|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718 |
- // random number generation (out of line) -*- C++ -*-
-
- // Copyright (C) 2009-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
-
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
-
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
-
- /** @file tr1/random.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/random}
- */
-
- #ifndef _GLIBCXX_TR1_RANDOM_TCC
- #define _GLIBCXX_TR1_RANDOM_TCC 1
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- namespace tr1
- {
- /*
- * (Further) implementation-space details.
- */
- namespace __detail
- {
- // General case for x = (ax + c) mod m -- use Schrage's algorithm to avoid
- // integer overflow.
- //
- // Because a and c are compile-time integral constants the compiler kindly
- // elides any unreachable paths.
- //
- // Preconditions: a > 0, m > 0.
- //
- template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool>
- struct _Mod
- {
- static _Tp
- __calc(_Tp __x)
- {
- if (__a == 1)
- __x %= __m;
- else
- {
- static const _Tp __q = __m / __a;
- static const _Tp __r = __m % __a;
-
- _Tp __t1 = __a * (__x % __q);
- _Tp __t2 = __r * (__x / __q);
- if (__t1 >= __t2)
- __x = __t1 - __t2;
- else
- __x = __m - __t2 + __t1;
- }
-
- if (__c != 0)
- {
- const _Tp __d = __m - __x;
- if (__d > __c)
- __x += __c;
- else
- __x = __c - __d;
- }
- return __x;
- }
- };
-
- // Special case for m == 0 -- use unsigned integer overflow as modulo
- // operator.
- template<typename _Tp, _Tp __a, _Tp __c, _Tp __m>
- struct _Mod<_Tp, __a, __c, __m, true>
- {
- static _Tp
- __calc(_Tp __x)
- { return __a * __x + __c; }
- };
- } // namespace __detail
-
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- const _UIntType
- linear_congruential<_UIntType, __a, __c, __m>::multiplier;
-
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- const _UIntType
- linear_congruential<_UIntType, __a, __c, __m>::increment;
-
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- const _UIntType
- linear_congruential<_UIntType, __a, __c, __m>::modulus;
-
- /**
- * Seeds the LCR with integral value @p __x0, adjusted so that the
- * ring identity is never a member of the convergence set.
- */
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- void
- linear_congruential<_UIntType, __a, __c, __m>::
- seed(unsigned long __x0)
- {
- if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0)
- && (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0))
- _M_x = __detail::__mod<_UIntType, 1, 0, __m>(1);
- else
- _M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0);
- }
-
- /**
- * Seeds the LCR engine with a value generated by @p __g.
- */
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- template<class _Gen>
- void
- linear_congruential<_UIntType, __a, __c, __m>::
- seed(_Gen& __g, false_type)
- {
- _UIntType __x0 = __g();
- if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0)
- && (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0))
- _M_x = __detail::__mod<_UIntType, 1, 0, __m>(1);
- else
- _M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0);
- }
-
- /**
- * Gets the next generated value in sequence.
- */
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- typename linear_congruential<_UIntType, __a, __c, __m>::result_type
- linear_congruential<_UIntType, __a, __c, __m>::
- operator()()
- {
- _M_x = __detail::__mod<_UIntType, __a, __c, __m>(_M_x);
- return _M_x;
- }
-
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const linear_congruential<_UIntType, __a, __c, __m>& __lcr)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__os.widen(' '));
-
- __os << __lcr._M_x;
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- linear_congruential<_UIntType, __a, __c, __m>& __lcr)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec);
-
- __is >> __lcr._M_x;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::word_size;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::state_size;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::shift_size;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::mask_bits;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const _UIntType
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::parameter_a;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_u;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_s;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const _UIntType
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_b;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_t;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const _UIntType
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_c;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- const int
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::output_l;
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- void
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::
- seed(unsigned long __value)
- {
- _M_x[0] = __detail::__mod<_UIntType, 1, 0,
- __detail::_Shift<_UIntType, __w>::__value>(__value);
-
- for (int __i = 1; __i < state_size; ++__i)
- {
- _UIntType __x = _M_x[__i - 1];
- __x ^= __x >> (__w - 2);
- __x *= 1812433253ul;
- __x += __i;
- _M_x[__i] = __detail::__mod<_UIntType, 1, 0,
- __detail::_Shift<_UIntType, __w>::__value>(__x);
- }
- _M_p = state_size;
- }
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- template<class _Gen>
- void
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::
- seed(_Gen& __gen, false_type)
- {
- for (int __i = 0; __i < state_size; ++__i)
- _M_x[__i] = __detail::__mod<_UIntType, 1, 0,
- __detail::_Shift<_UIntType, __w>::__value>(__gen());
- _M_p = state_size;
- }
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s,
- _UIntType __b, int __t, _UIntType __c, int __l>
- typename
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::result_type
- mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
- __b, __t, __c, __l>::
- operator()()
- {
- // Reload the vector - cost is O(n) amortized over n calls.
