|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Edges (GNU Compiler Collection (GCC) Internals)</title>
-
- <meta name="description" content="Edges (GNU Compiler Collection (GCC) Internals)">
- <meta name="keywords" content="Edges (GNU Compiler Collection (GCC) Internals)">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Control-Flow.html#Control-Flow" rel="up" title="Control Flow">
- <link href="Profile-information.html#Profile-information" rel="next" title="Profile information">
- <link href="Basic-Blocks.html#Basic-Blocks" rel="prev" title="Basic Blocks">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Edges"></a>
- <div class="header">
- <p>
- Next: <a href="Profile-information.html#Profile-information" accesskey="n" rel="next">Profile information</a>, Previous: <a href="Basic-Blocks.html#Basic-Blocks" accesskey="p" rel="prev">Basic Blocks</a>, Up: <a href="Control-Flow.html#Control-Flow" accesskey="u" rel="up">Control Flow</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Edges-1"></a>
- <h3 class="section">15.2 Edges</h3>
-
- <a name="index-edge-in-the-flow-graph"></a>
- <a name="index-edge"></a>
- <p>Edges represent possible control flow transfers from the end of some
- basic block A to the head of another basic block B. We say that A is
- a predecessor of B, and B is a successor of A. Edges are represented
- in GCC with the <code>edge</code> data type. Each <code>edge</code> acts as a
- link between two basic blocks: The <code>src</code> member of an edge
- points to the predecessor basic block of the <code>dest</code> basic block.
- The members <code>preds</code> and <code>succs</code> of the <code>basic_block</code> data
- type point to type-safe vectors of edges to the predecessors and
- successors of the block.
- </p>
- <a name="index-edge-iterators"></a>
- <p>When walking the edges in an edge vector, <em>edge iterators</em> should
- be used. Edge iterators are constructed using the
- <code>edge_iterator</code> data structure and several methods are available
- to operate on them:
- </p>
- <dl compact="compact">
- <dt><code>ei_start</code>
- <a name="index-ei_005fstart"></a>
- </dt>
- <dd><p>This function initializes an <code>edge_iterator</code> that points to the
- first edge in a vector of edges.
- </p>
- </dd>
- <dt><code>ei_last</code>
- <a name="index-ei_005flast"></a>
- </dt>
- <dd><p>This function initializes an <code>edge_iterator</code> that points to the
- last edge in a vector of edges.
- </p>
- </dd>
- <dt><code>ei_end_p</code>
- <a name="index-ei_005fend_005fp"></a>
- </dt>
- <dd><p>This predicate is <code>true</code> if an <code>edge_iterator</code> represents
- the last edge in an edge vector.
- </p>
- </dd>
- <dt><code>ei_one_before_end_p</code>
- <a name="index-ei_005fone_005fbefore_005fend_005fp"></a>
- </dt>
- <dd><p>This predicate is <code>true</code> if an <code>edge_iterator</code> represents
- the second last edge in an edge vector.
- </p>
- </dd>
- <dt><code>ei_next</code>
- <a name="index-ei_005fnext"></a>
- </dt>
- <dd><p>This function takes a pointer to an <code>edge_iterator</code> and makes it
- point to the next edge in the sequence.
- </p>
- </dd>
- <dt><code>ei_prev</code>
- <a name="index-ei_005fprev"></a>
- </dt>
- <dd><p>This function takes a pointer to an <code>edge_iterator</code> and makes it
- point to the previous edge in the sequence.
- </p>
- </dd>
- <dt><code>ei_edge</code>
- <a name="index-ei_005fedge"></a>
- </dt>
- <dd><p>This function returns the <code>edge</code> currently pointed to by an
- <code>edge_iterator</code>.
- </p>
- </dd>
- <dt><code>ei_safe_safe</code>
- <a name="index-ei_005fsafe_005fsafe"></a>
- </dt>
- <dd><p>This function returns the <code>edge</code> currently pointed to by an
- <code>edge_iterator</code>, but returns <code>NULL</code> if the iterator is
- pointing at the end of the sequence. This function has been provided
- for existing code makes the assumption that a <code>NULL</code> edge
- indicates the end of the sequence.
