/* TwoWire.cpp - TWI/I2C library for Wiring & Arduino Copyright (c) 2006 Nicholas Zambetti. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts */ #include "Wire.h" #if defined(__arm__) && defined(TEENSYDUINO) #include "kinetis.h" #include // for memcpy #include "core_pins.h" #include "Wire.h" void sda_rising_isr(void); TwoWire::TwoWire() { rxBufferIndex = 0; rxBufferLength = 0; txBufferIndex = 0; txBufferLength = 0; transmitting = 0; sda_pin_num = 18; scl_pin_num = 19; user_onRequest = NULL; user_onReceive = NULL; } void TwoWire::begin(void) { //serial_begin(BAUD2DIV(115200)); //serial_print("\nWire Begin\n"); slave_mode = 0; SIM_SCGC4 |= SIM_SCGC4_I2C0; // TODO: use bitband I2C0_C1 = 0; // On Teensy 3.0 external pullup resistors *MUST* be used // the PORT_PCR_PE bit is ignored when in I2C mode // I2C will not work at all without pullup resistors // It might seem like setting PORT_PCR_PE & PORT_PCR_PS // would enable pullup resistors. However, there seems // to be a bug in chip while I2C is enabled, where setting // those causes the port to be driven strongly high. if (sda_pin_num == 18) { CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (sda_pin_num == 17) { CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (sda_pin_num == 34) { CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (sda_pin_num == 8) { CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (sda_pin_num == 48) { CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #endif } if (scl_pin_num == 19) { CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (scl_pin_num == 16) { CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (scl_pin_num == 33) { CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (scl_pin_num == 7) { CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (scl_pin_num == 47) { CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #endif } setClock(100000); I2C0_C2 = I2C_C2_HDRS; I2C0_C1 = I2C_C1_IICEN; //pinMode(3, OUTPUT); //pinMode(4, OUTPUT); } void TwoWire::setClock(uint32_t frequency) { if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; #if F_BUS == 120000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV1152; // 104 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV288; // 416 kHz } else { I2C0_F = I2C_F_DIV128; // 0.94 MHz } I2C0_FLT = 4; #elif F_BUS == 108000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV1024; // 105 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV256; // 422 kHz } else { I2C0_F = I2C_F_DIV112; // 0.96 MHz } I2C0_FLT = 4; #elif F_BUS == 96000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV960; // 100 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV240; // 400 kHz } else { I2C0_F = I2C_F_DIV96; // 1.0 MHz } I2C0_FLT = 4; #elif F_BUS == 90000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV896; // 100 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV224; // 402 kHz } else { I2C0_F = I2C_F_DIV88; // 1.02 MHz } I2C0_FLT = 4; #elif F_BUS == 80000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV768; // 104 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV192; // 416 kHz } else { I2C0_F = I2C_F_DIV80; // 1.0 MHz } I2C0_FLT = 4; #elif F_BUS == 72000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV640; // 112 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV192; // 375 kHz } else { I2C0_F = I2C_F_DIV72; // 1.0 MHz } I2C0_FLT = 4; #elif F_BUS == 64000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV640; // 100 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV160; // 400 kHz } else { I2C0_F = I2C_F_DIV64; // 1.0 MHz } I2C0_FLT = 4; #elif F_BUS == 60000000 if (frequency < 400000) { I2C0_F = 0x2C; // 104 kHz } else if (frequency < 1000000) { I2C0_F = 0x1C; // 416 kHz } else { I2C0_F = 0x12; // 938 kHz } I2C0_FLT = 4; #elif F_BUS == 56000000 if (frequency < 400000) { I2C0_F = 0x2B; // 109 kHz } else if (frequency < 1000000) { I2C0_F = 0x1C; // 389 kHz } else { I2C0_F = 0x0E; // 1 MHz } I2C0_FLT = 4; #elif F_BUS == 54000000 