- if (_M_p >= state_size)
- {
- const _UIntType __upper_mask = (~_UIntType()) << __r;
- const _UIntType __lower_mask = ~__upper_mask;
-
- for (int __k = 0; __k < (__n - __m); ++__k)
- {
- _UIntType __y = ((_M_x[__k] & __upper_mask)
- | (_M_x[__k + 1] & __lower_mask));
- _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- }
-
- for (int __k = (__n - __m); __k < (__n - 1); ++__k)
- {
- _UIntType __y = ((_M_x[__k] & __upper_mask)
- | (_M_x[__k + 1] & __lower_mask));
- _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- }
-
- _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
- | (_M_x[0] & __lower_mask));
- _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- _M_p = 0;
- }
-
- // Calculate o(x(i)).
- result_type __z = _M_x[_M_p++];
- __z ^= (__z >> __u);
- __z ^= (__z << __s) & __b;
- __z ^= (__z << __t) & __c;
- __z ^= (__z >> __l);
-
- return __z;
- }
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s, _UIntType __b, int __t,
- _UIntType __c, int __l,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const mersenne_twister<_UIntType, __w, __n, __m,
- __r, __a, __u, __s, __b, __t, __c, __l>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
-
- for (int __i = 0; __i < __n - 1; ++__i)
- __os << __x._M_x[__i] << __space;
- __os << __x._M_x[__n - 1];
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<class _UIntType, int __w, int __n, int __m, int __r,
- _UIntType __a, int __u, int __s, _UIntType __b, int __t,
- _UIntType __c, int __l,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- mersenne_twister<_UIntType, __w, __n, __m,
- __r, __a, __u, __s, __b, __t, __c, __l>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- for (int __i = 0; __i < __n; ++__i)
- __is >> __x._M_x[__i];
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- const _IntType
- subtract_with_carry<_IntType, __m, __s, __r>::modulus;
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- const int
- subtract_with_carry<_IntType, __m, __s, __r>::long_lag;
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- const int
- subtract_with_carry<_IntType, __m, __s, __r>::short_lag;
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- void
- subtract_with_carry<_IntType, __m, __s, __r>::
- seed(unsigned long __value)
- {
- if (__value == 0)
- __value = 19780503;
-
- std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563>
- __lcg(__value);
-
- for (int __i = 0; __i < long_lag; ++__i)
- _M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__lcg());
-
- _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
- _M_p = 0;
- }
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- template<class _Gen>
- void
- subtract_with_carry<_IntType, __m, __s, __r>::
- seed(_Gen& __gen, false_type)
- {
- const int __n = (std::numeric_limits<_UIntType>::digits + 31) / 32;
-
- for (int __i = 0; __i < long_lag; ++__i)
- {
- _UIntType __tmp = 0;
- _UIntType __factor = 1;
- for (int __j = 0; __j < __n; ++__j)
- {
- __tmp += __detail::__mod<__detail::_UInt32Type, 1, 0, 0>
- (__gen()) * __factor;
- __factor *= __detail::_Shift<_UIntType, 32>::__value;
- }
- _M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__tmp);
- }
- _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
- _M_p = 0;
- }
-
- template<typename _IntType, _IntType __m, int __s, int __r>
- typename subtract_with_carry<_IntType, __m, __s, __r>::result_type
- subtract_with_carry<_IntType, __m, __s, __r>::
- operator()()
- {
- // Derive short lag index from current index.
- int __ps = _M_p - short_lag;
- if (__ps < 0)
- __ps += long_lag;
-
- // Calculate new x(i) without overflow or division.
- // NB: Thanks to the requirements for _IntType, _M_x[_M_p] + _M_carry
- // cannot overflow.