- </p>
- </dd>
- </dl>
-
- <p>The convenience macro <code>FOR_EACH_EDGE</code> can be used to visit all of
- the edges in a sequence of predecessor or successor edges. It must
- not be used when an element might be removed during the traversal,
- otherwise elements will be missed. Here is an example of how to use
- the macro:
- </p>
- <div class="smallexample">
- <pre class="smallexample">edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->flags & EDGE_FALLTHRU)
- break;
- }
- </pre></div>
-
- <a name="index-fall_002dthru"></a>
- <p>There are various reasons why control flow may transfer from one block
- to another. One possibility is that some instruction, for example a
- <code>CODE_LABEL</code>, in a linearized instruction stream just always
- starts a new basic block. In this case a <em>fall-thru</em> edge links
- the basic block to the first following basic block. But there are
- several other reasons why edges may be created. The <code>flags</code>
- field of the <code>edge</code> data type is used to store information
- about the type of edge we are dealing with. Each edge is of one of
- the following types:
- </p>
- <dl compact="compact">
- <dt><em>jump</em></dt>
- <dd><p>No type flags are set for edges corresponding to jump instructions.
- These edges are used for unconditional or conditional jumps and in
- RTL also for table jumps. They are the easiest to manipulate as they
- may be freely redirected when the flow graph is not in SSA form.
- </p>
- </dd>
- <dt><em>fall-thru</em></dt>
- <dd><a name="index-EDGE_005fFALLTHRU_002c-force_005fnonfallthru"></a>
- <p>Fall-thru edges are present in case where the basic block may continue
- execution to the following one without branching. These edges have
- the <code>EDGE_FALLTHRU</code> flag set. Unlike other types of edges, these
- edges must come into the basic block immediately following in the
- instruction stream. The function <code>force_nonfallthru</code> is
- available to insert an unconditional jump in the case that redirection
- is needed. Note that this may require creation of a new basic block.
- </p>
- </dd>
- <dt><em>exception handling</em></dt>
- <dd><a name="index-exception-handling"></a>
- <a name="index-EDGE_005fABNORMAL_002c-EDGE_005fEH"></a>
- <p>Exception handling edges represent possible control transfers from a
- trapping instruction to an exception handler. The definition of
- “trapping” varies. In C++, only function calls can throw, but for
- Ada exceptions like division by zero or segmentation fault are
- defined and thus each instruction possibly throwing this kind of
- exception needs to be handled as control flow instruction. Exception
- edges have the <code>EDGE_ABNORMAL</code> and <code>EDGE_EH</code> flags set.
- </p>
- <a name="index-purge_005fdead_005fedges"></a>
- <p>When updating the instruction stream it is easy to change possibly
- trapping instruction to non-trapping, by simply removing the exception
- edge. The opposite conversion is difficult, but should not happen
- anyway. The edges can be eliminated via <code>purge_dead_edges</code> call.
- </p>
- <a name="index-REG_005fEH_005fREGION_002c-EDGE_005fABNORMAL_005fCALL"></a>
- <p>In the RTL representation, the destination of an exception edge is
- specified by <code>REG_EH_REGION</code> note attached to the insn.
- In case of a trapping call the <code>EDGE_ABNORMAL_CALL</code> flag is set
- too. In the <code>GIMPLE</code> representation, this extra flag is not set.
- </p>
- <a name="index-may_005ftrap_005fp_002c-tree_005fcould_005ftrap_005fp"></a>
- <p>In the RTL representation, the predicate <code>may_trap_p</code> may be used
- to check whether instruction still may trap or not. For the tree
- representation, the <code>tree_could_trap_p</code> predicate is available,
- but this predicate only checks for possible memory traps, as in
- dereferencing an invalid pointer location.
- </p>
-
- </dd>
- <dt><em>sibling calls</em></dt>
- <dd><a name="index-sibling-call"></a>
- <a name="index-EDGE_005fABNORMAL_002c-EDGE_005fSIBCALL"></a>
- <p>Sibling calls or tail calls terminate the function in a non-standard
- way and thus an edge to the exit must be present.
