/* TwoWire.h - TWI/I2C library for Arduino & Wiring Copyright (c) 2006 Nicholas Zambetti. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts */ #ifndef TwoWireKinetis_h #define TwoWireKinetis_h #if defined(__arm__) && defined(TEENSYDUINO) extern "C" void i2c0_isr(void); #include #include "Arduino.h" #define BUFFER_LENGTH 32 #define WIRE_HAS_END 1 #if defined(__MKL26Z64__) #define WIRE_HAS_STOP_INTERRUPT 1 #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) #define WIRE_HAS_START_INTERRUPT 1 #define WIRE_HAS_STOP_INTERRUPT 1 #endif class TwoWire : public Stream { public: TwoWire(KINETIS_I2C_t &myport); void begin(); void begin(uint8_t address); void begin(int address) { begin((uint8_t)address); } void end(); void setClock(uint32_t frequency); void setSDA(uint8_t pin); void setSCL(uint8_t pin); void beginTransmission(uint8_t address) { txBuffer[0] = (address << 1); transmitting = 1; txBufferLength = 1; } void beginTransmission(int address) { beginTransmission((uint8_t)address); } uint8_t endTransmission(uint8_t sendStop); uint8_t endTransmission(void) { return endTransmission(1); } uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop); uint8_t requestFrom(uint8_t address, uint8_t quantity) { return requestFrom(address, quantity, (uint8_t)1); } uint8_t requestFrom(int address, int quantity, int sendStop) { return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)(sendStop ? 1 : 0)); } uint8_t requestFrom(int address, int quantity) { return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)1); } virtual size_t write(uint8_t data); virtual size_t write(const uint8_t *data, size_t quantity); virtual int available(void) { return rxBufferLength - rxBufferIndex; } virtual int read(void) { if (rxBufferIndex >= rxBufferLength) return -1; return rxBuffer[rxBufferIndex++]; } virtual int peek(void) { if (rxBufferIndex >= rxBufferLength) return -1; return rxBuffer[rxBufferIndex]; } virtual void flush(void) { } void onReceive(void (*function)(int numBytes)) { user_onReceive = function; } void onRequest(void (*function)(void)) { user_onRequest = function; } // send() for compatibility with very old sketches and libraries void send(uint8_t b) { write(b); } void send(uint8_t *s, uint8_t n) { write(s, n); } void send(int n) { write((uint8_t)n); } void send(char *s) { write(s); } uint8_t receive(void) { int c = read(); if (c < 0) return 0; return c; } size_t write(unsigned long n) { return write((uint8_t)n); } size_t write(long n) { return write((uint8_t)n); } size_t write(unsigned int n) { return write((uint8_t)n); } size_t write(int n) { return write((uint8_t)n); } using Print::write; private: uint8_t i2c_status(void) { return port.S; } void i2c_wait(void) { while (!(port.S & I2C_S_IICIF)) ; // wait (TODO: timeout) port.S = I2C_S_IICIF; } KINETIS_I2C_t &port; uint8_t rxBuffer[BUFFER_LENGTH]; uint8_t rxBufferIndex; uint8_t rxBufferLength; uint8_t txAddress; uint8_t txBuffer[BUFFER_LENGTH+1]; uint8_t txBufferIndex; uint8_t txBufferLength; uint8_t transmitting; uint8_t slave_mode; uint8_t irqcount; void onRequestService(void); void onReceiveService(uint8_t*, int); void (*user_onRequest)(void); void (*user_onReceive)(int); void sda_rising_isr(void); uint8_t sda_pin_num; uint8_t scl_pin_num; friend void i2c0_isr(void); friend void sda_rising_isr(void); }; extern TwoWire Wire; class TWBRemulation { public: inline TWBRemulation & operator = (int val) __attribute__((always_inline)) { if (val == 12 || val == ((F_CPU / 400000) - 