIndex; } virtual int read(void) { if (rxBufferIndex >= rxBufferLength) return -1; return rxBuffer[rxBufferIndex++]; } virtual int peek(void) { if (rxBufferIndex >= rxBufferLength) return -1; return rxBuffer[rxBufferIndex]; } virtual void flush(void) { } void onReceive(void (*function)(int numBytes)) { user_onReceive = function; } void onRequest(void (*function)(void)) { user_onRequest = function; } // send() for compatibility with very old sketches and libraries void send(uint8_t b) { write(b); } void send(uint8_t *s, uint8_t n) { write(s, n); } void send(int n) { write((uint8_t)n); } void send(char *s) { write(s); } uint8_t receive(void) { int c = read(); if (c < 0) return 0; return c; } size_t write(unsigned long n) { return write((uint8_t)n); } size_t write(long n) { return write((uint8_t)n); } size_t write(unsigned int n) { return write((uint8_t)n); } size_t write(int n) { return write((uint8_t)n); } using Print::write; private: //void isr(void); //bool wait_idle(void); bool wait_idle(); bool force_clock(); IMXRT_LPI2C_t * const port; const I2C_Hardware_t &hardware; uint8_t sda_pin_index_ = 0x0; // default is always first item uint8_t scl_pin_index_ = 0x0; uint8_t rxBuffer[BUFFER_LENGTH] = {}; uint8_t rxBufferIndex = 0; uint8_t rxBufferLength = 0; uint8_t txAddress = 0; uint8_t txBuffer[BUFFER_LENGTH+1] = {}; uint8_t txBufferIndex = 0; uint8_t txBufferLength = 0; uint8_t transmitting = 0; uint8_t slave_mode = 0; uint8_t irqcount = 0; uint8_t sda_pin_index = 0; uint8_t scl_pin_index = 0; void onRequestService(void); void onReceiveService(uint8_t*, int); void (*user_onRequest)(void) = nullptr; void (*user_onReceive)(int) = nullptr; void sda_rising_isr(void); friend void i2c0_isr(void); friend void i2c1_isr(void); friend void i2c2_isr(void); friend void i2c3_isr(void); friend void sda_rising_isr0(void); friend void sda_rising_isr1(void); }; extern TwoWire Wire; extern TwoWire Wire1; extern TwoWire Wire2; #if defined(ARDUINO_TEENSY_MICROMOD) extern TwoWire Wire3; #endif class TWBRemulation { public: inline TWBRemulation & operator = (int val) __attribute__((always_inline)) { /*if (val == 12 || val == ((F_CPU / 400000) - 16) / 2) { // 22, 52, 112 I2C0_C1 = 0; #if F_BUS == 128000000 I2C0_F = I2C_F_DIV320; // 400 kHz #elif F_BUS == 120000000 I2C0_F = I2C_F_DIV288; // 416 kHz #elif F_BUS == 108000000 I2C0_F = I2C_F_DIV256; // 422 kHz #elif F_BUS == 96000000 I2C0_F = I2C_F_DIV240; // 400 kHz #elif F_BUS == 90000000 I2C0_F = I2C_F_DIV224; // 402 kHz #elif F_BUS == 80000000 I2C0_F = I2C_F_DIV192; // 416 kHz #elif F_BUS == 72000000 I2C0_F = I2C_F_DIV192; // 375 kHz #elif F_BUS == 64000000 I2C0_F = I2C_F_DIV160; // 400 kHz #elif F_BUS == 60000000 I2C0_F = I2C_F_DIV144; // 416 kHz #elif F_BUS == 56000000 I2C0_F = I2C_F_DIV144; // 389 kHz #elif F_BUS == 54000000 I2C0_F = I2C_F_DIV128; // 422 kHz #elif F_BUS == 48000000 I2C0_F = I2C_F_DIV112; // 400 kHz #elif F_BUS == 