- <code>EDGE_SIBCALL</code> and <code>EDGE_ABNORMAL</code> are set in such case.
- These edges only exist in the RTL representation.
- </p>
- </dd>
- <dt><em>computed jumps</em></dt>
- <dd><a name="index-computed-jump"></a>
- <a name="index-EDGE_005fABNORMAL"></a>
- <p>Computed jumps contain edges to all labels in the function referenced
- from the code. All those edges have <code>EDGE_ABNORMAL</code> flag set.
- The edges used to represent computed jumps often cause compile time
- performance problems, since functions consisting of many taken labels
- and many computed jumps may have <em>very</em> dense flow graphs, so
- these edges need to be handled with special care. During the earlier
- stages of the compilation process, GCC tries to avoid such dense flow
- graphs by factoring computed jumps. For example, given the following
- series of jumps,
- </p>
- <div class="smallexample">
- <pre class="smallexample"> goto *x;
- [ … ]
-
- goto *x;
- [ … ]
-
- goto *x;
- [ … ]
- </pre></div>
-
- <p>factoring the computed jumps results in the following code sequence
- which has a much simpler flow graph:
- </p>
- <div class="smallexample">
- <pre class="smallexample"> goto y;
- [ … ]
-
- goto y;
- [ … ]
-
- goto y;
- [ … ]
-
- y:
- goto *x;
- </pre></div>
-
- <a name="index-pass_005fduplicate_005fcomputed_005fgotos"></a>
- <p>However, the classic problem with this transformation is that it has a
- runtime cost in there resulting code: An extra jump. Therefore, the
- computed jumps are un-factored in the later passes of the compiler
- (in the pass called <code>pass_duplicate_computed_gotos</code>).
- Be aware of that when you work on passes in that area. There have
- been numerous examples already where the compile time for code with
- unfactored computed jumps caused some serious headaches.
- </p>
- </dd>
- <dt><em>nonlocal goto handlers</em></dt>
- <dd><a name="index-nonlocal-goto-handler"></a>
- <a name="index-EDGE_005fABNORMAL_002c-EDGE_005fABNORMAL_005fCALL"></a>
- <p>GCC allows nested functions to return into caller using a <code>goto</code>
- to a label passed to as an argument to the callee. The labels passed
- to nested functions contain special code to cleanup after function
- call. Such sections of code are referred to as “nonlocal goto
- receivers”. If a function contains such nonlocal goto receivers, an
- edge from the call to the label is created with the
- <code>EDGE_ABNORMAL</code> and <code>EDGE_ABNORMAL_CALL</code> flags set.
- </p>
- </dd>
- <dt><em>function entry points</em></dt>
- <dd><a name="index-function-entry-point_002c-alternate-function-entry-point"></a>
- <a name="index-LABEL_005fALTERNATE_005fNAME"></a>
- <p>By definition, execution of function starts at basic block 0, so there
- is always an edge from the <code>ENTRY_BLOCK_PTR</code> to basic block 0.
- There is no <code>GIMPLE</code> representation for alternate entry points at
- this moment. In RTL, alternate entry points are specified by
- <code>CODE_LABEL</code> with <code>LABEL_ALTERNATE_NAME</code> defined. This
- feature is currently used for multiple entry point prologues and is
- limited to post-reload passes only. This can be used by back-ends to
- emit alternate prologues for functions called from different contexts.
- In future full support for multiple entry functions defined by Fortran
- 90 needs to be implemented.
- </p>
- </dd>
- <dt><em>function exits</em></dt>
- <dd><p>In the pre-reload representation a function terminates after the last
- instruction in the insn chain and no explicit return instructions are
- used. This corresponds to the fall-thru edge into exit block. After
- reload, optimal RTL epilogues are used that use explicit (conditional)
- return instructions that are represented by edges with no flags set.
- </p>
- </dd>
- </dl>
-
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="Profile-information.html#Profile-information" accesskey="n" rel="next">Profile information</a>, Previous: <a href="Basic-Blocks.html#Basic-Blocks" accesskey="p" rel="prev">Basic Blocks</a>, Up: <a href="Control-Flow.html#Control-Flow" accesskey="u" rel="up">Control Flow</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|