- _UIntType __xi;
- if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
- {
- __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
- _M_carry = 0;
- }
- else
- {
- __xi = modulus - _M_x[_M_p] - _M_carry + _M_x[__ps];
- _M_carry = 1;
- }
- _M_x[_M_p] = __xi;
-
- // Adjust current index to loop around in ring buffer.
- if (++_M_p >= long_lag)
- _M_p = 0;
-
- return __xi;
- }
-
- template<typename _IntType, _IntType __m, int __s, int __r,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const subtract_with_carry<_IntType, __m, __s, __r>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
-
- for (int __i = 0; __i < __r; ++__i)
- __os << __x._M_x[__i] << __space;
- __os << __x._M_carry;
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<typename _IntType, _IntType __m, int __s, int __r,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- subtract_with_carry<_IntType, __m, __s, __r>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- for (int __i = 0; __i < __r; ++__i)
- __is >> __x._M_x[__i];
- __is >> __x._M_carry;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _RealType, int __w, int __s, int __r>
- const int
- subtract_with_carry_01<_RealType, __w, __s, __r>::word_size;
-
- template<typename _RealType, int __w, int __s, int __r>
- const int
- subtract_with_carry_01<_RealType, __w, __s, __r>::long_lag;
-
- template<typename _RealType, int __w, int __s, int __r>
- const int
- subtract_with_carry_01<_RealType, __w, __s, __r>::short_lag;
-
- template<typename _RealType, int __w, int __s, int __r>
- void
- subtract_with_carry_01<_RealType, __w, __s, __r>::
- _M_initialize_npows()
- {
- for (int __j = 0; __j < __n; ++__j)
- #if _GLIBCXX_USE_C99_MATH_TR1
- _M_npows[__j] = std::tr1::ldexp(_RealType(1), -__w + __j * 32);
- #else
- _M_npows[__j] = std::pow(_RealType(2), -__w + __j * 32);
- #endif
- }
-
- template<typename _RealType, int __w, int __s, int __r>
- void
- subtract_with_carry_01<_RealType, __w, __s, __r>::
- seed(unsigned long __value)
- {
- if (__value == 0)
- __value = 19780503;
-
- // _GLIBCXX_RESOLVE_LIB_DEFECTS
- // 512. Seeding subtract_with_carry_01 from a single unsigned long.
- std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563>
- __lcg(__value);
-
- this->seed(__lcg);
- }
-
- template<typename _RealType, int __w, int __s, int __r>
- template<class _Gen>
- void
- subtract_with_carry_01<_RealType, __w, __s, __r>::
- seed(_Gen& __gen, false_type)
- {
- for (int __i = 0; __i < long_lag; ++__i)
- {
- for (int __j = 0; __j < __n - 1; ++__j)
- _M_x[__i][__j] = __detail::__mod<_UInt32Type, 1, 0, 0>(__gen());
- _M_x[__i][__n - 1] = __detail::__mod<_UInt32Type, 1, 0,
- __detail::_Shift<_UInt32Type, __w % 32>::__value>(__gen());
- }
-
- _M_carry = 1;
- for (int __j = 0; __j < __n; ++__j)
- if (_M_x[long_lag - 1][__j] != 0)
- {
- _M_carry = 0;
- break;
- }
-
- _M_p = 0;
- }
-
- template<typename _RealType, int __w, int __s, int __r>
- typename subtract_with_carry_01<_RealType, __w, __s, __r>::result_type
- subtract_with_carry_01<_RealType, __w, __s, __r>::
- operator()()
- {
- // Derive short lag index from current index.
- int __ps = _M_p - short_lag;
- if (__ps < 0)
- __ps += long_lag;
-
- _UInt32Type __new_carry;
- for (int __j = 0; __j < __n - 1; ++__j)
- {
- if (_M_x[__ps][__j] > _M_x[_M_p][__j]
- || (_M_x[__ps][__j] == _M_x[_M_p][__j] && _M_carry == 0))
- __new_carry = 0;
- else
- __new_carry = 1;
-
- _M_x[_M_p][__j] = _M_x[__ps][__j] - _M_x[_M_p][__j] - _M_carry;
- _M_carry = __new_carry;
- }
-
- if (_M_x[__ps][__n - 1] > _M_x[_M_p][__n - 1]
- || (_M_x[__ps][__n - 1] == _M_x[_M_p][__n - 1] && _M_carry == 0))
- __new_carry = 0;
- else
- __new_carry = 1;
-
- _M_x[_M_p][__n - 1] = __detail::__mod<_UInt32Type, 1, 0,
- __detail::_Shift<_UInt32Type, __w % 32>::__value>
- (_M_x[__ps][__n - 1] - _M_x[_M_p][__n - 1] - _M_carry);
- _M_carry = __new_carry;
-
- result_type __ret = 0.0;
- for (int __j = 0; __j < __n; ++__j)
- __ret += _M_x[_M_p][__j] * _M_npows[__j];
-
- // Adjust current index to loop around in ring buffer.