16) / 2) { // 22, 52, 112 I2C0_C1 = 0; #if F_BUS == 120000000 I2C0_F = I2C_F_DIV288; // 416 kHz #elif F_BUS == 108000000 I2C0_F = I2C_F_DIV256; // 422 kHz #elif F_BUS == 96000000 I2C0_F = I2C_F_DIV240; // 400 kHz #elif F_BUS == 90000000 I2C0_F = I2C_F_DIV224; // 402 kHz #elif F_BUS == 80000000 I2C0_F = I2C_F_DIV192; // 416 kHz #elif F_BUS == 72000000 I2C0_F = I2C_F_DIV192; // 375 kHz #elif F_BUS == 64000000 I2C0_F = I2C_F_DIV160; // 400 kHz #elif F_BUS == 60000000 I2C0_F = I2C_F_DIV144; // 416 kHz #elif F_BUS == 56000000 I2C0_F = I2C_F_DIV144; // 389 kHz #elif F_BUS == 54000000 I2C0_F = I2C_F_DIV128; // 422 kHz #elif F_BUS == 48000000 I2C0_F = I2C_F_DIV112; // 400 kHz #elif F_BUS == 40000000 I2C0_F = I2C_F_DIV96; // 416 kHz #elif F_BUS == 36000000 I2C0_F = I2C_F_DIV96; // 375 kHz #elif F_BUS == 24000000 I2C0_F = I2C_F_DIV64; // 375 kHz #elif F_BUS == 16000000 I2C0_F = I2C_F_DIV40; // 400 kHz #elif F_BUS == 8000000 I2C0_F = I2C_F_DIV20; // 400 kHz #elif F_BUS == 4000000 I2C0_F = I2C_F_DIV20; // 200 kHz #elif F_BUS == 2000000 I2C0_F = I2C_F_DIV20; // 100 kHz #endif I2C0_C1 = I2C_C1_IICEN; } else if (val == 72 || val == ((F_CPU / 100000) - 16) / 2) { // 112, 232, 472 I2C0_C1 = 0; #if F_BUS == 120000000 I2C0_F = I2C_F_DIV1152; // 104 kHz #elif F_BUS == 108000000 I2C0_F = I2C_F_DIV1024; // 105 kHz #elif F_BUS == 96000000 I2C0_F = I2C_F_DIV960; // 100 kHz #elif F_BUS == 90000000 I2C0_F = I2C_F_DIV896; // 100 kHz #elif F_BUS == 80000000 I2C0_F = I2C_F_DIV768; // 104 kHz #elif F_BUS == 72000000 I2C0_F = I2C_F_DIV640; // 112 kHz #elif F_BUS == 64000000 I2C0_F = I2C_F_DIV640; // 100 kHz #elif F_BUS == 60000000 I2C0_F = I2C_F_DIV576; // 104 kHz #elif F_BUS == 56000000 I2C0_F = I2C_F_DIV512; // 109 kHz #elif F_BUS == 54000000 I2C0_F = I2C_F_DIV512; // 105 kHz #elif F_BUS == 48000000 I2C0_F = I2C_F_DIV480; // 100 kHz #elif F_BUS == 40000000 I2C0_F = I2C_F_DIV384; // 104 kHz #elif F_BUS == 36000000 I2C0_F = I2C_F_DIV320; // 113 kHz #elif F_BUS == 24000000 I2C0_F = I2C_F_DIV240; // 100 kHz #elif F_BUS == 16000000 I2C0_F = I2C_F_DIV160; // 100 kHz #elif F_BUS == 8000000 I2C0_F = I2C_F_DIV80; // 100 kHz #elif F_BUS == 4000000 I2C0_F = I2C_F_DIV40; // 100 kHz #elif F_BUS == 2000000 I2C0_F = I2C_F_DIV20; // 100 kHz #endif I2C0_C1 = I2C_C1_IICEN; } return *this; } inline operator int () const __attribute__((always_inline)) { #if F_BUS == 120000000 if (I2C0_F == I2C_F_DIV288) return 12; #elif F_BUS == 108000000 if (I2C0_F == I2C_F_DIV256) return 12; #elif F_BUS == 96000000 if (I2C0_F == I2C_F_DIV240) return 12; #elif F_BUS == 90000000 if (I2C0_F == I2C_F_DIV224) return 12; #elif F_BUS == 80000000 if (I2C0_F == I2C_F_DIV192) return 12; #elif F_BUS == 72000000 if (I2C0_F == I2C_F_DIV192) return 12; #elif F_BUS == 64000000 if (I2C0_F == I2C_F_DIV160) return 12; #elif F_BUS == 60000000 if (I2C0_F == I2C_F_DIV144) return 12; #elif F_BUS == 56000000 if (I2C0_F == I2C_F_DIV144) return 12; #elif F_BUS == 54000000 if (I2C0_F == I2C_F_DIV128) return 12; #elif F_BUS == 48000000 if (I2C0_F == I2C_F_DIV112) return 12; #elif F_BUS == 40000000 if (I2C0_F == I2C_F_DIV96) return 12; #elif F_BUS == 36000000 if (I2C0_F == I2C_F_DIV96) return 12; #elif F_BUS == 24000000 if (I2C0_F == I2C_F_DIV64) return 12; #elif F_BUS == 16000000 if (I2C0_F == I2C_F_DIV40) return 12; #elif F_BUS == 8000000 if (I2C0_F == I2C_F_DIV20) return 12; #elif F_BUS == 4000000 if (I2C0_F == I2C_F_DIV20) return 12; #endif return 72; } }; extern TWBRemulation TWBR; #endif #endif