if (frequency < 400000) { I2C0_F = I2C_F_DIV512; // 105 kHz } else if (frequency < 1000000) { I2C0_F = I2C_F_DIV128; // 422 kHz } else { I2C0_F = I2C_F_DIV56; // 0.96 MHz } I2C0_FLT = 4; #elif F_BUS == 48000000 if (frequency < 400000) { I2C0_F = 0x27; // 100 kHz } else if (frequency < 1000000) { I2C0_F = 0x1A; // 400 kHz } else { I2C0_F = 0x0D; // 1 MHz } I2C0_FLT = 4; #elif F_BUS == 40000000 if (frequency < 400000) { I2C0_F = 0x29; // 104 kHz } else if (frequency < 1000000) { I2C0_F = 0x19; // 416 kHz } else { I2C0_F = 0x0B; // 1 MHz } I2C0_FLT = 3; #elif F_BUS == 36000000 if (frequency < 400000) { I2C0_F = 0x28; // 113 kHz } else if (frequency < 1000000) { I2C0_F = 0x19; // 375 kHz } else { I2C0_F = 0x0A; // 1 MHz } I2C0_FLT = 3; #elif F_BUS == 24000000 if (frequency < 400000) { I2C0_F = 0x1F; // 100 kHz } else if (frequency < 1000000) { I2C0_F = 0x12; // 375 kHz } else { I2C0_F = 0x02; // 1 MHz } I2C0_FLT = 2; #elif F_BUS == 16000000 if (frequency < 400000) { I2C0_F = 0x20; // 100 kHz } else if (frequency < 1000000) { I2C0_F = 0x07; // 400 kHz } else { I2C0_F = 0x00; // 800 MHz } I2C0_FLT = 1; #elif F_BUS == 8000000 if (frequency < 400000) { I2C0_F = 0x14; // 100 kHz } else { I2C0_F = 0x00; // 400 kHz } I2C0_FLT = 1; #elif F_BUS == 4000000 if (frequency < 400000) { I2C0_F = 0x07; // 100 kHz } else { I2C0_F = 0x00; // 200 kHz } I2C0_FLT = 1; #elif F_BUS == 2000000 I2C0_F = 0x00; // 100 kHz I2C0_FLT = 1; #else #error "F_BUS must be 120, 108, 96, 90, 80, 72, 64, 60, 56, 54, 48, 40, 36, 24, 16, 8, 4 or 2 MHz" #endif } void TwoWire::setSDA(uint8_t pin) { if (pin == sda_pin_num) return; if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { if (sda_pin_num == 18) { CORE_PIN18_CONFIG = 0; } else if (sda_pin_num == 17) { CORE_PIN17_CONFIG = 0; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (sda_pin_num == 34) { CORE_PIN34_CONFIG = 0; } else if (sda_pin_num == 8) { CORE_PIN8_CONFIG = 0; } else if (sda_pin_num == 48) { CORE_PIN48_CONFIG = 0; #endif } if (pin == 18) { CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 17) { CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (pin == 34) { CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 8) { CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 48) { CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #endif } } sda_pin_num = pin; } void TwoWire::setSCL(uint8_t pin) { if (pin == scl_pin_num) return; if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) { if (scl_pin_num == 19) { CORE_PIN19_CONFIG = 0; } else if (scl_pin_num == 16) { CORE_PIN16_CONFIG = 0; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (scl_pin_num == 33) { CORE_PIN33_CONFIG = 0; } else if (scl_pin_num == 7) { CORE_PIN7_CONFIG = 0; } else if (scl_pin_num == 47) { CORE_PIN47_CONFIG = 0; #endif } if (pin == 19) { CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 16) { CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (pin == 33) { CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 7) { CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; } else if (pin == 47) { CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE; #endif } } scl_pin_num = pin; } void TwoWire::begin(uint8_t address) { begin(); I2C0_A1 = address << 1; slave_mode = 1; I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; NVIC_ENABLE_IRQ(IRQ_I2C0); } void TwoWire::end() { if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return; NVIC_DISABLE_IRQ(IRQ_I2C0); I2C0_C1 = 0; if (sda_pin_num == 18) { CORE_PIN18_CONFIG = 0; } else if (sda_pin_num == 17) { CORE_PIN17_CONFIG = 0; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (sda_pin_num == 34) { CORE_PIN34_CONFIG = 0; } else if (sda_pin_num == 8) { CORE_PIN8_CONFIG = 0; } else if (sda_pin_num == 48) { CORE_PIN48_CONFIG = 0; #endif } if (scl_pin_num == 19) { CORE_PIN19_CONFIG = 0; } else if (scl_pin_num == 16) { CORE_PIN16_CONFIG = 0; #if defined(__MK64FX512__) || defined(__MK66FX1M0__) } else if (scl_pin_num == 33) { CORE_PIN33_CONFIG = 0; } else if (scl_pin_num == 7) { CORE_PIN7_CONFIG = 0; } else if (scl_pin_num == 47) { CORE_PIN47_CONFIG = 0; #endif } SIM_SCGC4 &= ~SIM_SCGC4_I2C0; // TODO: use bitband } void i2c0_isr(void) { uint8_t status, c1, data; static uint8_t receiving=0; status = I2C0_S; //serial_print("."); if (status & I2C_S_ARBL) { // Arbitration Lost I2C0_S = I2C_S_ARBL; //serial_print("a"); if (receiving && Wire.rxBufferLength > 0) { // TODO: does this detect the STOP condition in slave receive mode? } if (!