- if (++_M_p >= long_lag)
- _M_p = 0;
-
- return __ret;
- }
-
- template<typename _RealType, int __w, int __s, int __r,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const subtract_with_carry_01<_RealType, __w, __s, __r>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
-
- for (int __i = 0; __i < __r; ++__i)
- for (int __j = 0; __j < __x.__n; ++__j)
- __os << __x._M_x[__i][__j] << __space;
- __os << __x._M_carry;
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<typename _RealType, int __w, int __s, int __r,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- subtract_with_carry_01<_RealType, __w, __s, __r>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- for (int __i = 0; __i < __r; ++__i)
- for (int __j = 0; __j < __x.__n; ++__j)
- __is >> __x._M_x[__i][__j];
- __is >> __x._M_carry;
-
- __is.flags(__flags);
- return __is;
- }
-
- template<class _UniformRandomNumberGenerator, int __p, int __r>
- const int
- discard_block<_UniformRandomNumberGenerator, __p, __r>::block_size;
-
- template<class _UniformRandomNumberGenerator, int __p, int __r>
- const int
- discard_block<_UniformRandomNumberGenerator, __p, __r>::used_block;
-
- template<class _UniformRandomNumberGenerator, int __p, int __r>
- typename discard_block<_UniformRandomNumberGenerator,
- __p, __r>::result_type
- discard_block<_UniformRandomNumberGenerator, __p, __r>::
- operator()()
- {
- if (_M_n >= used_block)
- {
- while (_M_n < block_size)
- {
- _M_b();
- ++_M_n;
- }
- _M_n = 0;
- }
- ++_M_n;
- return _M_b();
- }
-
- template<class _UniformRandomNumberGenerator, int __p, int __r,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const discard_block<_UniformRandomNumberGenerator,
- __p, __r>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed
- | __ios_base::left);
- __os.fill(__space);
-
- __os << __x._M_b << __space << __x._M_n;
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<class _UniformRandomNumberGenerator, int __p, int __r,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- discard_block<_UniformRandomNumberGenerator, __p, __r>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- __is >> __x._M_b >> __x._M_n;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2>
- const int
- xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>::shift1;
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2>
- const int
- xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>::shift2;
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2>
- void
- xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>::
- _M_initialize_max()
- {
- const int __w = std::numeric_limits<result_type>::digits;
-
- const result_type __m1 =
- std::min(result_type(_M_b1.max() - _M_b1.min()),
- __detail::_Shift<result_type, __w - __s1>::__value - 1);
-
- const result_type __m2 =
- std::min(result_type(_M_b2.max() - _M_b2.min()),
- __detail::_Shift<result_type, __w - __s2>::__value - 1);
-
- // NB: In TR1 s1 is not required to be >= s2.
- if (__s1 < __s2)
- _M_max = _M_initialize_max_aux(__m2, __m1, __s2 - __s1) << __s1;
- else
- _M_max = _M_initialize_max_aux(__m1, __m2, __s1 - __s2) << __s2;
- }
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2>
- typename xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>::result_type
- xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>::
- _M_initialize_max_aux(result_type __a, result_type __b, int __d)
- {
- const result_type __two2d = result_type(1) << __d;
- const result_type __c = __a * __two2d;
-
- if (__a == 0 || __b < __two2d)
- return __c + __b;
-
- const result_type __t = std::max(__c, __b);
- const result_type __u = std::min(__c, __b);
-
- result_type __ub = __u;
- result_type __p;
- for (__p = 0; __ub != 1; __ub >>= 1)
- ++__p;
-
- const result_type __two2p = result_type(1) << __p;
- const result_type __k = __t / __two2p;
-
- if (__k & 1)
- return (__k + 1) * __two2p - 1;
-
- if (__c >= __b)
- return (__k + 1) * __two2p + _M_initialize_max_aux((__t % __two2p)
- / __two2d,
- __u % __two2p, __d);
- else
- return (__k + 1) * __two2p + _M_initialize_max_aux((__u % __two2p)
- / __two2d,
- __t % __two2p, __d);
- }
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
-
- __os << __x.base1() << __space << __x.base2();
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<class _UniformRandomNumberGenerator1, int __s1,
- class _UniformRandomNumberGenerator2, int __s2,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- xor_combine<_UniformRandomNumberGenerator1, __s1,
- _UniformRandomNumberGenerator2, __s2>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
-
- __is >> __x._M_b1 >> __x._M_b2;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename uniform_int<_IntType>::result_type
- uniform_int<_IntType>::
- _M_call(_UniformRandomNumberGenerator& __urng,
- result_type __min, result_type __max, true_type)
- {
- // XXX Must be fixed to work well for *arbitrary* __urng.max(),
- // __urng.min(), __max, __min. Currently works fine only in the
- // most common case __urng.max() - __urng.min() >= __max - __min,
- // with __urng.max() > __urng.min() >= 0.
