|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/poly_laguerre.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland based on:
- // (1) Handbook of Mathematical Functions,
- // Ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 13, pp. 509-510, Section 22 pp. 773-802
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
-
- #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
- #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- # define _GLIBCXX_MATH_NS ::std
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- # define _GLIBCXX_MATH_NS ::std::tr1
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief This routine returns the associated Laguerre polynomial
- * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
- * Abramowitz & Stegun, 13.5.21
- *
- * @param __n The order of the Laguerre function.
- * @param __alpha The degree of the Laguerre function.
- * @param __x The argument of the Laguerre function.
- * @return The value of the Laguerre function of order n,
- * degree @f$ \alpha @f$, and argument x.
- *
- * This is from the GNU Scientific Library.
- */
- template<typename _Tpa, typename _Tp>
- _Tp
- __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
- {
- const _Tp __a = -_Tp(__n);
- const _Tp __b = _Tp(__alpha1) + _Tp(1);
- const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
- const _Tp __cos2th = __x / __eta;
- const _Tp __sin2th = _Tp(1) - __cos2th;
- const _Tp __th = std::acos(std::sqrt(__cos2th));
- const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
- * __numeric_constants<_Tp>::__pi_2()
- * __eta * __eta * __cos2th * __sin2th;
-
- #if _GLIBCXX_USE_C99_MATH_TR1
- const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b);
- const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
- #else
- const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
- const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
- #endif
-
- _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
- * std::log(_Tp(0.25L) * __x * __eta);
- _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
- _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
- + __pre_term1 - __pre_term2;
- _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
- _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
- * (_Tp(2) * __th
- - std::sin(_Tp(2) * __th))
- + __numeric_constants<_Tp>::__pi_4());
- _Tp __ser = __ser_term1 + __ser_term2;
-
- return std::exp(__lnpre) * __ser;
- }
-
-
- /**
- * @brief Evaluate the polynomial based on the confluent hypergeometric
- * function in a safe way, with no restriction on the arguments.
- *
- * The associated Laguerre function is defined by
- * @f[
- * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
- * _1F_1(-n; \alpha + 1; x)
- * @f]
- * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
- * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
- *
- * This function assumes x != 0.
- *
- * This is from the GNU Scientific Library.
- */
- template<typename _Tpa, typename _Tp>
- _Tp
- __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
- {
- const _Tp __b = _Tp(__alpha1) + _Tp(1);
- const _Tp __mx = -__x;
- const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
- : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
- // Get |x|^n/n!
- _Tp __tc = _Tp(1);
- const _Tp __ax = std::abs(__x);
- for (unsigned int __k = 1; __k <= __n; ++__k)
- __tc *= (__ax / __k);
-
- _Tp __term = __tc * __tc_sgn;
- _Tp __sum = __term;
- for (int __k = int(__n) - 1; __k >= 0; --__k)
- {
- __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
- * _Tp(__k + 1) / __mx;
- __sum += __term;
- }
-
- return __sum;
- }
-
-
- /**
- * @brief This routine returns the associated Laguerre polynomial
- * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
- * by recursion.
- *
- * The associated Laguerre function is defined by
- * @f[
- * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
- * _1F_1(-n; \alpha + 1; x)
- * @f]
- * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
- * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
- *
- * The associated Laguerre polynomial is defined for integral
- * @f$ \alpha = m @f$ by:
- * @f[
- * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
- * @f]
- * where the Laguerre polynomial is defined by:
- * @f[
- * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
- * @f]
- *
- * @param __n The order of the Laguerre function.
- * @param __alpha The degree of the Laguerre function.
- * @param __x The argument of the Laguerre function.
- * @return The value of the Laguerre function of order n,
- * degree @f$ \alpha @f$, and argument x.
- */
- template<typename _Tpa, typename _Tp>
- _Tp
- __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
- {
- // Compute l_0.
- _Tp __l_0 = _Tp(1);
- if (__n == 0)
- return __l_0;
-
- // Compute l_1^alpha.
- _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
- if (__n == 1)
- return __l_1;
-
- // Compute l_n^alpha by recursion on n.
- _Tp __l_n2 = __l_0;
- _Tp __l_n1 = __l_1;
- _Tp __l_n = _Tp(0);
- for (unsigned int __nn = 2; __nn <= __n; ++__nn)
- {
- __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
- * __l_n1 / _Tp(__nn)
- - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
- __l_n2 = __l_n1;
- __l_n1 = __l_n;
- }
-
- return __l_n;
- }
-
-
- /**
- * @brief This routine returns the associated Laguerre polynomial
- * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
- *
- * The associated Laguerre function is defined by
- * @f[
- * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
- * _1F_1(-n; \alpha + 1; x)
- * @f]
- * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
- * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
- *
- * The associated Laguerre polynomial is defined for integral
- * @f$ \alpha = m @f$ by:
- * @f[
- * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
- * @f]
- * where the Laguerre polynomial is defined by:
- * @f[
- * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
- * @f]
- *
- * @param __n The order of the Laguerre function.
- * @param __alpha The degree of the Laguerre function.
- * @param __x The argument of the Laguerre function.
- * @return The value of the Laguerre function of order n,
- * degree @f$ \alpha @f$, and argument x.
- */
- template<typename _Tpa, typename _Tp>
- _Tp
- __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
- {
- if (__x < _Tp(0))
- std::__throw_domain_error(__N("Negative argument "
- "in __poly_laguerre."));
- // Return NaN on NaN input.
- else if (__isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__n == 0)
- return _Tp(1);
- else if (__n == 1)
- return _Tp(1) + _Tp(__alpha1) - __x;
- else if (__x == _Tp(0))
- {
- _Tp __prod = _Tp(__alpha1) + _Tp(1);
- for (unsigned int __k = 2; __k <= __n; ++__k)
- __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
- return __prod;
- }
- else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
- && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
- return __poly_laguerre_large_n(__n, __alpha1, __x);
- else if (_Tp(__alpha1) >= _Tp(0)
- || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
- return __poly_laguerre_recursion(__n, __alpha1, __x);
- else
- return __poly_laguerre_hyperg(__n, __alpha1, __x);
- }
-
-
- /**
- * @brief This routine returns the associated Laguerre polynomial
- * of order n, degree m: @f$ L_n^m(x) @f$.
- *
- * The associated Laguerre polynomial is defined for integral
- * @f$ \alpha = m @f$ by:
- * @f[
- * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
- * @f]
- * where the Laguerre polynomial is defined by:
- * @f[
- * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
- * @f]
- *
- * @param __n The order of the Laguerre polynomial.
- * @param __m The degree of the Laguerre polynomial.
- * @param __x The argument of the Laguerre polynomial.
- * @return The value of the associated Laguerre polynomial of order n,
- * degree m, and argument x.
- */
- template<typename _Tp>
- inline _Tp
- __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
- { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
-
-
- /**
- * @brief This routine returns the Laguerre polynomial
- * of order n: @f$ L_n(x) @f$.
- *
- * The Laguerre polynomial is defined by:
- * @f[
- * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
- * @f]
- *
- * @param __n The order of the Laguerre polynomial.
- * @param __x The argument of the Laguerre polynomial.
- * @return The value of the Laguerre polynomial of order n
- * and argument x.
- */
- template<typename _Tp>
- inline _Tp
- __laguerre(unsigned int __n, _Tp __x)
- { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
- } // namespace __detail
- #undef _GLIBCXX_MATH_NS
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
|