(status & I2C_S_IAAS)) return; } if (status & I2C_S_IAAS) { //serial_print("\n"); // Addressed As A Slave if (status & I2C_S_SRW) { //serial_print("T"); // Begin Slave Transmit receiving = 0; Wire.txBufferLength = 0; if (Wire.user_onRequest != NULL) { Wire.user_onRequest(); } if (Wire.txBufferLength == 0) { // is this correct, transmitting a single zero // when we should send nothing? Arduino's AVR // implementation does this, but is it ok? Wire.txBufferLength = 1; Wire.txBuffer[0] = 0; } I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; I2C0_D = Wire.txBuffer[0]; Wire.txBufferIndex = 1; } else { // Begin Slave Receive //serial_print("R"); receiving = 1; Wire.rxBufferLength = 0; I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; data = I2C0_D; } I2C0_S = I2C_S_IICIF; return; } #if defined(KINETISL) c1 = I2C0_FLT; if ((c1 & I2C_FLT_STOPF) && (c1 & I2C_FLT_STOPIE)) { I2C0_FLT = c1 & ~I2C_FLT_STOPIE; if (Wire.user_onReceive != NULL) { Wire.rxBufferIndex = 0; Wire.user_onReceive(Wire.rxBufferLength); } } #endif c1 = I2C0_C1; if (c1 & I2C_C1_TX) { // Continue Slave Transmit //serial_print("t"); if ((status & I2C_S_RXAK) == 0) { //serial_print("."); // Master ACK'd previous byte if (Wire.txBufferIndex < Wire.txBufferLength) { I2C0_D = Wire.txBuffer[Wire.txBufferIndex++]; } else { I2C0_D = 0; } I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX; } else { //serial_print("*"); // Master did not ACK previous byte I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE; data = I2C0_D; } } else { // Continue Slave Receive Wire.irqcount = 0; #if defined(KINETISK) attachInterrupt(18, sda_rising_isr, RISING); #elif defined(KINETISL) I2C0_FLT |= I2C_FLT_STOPIE; #endif //digitalWriteFast(4, HIGH); data = I2C0_D; //serial_phex(data); if (Wire.rxBufferLength < BUFFER_LENGTH && receiving) { Wire.rxBuffer[Wire.rxBufferLength++] = data; } //digitalWriteFast(4, LOW); } I2C0_S = I2C_S_IICIF; } // Detects the stop condition that terminates a slave receive transfer. // Sadly, the I2C in Kinetis K series lacks the stop detect interrupt // This pin change interrupt hack is needed to detect the stop condition void sda_rising_isr(void) { //digitalWrite(3, HIGH); if (!(I2C0_S & I2C_S_BUSY)) { detachInterrupt(18); if (Wire.user_onReceive != NULL) { Wire.rxBufferIndex = 0; Wire.user_onReceive(Wire.rxBufferLength); } //delayMicroseconds(100); } else { if (++Wire.irqcount >= 2 || !Wire.slave_mode) { detachInterrupt(18); } } //digitalWrite(3, LOW); } // Chapter 44: Inter-Integrated Circuit (I2C) - Page 1012 // I2C0_A1 // I2C Address Register 1 // I2C0_F // I2C Frequency Divider register // I2C0_C1 // I2C Control Register 1 // I2C0_S // I2C Status register // I2C0_D // I2C Data I/O register // I2C0_C2 // I2C Control Register 2 // I2C0_FLT // I2C Programmable Input Glitch Filter register static uint8_t i2c_status(void) { static uint32_t p=0xFFFF; uint32_t s = I2C0_S; if (s != p) { //Serial.printf("(%02X)", s); p = s; } return s; } static void i2c_wait(void) { #if 0 while (!