- typedef typename __gnu_cxx::__add_unsigned<typename
- _UniformRandomNumberGenerator::result_type>::__type __urntype;
- typedef typename __gnu_cxx::__add_unsigned<result_type>::__type
- __utype;
- typedef typename __gnu_cxx::__conditional_type<(sizeof(__urntype)
- > sizeof(__utype)),
- __urntype, __utype>::__type __uctype;
-
- result_type __ret;
-
- const __urntype __urnmin = __urng.min();
- const __urntype __urnmax = __urng.max();
- const __urntype __urnrange = __urnmax - __urnmin;
- const __uctype __urange = __max - __min;
- const __uctype __udenom = (__urnrange <= __urange
- ? 1 : __urnrange / (__urange + 1));
- do
- __ret = (__urntype(__urng()) - __urnmin) / __udenom;
- while (__ret > __max - __min);
-
- return __ret + __min;
- }
-
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const uniform_int<_IntType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
-
- __os << __x.min() << __space << __x.max();
-
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
-
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- uniform_int<_IntType>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- __is >> __x._M_min >> __x._M_max;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const bernoulli_distribution& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(__gnu_cxx::__numeric_traits<double>::__max_digits10);
-
- __os << __x.p();
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
-
- template<typename _IntType, typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename geometric_distribution<_IntType, _RealType>::result_type
- geometric_distribution<_IntType, _RealType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- // About the epsilon thing see this thread:
- // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
- const _RealType __naf =
- (1 - std::numeric_limits<_RealType>::epsilon()) / 2;
- // The largest _RealType convertible to _IntType.
- const _RealType __thr =
- std::numeric_limits<_IntType>::max() + __naf;
-
- _RealType __cand;
- do
- __cand = std::ceil(std::log(__urng()) / _M_log_p);
- while (__cand >= __thr);
-
- return result_type(__cand + __naf);
- }
-
- template<typename _IntType, typename _RealType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const geometric_distribution<_IntType, _RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.p();
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
-
- template<typename _IntType, typename _RealType>
- void
- poisson_distribution<_IntType, _RealType>::
- _M_initialize()
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (_M_mean >= 12)
- {
- const _RealType __m = std::floor(_M_mean);
- _M_lm_thr = std::log(_M_mean);
- _M_lfm = std::tr1::lgamma(__m + 1);
- _M_sm = std::sqrt(__m);
-
- const _RealType __pi_4 = 0.7853981633974483096156608458198757L;
- const _RealType __dx = std::sqrt(2 * __m * std::log(32 * __m
- / __pi_4));
- _M_d = std::tr1::round(std::max(_RealType(6),
- std::min(__m, __dx)));
- const _RealType __cx = 2 * __m + _M_d;
- _M_scx = std::sqrt(__cx / 2);
- _M_1cx = 1 / __cx;
-
- _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
- _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) / _M_d;
- }
- else
- #endif
- _M_lm_thr = std::exp(-_M_mean);
- }
-
- /**
- * A rejection algorithm when mean >= 12 and a simple method based
- * upon the multiplication of uniform random variates otherwise.
- * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
- * is defined.
- *
- * Reference:
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
- */
- template<typename _IntType, typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename poisson_distribution<_IntType, _RealType>::result_type
- poisson_distribution<_IntType, _RealType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (_M_mean >= 12)
- {
- _RealType __x;
-
- // See comments above...