40000000 I2C0_F = I2C_F_DIV96; // 416 kHz #elif F_BUS == 36000000 I2C0_F = I2C_F_DIV96; // 375 kHz #elif F_BUS == 24000000 I2C0_F = I2C_F_DIV64; // 375 kHz #elif F_BUS == 16000000 I2C0_F = I2C_F_DIV40; // 400 kHz #elif F_BUS == 8000000 I2C0_F = I2C_F_DIV20; // 400 kHz #elif F_BUS == 4000000 I2C0_F = I2C_F_DIV20; // 200 kHz #elif F_BUS == 2000000 I2C0_F = I2C_F_DIV20; // 100 kHz #endif I2C0_C1 = I2C_C1_IICEN; } else if (val == 72 || val == ((F_CPU / 100000) - 16) / 2) { // 112, 232, 472 I2C0_C1 = 0; #if F_BUS == 128000000 I2C0_F = I2C_F_DIV1280; // 100 kHz #elif F_BUS == 120000000 I2C0_F = I2C_F_DIV1152; // 104 kHz #elif F_BUS == 108000000 I2C0_F = I2C_F_DIV1024; // 105 kHz #elif F_BUS == 96000000 I2C0_F = I2C_F_DIV960; // 100 kHz #elif F_BUS == 90000000 I2C0_F = I2C_F_DIV896; // 100 kHz #elif F_BUS == 80000000 I2C0_F = I2C_F_DIV768; // 104 kHz #elif F_BUS == 72000000 I2C0_F = I2C_F_DIV640; // 112 kHz #elif F_BUS == 64000000 I2C0_F = I2C_F_DIV640; // 100 kHz #elif F_BUS == 60000000 I2C0_F = I2C_F_DIV576; // 104 kHz #elif F_BUS == 56000000 I2C0_F = I2C_F_DIV512; // 109 kHz #elif F_BUS == 54000000 I2C0_F = I2C_F_DIV512; // 105 kHz #elif F_BUS == 48000000 I2C0_F = I2C_F_DIV480; // 100 kHz #elif F_BUS == 40000000 I2C0_F = I2C_F_DIV384; // 104 kHz #elif F_BUS == 36000000 I2C0_F = I2C_F_DIV320; // 113 kHz #elif F_BUS == 24000000 I2C0_F = I2C_F_DIV240; // 100 kHz #elif F_BUS == 16000000 I2C0_F = I2C_F_DIV160; // 100 kHz #elif F_BUS == 8000000 I2C0_F = I2C_F_DIV80; // 100 kHz #elif F_BUS == 4000000 I2C0_F = I2C_F_DIV40; // 100 kHz #elif F_BUS == 2000000 I2C0_F = I2C_F_DIV20; // 100 kHz #endif I2C0_C1 = I2C_C1_IICEN; } */ return *this; } inline operator int () const __attribute__((always_inline)) { /* #if F_BUS == 128000000 if (I2C0_F == I2C_F_DIV320) return 12; #elif F_BUS == 120000000 if (I2C0_F == I2C_F_DIV288) return 12; #elif F_BUS == 108000000 if (I2C0_F == I2C_F_DIV256) return 12; #elif F_BUS == 96000000 if (I2C0_F == I2C_F_DIV240) return 12; #elif F_BUS == 90000000 if (I2C0_F == I2C_F_DIV224) return 12; #elif F_BUS == 80000000 if (I2C0_F == I2C_F_DIV192) return 12; #elif F_BUS == 72000000 if (I2C0_F == I2C_F_DIV192) return 12; #elif F_BUS == 64000000 if (I2C0_F == I2C_F_DIV160) return 12; #elif F_BUS == 60000000 if (I2C0_F == I2C_F_DIV144) return 12; #elif F_BUS == 56000000 if (I2C0_F == I2C_F_DIV144) return 12; #elif F_BUS == 54000000 if (I2C0_F == I2C_F_DIV128) return 12; #elif F_BUS == 48000000 if (I2C0_F == I2C_F_DIV112) return 12; #elif F_BUS == 40000000 if (I2C0_F == I2C_F_DIV96) return 12; #elif F_BUS == 36000000 if (I2C0_F == I2C_F_DIV96) return 12; #elif F_BUS == 24000000 if (I2C0_F == I2C_F_DIV64) return 12; #elif F_BUS == 16000000 if (I2C0_F == I2C_F_DIV40) return 12; #elif F_BUS == 8000000 if (I2C0_F == I2C_F_DIV20) return 12; #elif F_BUS == 4000000 if (I2C0_F == I2C_F_DIV20) return 12; #endif */ return 72; } }; extern TWBRemulation TWBR; #endif #endif