(I2C0_S & I2C_S_IICIF)) ; // wait I2C0_S = I2C_S_IICIF; #endif //Serial.write('^'); while (1) { if ((i2c_status() & I2C_S_IICIF)) break; } I2C0_S = I2C_S_IICIF; } size_t TwoWire::write(uint8_t data) { if (transmitting || slave_mode) { if (txBufferLength >= BUFFER_LENGTH+1) { setWriteError(); return 0; } txBuffer[txBufferLength++] = data; return 1; } return 0; } size_t TwoWire::write(const uint8_t *data, size_t quantity) { if (transmitting || slave_mode) { size_t avail = BUFFER_LENGTH+1 - txBufferLength; if (quantity > avail) { quantity = avail; setWriteError(); } memcpy(txBuffer + txBufferLength, data, quantity); txBufferLength += quantity; return quantity; } return 0; } uint8_t TwoWire::endTransmission(uint8_t sendStop) { uint8_t i, status, ret=0; // clear the status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // now take control of the bus... if (I2C0_C1 & I2C_C1_MST) { // we are already the bus master, so send a repeated start //Serial.print("rstart:"); I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; } else { // we are not currently the bus master, so wait for bus ready //Serial.print("busy:"); uint32_t wait_begin = millis(); while (i2c_status() & I2C_S_BUSY) { //Serial.write('.') ; if (millis() - wait_begin > 15) { // bus stuck busy too long I2C0_C1 = 0; I2C0_C1 = I2C_C1_IICEN; //Serial.println("abort"); return 4; } } // become the bus master in transmit mode (send start) slave_mode = 0; I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; } // wait until start condition establishes control of the bus while (1) { status = i2c_status(); if ((status & I2C_S_BUSY)) break; } // transmit the address and data for (i=0; i < txBufferLength; i++) { I2C0_D = txBuffer[i]; //Serial.write('^'); while (1) { status = i2c_status(); if ((status & I2C_S_IICIF)) break; if (!(status & I2C_S_BUSY)) break; } I2C0_S = I2C_S_IICIF; //Serial.write('$'); status = i2c_status(); if ((status & I2C_S_ARBL)) { // we lost bus arbitration to another master // TODO: what is the proper thing to do here?? //Serial.printf(" c1=%02X ", I2C0_C1); I2C0_C1 = I2C_C1_IICEN; ret = 4; // 4:other error break; } if (!(status & I2C_S_BUSY)) { // suddenly lost control of the bus! I2C0_C1 = I2C_C1_IICEN; ret = 4; // 4:other error break; } if (status & I2C_S_RXAK) { // the slave device did not acknowledge if (i == 0) { ret = 2; // 2:received NACK on transmit of address } else { ret = 3; // 3:received NACK on transmit of data } sendStop = 1; break; } } if (sendStop) { // send the stop condition I2C0_C1 = I2C_C1_IICEN; // TODO: do we wait for this somehow? } transmitting = 0; //Serial.print(" ret="); //Serial.println(ret); return ret; } uint8_t TwoWire::requestFrom(uint8_t address, uint8_t length, uint8_t sendStop) { uint8_t tmp __attribute__((unused)); uint8_t status, count=0; rxBufferIndex = 0; rxBufferLength = 0; //serial_print("requestFrom\n"); // clear the status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // now take control of the bus... if (I2C0_C1 & I2C_C1_MST) { // we are already the bus master, so send a repeated start I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; } else { // we are not currently the bus master, so wait for bus ready while (i2c_status() & I2C_S_BUSY) ; // become the bus master in transmit mode (send start) slave_mode = 0; I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; } // send the address I2C0_D = (address << 1) | 1; i2c_wait(); status = i2c_status(); if ((status & I2C_S_RXAK) || (status & I2C_S_ARBL)) { // the slave device did not acknowledge // or we lost bus arbitration to another master I2C0_C1 = I2C_C1_IICEN; return 0; } if (length == 0) { // TODO: does anybody really do zero length reads? // if so, does this code really work? I2C0_C1 = I2C_C1_IICEN | (sendStop ? 0 : I2C_C1_MST); return 0; } else if (length == 1) { I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; } else { I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST; } tmp = I2C0_D; // initiate the first receive while (length > 1) { i2c_wait(); length--; if (length == 1) I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK; if (count < BUFFER_LENGTH) { rxBuffer[count++] = I2C0_D; } else { tmp = I2C0_D; } } i2c_wait(); I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; if (count < BUFFER_LENGTH) { rxBuffer[count++] = I2C0_D; } else { tmp = I2C0_D; } if (sendStop) I2C0_C1 = I2C_C1_IICEN; rxBufferLength = count; return count; } TwoWire Wire; #endif // __arm__ && TEENSYDUINO