- const _RealType __naf =
- (1 - std::numeric_limits<_RealType>::epsilon()) / 2;
- const _RealType __thr =
- std::numeric_limits<_IntType>::max() + __naf;
-
- const _RealType __m = std::floor(_M_mean);
- // sqrt(pi / 2)
- const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
- const _RealType __c1 = _M_sm * __spi_2;
- const _RealType __c2 = _M_c2b + __c1;
- const _RealType __c3 = __c2 + 1;
- const _RealType __c4 = __c3 + 1;
- // e^(1 / 78)
- const _RealType __e178 = 1.0129030479320018583185514777512983L;
- const _RealType __c5 = __c4 + __e178;
- const _RealType __c = _M_cb + __c5;
- const _RealType __2cx = 2 * (2 * __m + _M_d);
-
- bool __reject = true;
- do
- {
- const _RealType __u = __c * __urng();
- const _RealType __e = -std::log(__urng());
-
- _RealType __w = 0.0;
-
- if (__u <= __c1)
- {
- const _RealType __n = _M_nd(__urng);
- const _RealType __y = -std::abs(__n) * _M_sm - 1;
- __x = std::floor(__y);
- __w = -__n * __n / 2;
- if (__x < -__m)
- continue;
- }
- else if (__u <= __c2)
- {
- const _RealType __n = _M_nd(__urng);
- const _RealType __y = 1 + std::abs(__n) * _M_scx;
- __x = std::ceil(__y);
- __w = __y * (2 - __y) * _M_1cx;
- if (__x > _M_d)
- continue;
- }
- else if (__u <= __c3)
- // NB: This case not in the book, nor in the Errata,
- // but should be ok...
- __x = -1;
- else if (__u <= __c4)
- __x = 0;
- else if (__u <= __c5)
- __x = 1;
- else
- {
- const _RealType __v = -std::log(__urng());
- const _RealType __y = _M_d + __v * __2cx / _M_d;
- __x = std::ceil(__y);
- __w = -_M_d * _M_1cx * (1 + __y / 2);
- }
-
- __reject = (__w - __e - __x * _M_lm_thr
- > _M_lfm - std::tr1::lgamma(__x + __m + 1));
-
- __reject |= __x + __m >= __thr;
-
- } while (__reject);
-
- return result_type(__x + __m + __naf);
- }
- else
- #endif
- {
- _IntType __x = 0;
- _RealType __prod = 1.0;
-
- do
- {
- __prod *= __urng();
- __x += 1;
- }
- while (__prod > _M_lm_thr);
-
- return __x - 1;
- }
- }
-
- template<typename _IntType, typename _RealType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const poisson_distribution<_IntType, _RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.mean() << __space << __x._M_nd;
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
- template<typename _IntType, typename _RealType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- poisson_distribution<_IntType, _RealType>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
-
- __is >> __x._M_mean >> __x._M_nd;
- __x._M_initialize();
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _IntType, typename _RealType>
- void
- binomial_distribution<_IntType, _RealType>::
- _M_initialize()
- {
- const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
-
- _M_easy = true;
-
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (_M_t * __p12 >= 8)
- {
- _M_easy = false;
- const _RealType __np = std::floor(_M_t * __p12);
- const _RealType __pa = __np / _M_t;
- const _RealType __1p = 1 - __pa;
-
- const _RealType __pi_4 = 0.7853981633974483096156608458198757L;
- const _RealType __d1x =
- std::sqrt(__np * __1p * std::log(32 * __np
- / (81 * __pi_4 * __1p)));
- _M_d1 = std::tr1::round(std::max(_RealType(1), __d1x));
- const _RealType __d2x =
- std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
- / (__pi_4 * __pa)));
- _M_d2 = std::tr1::round(std::max(_RealType(1), __d2x));
-
- // sqrt(pi / 2)
- const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
- _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
- _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
- _M_c = 2 * _M_d1 / __np;
- _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
- const _RealType __a12 = _M_a1 + _M_s2 * __spi_2;
- const _RealType __s1s = _M_s1 * _M_s1;
- _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
- * 2 * __s1s / _M_d1
- * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
- const _RealType __s2s = _M_s2 * _M_s2;
- _M_s = (_M_a123 + 2 * __s2s / _M_d2
- * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
- _M_lf = (std::tr1::lgamma(__np + 1)
- + std::tr1::lgamma(_M_t - __np + 1));
- _M_lp1p = std::log(__pa / __1p);
-
- _M_q = -std::log(1 - (__p12 - __pa) / __1p);
- }
- else
- #endif
- _M_q = -std::log(1 - __p12);
- }
-
- template<typename _IntType, typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename binomial_distribution<_IntType, _RealType>::result_type
- binomial_distribution<_IntType, _RealType>::
- _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
- {
- _IntType __x = 0;
- _RealType __sum = 0;
-
- do
- {
- const _RealType __e = -std::log(__urng());
- __sum += __e / (__t - __x);
- __x += 1;
- }
- while (__sum <= _M_q);
-
- return __x - 1;
- }
-
- /**
- * A rejection algorithm when t * p >= 8 and a simple waiting time
- * method - the second in the referenced book - otherwise.
- * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
- * is defined.
- *
- * Reference:
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
- */
- template<typename _IntType, typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename binomial_distribution<_IntType, _RealType>::result_type
- binomial_distribution<_IntType, _RealType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __ret;
- const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
-
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (!_M_easy)
- {
- _RealType __x;
-
- // See comments above...
- const _RealType __naf =
- (1 - std::numeric_limits<_RealType>::epsilon()) / 2;
- const _RealType __thr =
- std::numeric_limits<_IntType>::max() + __naf;
-
- const _RealType __np = std::floor(_M_t * __p12);
- const _RealType __pa = __np / _M_t;
-
- // sqrt(pi / 2)
- const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
- const _RealType __a1 = _M_a1;
- const _RealType __a12 = __a1 + _M_s2 * __spi_2;
- const _RealType __a123 = _M_a123;
- const _RealType __s1s = _M_s1 * _M_s1;
- const _RealType __s2s = _M_s2 * _M_s2;
-
- bool __reject;
- do
- {
- const _RealType __u = _M_s * __urng();
-
- _RealType __v;
-
- if (__u <= __a1)
- {
- const _RealType __n = _M_nd(__urng);
- const _RealType __y = _M_s1 * std::abs(__n);
- __reject = __y >= _M_d1;
- if (!__reject)
- {
- const _RealType __e = -std::log(__urng());
- __x = std::floor(__y);
- __v = -__e - __n * __n / 2 + _M_c;
- }
- }
- else if (__u <= __a12)
- {
- const _RealType __n = _M_nd(__urng);
- const _RealType __y = _M_s2 * std::abs(__n);
- __reject = __y >= _M_d2;
- if (!__reject)
- {
- const _RealType __e = -std::log(__urng());
- __x = std::floor(-__y);
- __v = -__e - __n * __n / 2;
- }
- }
- else if (__u <= __a123)
- {
- const _RealType __e1 = -std::log(__urng());
- const _RealType __e2 = -std::log(__urng());
-
- const _RealType __y = _M_d1 + 2 * __s1s * __e1 / _M_d1;
- __x = std::floor(__y);
- __v = (-__e2 + _M_d1 * (1 / (_M_t - __np)
- -__y / (2 * __s1s)));
- __reject = false;
- }
- else
- {
- const _RealType __e1 = -std::log(__urng());
- const _RealType __e2 = -std::log(__urng());
-
- const _RealType __y = _M_d2 + 2 * __s2s * __e1 / _M_d2;
- __x = std::floor(-__y);
- __v = -__e2 - _M_d2 * __y / (2 * __s2s);
- __reject = false;
- }
-
- __reject = __reject || __x < -__np || __x > _M_t - __np;
- if (!__reject)
- {
- const _RealType __lfx =
- std::tr1::lgamma(__np + __x + 1)
- + std::tr1::lgamma(_M_t - (__np + __x) + 1);
- __reject = __v > _M_lf - __lfx + __x * _M_lp1p;
- }
-
- __reject |= __x + __np >= __thr;
- }
- while (__reject);
-
- __x += __np + __naf;
-
- const _IntType __z = _M_waiting(__urng, _M_t - _IntType(__x));
- __ret = _IntType(__x) + __z;
- }
- else
- #endif
- __ret = _M_waiting(__urng, _M_t);
-
- if (__p12 != _M_p)
- __ret = _M_t - __ret;
- return __ret;
- }
-
- template<typename _IntType, typename _RealType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const binomial_distribution<_IntType, _RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.t() << __space << __x.p()
- << __space << __x._M_nd;
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
- template<typename _IntType, typename _RealType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- binomial_distribution<_IntType, _RealType>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- __is >> __x._M_t >> __x._M_p >> __x._M_nd;
- __x._M_initialize();
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const uniform_real<_RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.min() << __space << __x.max();
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- uniform_real<_RealType>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
-
- __is >> __x._M_min >> __x._M_max;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const exponential_distribution<_RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.lambda();
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
-
- /**
- * Polar method due to Marsaglia.
- *
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. V, Sect. 4.4.
- */
- template<typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename normal_distribution<_RealType>::result_type
- normal_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __ret;
-
- if (_M_saved_available)
- {
- _M_saved_available = false;
- __ret = _M_saved;
- }
- else
- {
- result_type __x, __y, __r2;
- do
- {
- __x = result_type(2.0) * __urng() - 1.0;
- __y = result_type(2.0) * __urng() - 1.0;
- __r2 = __x * __x + __y * __y;
- }
- while (__r2 > 1.0 || __r2 == 0.0);
-
- const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
- _M_saved = __x * __mult;
- _M_saved_available = true;
- __ret = __y * __mult;
- }
-
- __ret = __ret * _M_sigma + _M_mean;
- return __ret;
- }
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const normal_distribution<_RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x._M_saved_available << __space
- << __x.mean() << __space
- << __x.sigma();
- if (__x._M_saved_available)
- __os << __space << __x._M_saved;
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- normal_distribution<_RealType>& __x)
- {
- typedef std::basic_istream<_CharT, _Traits> __istream_type;
- typedef typename __istream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
-
- __is >> __x._M_saved_available >> __x._M_mean
- >> __x._M_sigma;
- if (__x._M_saved_available)
- __is >> __x._M_saved;
-
- __is.flags(__flags);
- return __is;
- }
-
-
- template<typename _RealType>
- void
- gamma_distribution<_RealType>::
- _M_initialize()
- {
- if (_M_alpha >= 1)
- _M_l_d = std::sqrt(2 * _M_alpha - 1);
- else
- _M_l_d = (std::pow(_M_alpha, _M_alpha / (1 - _M_alpha))
- * (1 - _M_alpha));
- }
-
- /**
- * Cheng's rejection algorithm GB for alpha >= 1 and a modification
- * of Vaduva's rejection from Weibull algorithm due to Devroye for
- * alpha < 1.
- *
- * References:
- * Cheng, R. C. The Generation of Gamma Random Variables with Non-integral
- * Shape Parameter. Applied Statistics, 26, 71-75, 1977.
- *
- * Vaduva, I. Computer Generation of Gamma Gandom Variables by Rejection
- * and Composition Procedures. Math. Operationsforschung and Statistik,
- * Series in Statistics, 8, 545-576, 1977.
- *
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. IX, Sect. 3.4 (+ Errata!).
- */
- template<typename _RealType>
- template<class _UniformRandomNumberGenerator>
- typename gamma_distribution<_RealType>::result_type
- gamma_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __x;
-
- bool __reject;
- if (_M_alpha >= 1)
- {
- // alpha - log(4)
- const result_type __b = _M_alpha
- - result_type(1.3862943611198906188344642429163531L);
- const result_type __c = _M_alpha + _M_l_d;
- const result_type __1l = 1 / _M_l_d;
-
- // 1 + log(9 / 2)
- const result_type __k = 2.5040773967762740733732583523868748L;
-
- do
- {
- const result_type __u = __urng();
- const result_type __v = __urng();
-
- const result_type __y = __1l * std::log(__v / (1 - __v));
- __x = _M_alpha * std::exp(__y);
-
- const result_type __z = __u * __v * __v;
- const result_type __r = __b + __c * __y - __x;
-
- __reject = __r < result_type(4.5) * __z - __k;
- if (__reject)
- __reject = __r < std::log(__z);
- }
- while (__reject);
- }
- else
- {
- const result_type __c = 1 / _M_alpha;
-
- do
- {
- const result_type __z = -std::log(__urng());
- const result_type __e = -std::log(__urng());
-
- __x = std::pow(__z, __c);
-
- __reject = __z + __e < _M_l_d + __x;
- }
- while (__reject);
- }
-
- return __x;
- }
-
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const gamma_distribution<_RealType>& __x)
- {
- typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
- typedef typename __ostream_type::ios_base __ios_base;
-
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
-
- __os << __x.alpha();
-
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- }
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif
|