|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Free Software" and "Free Software Needs
- Free Documentation", with the Front-Cover Texts being "A GNU Manual,"
- and with the Back-Cover Texts as in (a) below.
-
- (a) The FSF's Back-Cover Text is: "You are free to copy and modify
- this GNU Manual. Buying copies from GNU Press supports the FSF in
- developing GNU and promoting software freedom." -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Bytecode Descriptions (Debugging with GDB)</title>
-
- <meta name="description" content="Bytecode Descriptions (Debugging with GDB)">
- <meta name="keywords" content="Bytecode Descriptions (Debugging with GDB)">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Agent-Expressions.html#Agent-Expressions" rel="up" title="Agent Expressions">
- <link href="Using-Agent-Expressions.html#Using-Agent-Expressions" rel="next" title="Using Agent Expressions">
- <link href="General-Bytecode-Design.html#General-Bytecode-Design" rel="prev" title="General Bytecode Design">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Bytecode-Descriptions"></a>
- <div class="header">
- <p>
- Next: <a href="Using-Agent-Expressions.html#Using-Agent-Expressions" accesskey="n" rel="next">Using Agent Expressions</a>, Previous: <a href="General-Bytecode-Design.html#General-Bytecode-Design" accesskey="p" rel="prev">General Bytecode Design</a>, Up: <a href="Agent-Expressions.html#Agent-Expressions" accesskey="u" rel="up">Agent Expressions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Bytecode-Descriptions-1"></a>
- <h3 class="section">F.2 Bytecode Descriptions</h3>
-
- <p>Each bytecode description has the following form:
- </p>
- <dl compact="compact">
- <dt><code>add</code> (0x02): <var>a</var> <var>b</var> ⇒ <var>a+b</var></dt>
- <dd>
- <p>Pop the top two stack items, <var>a</var> and <var>b</var>, as integers; push
- their sum, as an integer.
- </p>
- </dd>
- </dl>
-
- <p>In this example, <code>add</code> is the name of the bytecode, and
- <code>(0x02)</code> is the one-byte value used to encode the bytecode, in
- hexadecimal. The phrase “<var>a</var> <var>b</var> ⇒ <var>a+b</var>” shows
- the stack before and after the bytecode executes. Beforehand, the stack
- must contain at least two values, <var>a</var> and <var>b</var>; since the top of
- the stack is to the right, <var>b</var> is on the top of the stack, and
- <var>a</var> is underneath it. After execution, the bytecode will have
- popped <var>a</var> and <var>b</var> from the stack, and replaced them with a
- single value, <var>a+b</var>. There may be other values on the stack below
- those shown, but the bytecode affects only those shown.
- </p>
- <p>Here is another example:
- </p>
- <dl compact="compact">
- <dt><code>const8</code> (0x22) <var>n</var>: ⇒ <var>n</var></dt>
- <dd><p>Push the 8-bit integer constant <var>n</var> on the stack, without sign
- extension.
- </p>
- </dd>
- </dl>
-
- <p>In this example, the bytecode <code>const8</code> takes an operand <var>n</var>
- directly from the bytecode stream; the operand follows the <code>const8</code>
- bytecode itself. We write any such operands immediately after the name
- of the bytecode, before the colon, and describe the exact encoding of
- the operand in the bytecode stream in the body of the bytecode
- description.
- </p>
- <p>For the <code>const8</code> bytecode, there are no stack items given before
- the ⇒; this simply means that the bytecode consumes no values
- from the stack. If a bytecode consumes no values, or produces no
- values, the list on either side of the ⇒ may be empty.
- </p>
- <p>If a value is written as <var>a</var>, <var>b</var>, or <var>n</var>, then the bytecode
- treats it as an integer. If a value is written is <var>addr</var>, then the
- bytecode treats it as an address.
- </p>
- <p>We do not fully describe the floating point operations here; although
- this design can be extended in a clean way to handle floating point
- values, they are not of immediate interest to the customer, so we avoid
- describing them, to save time.
- </p>
-
- <dl compact="compact">
- <dt><code>float</code> (0x01): ⇒</dt>
- <dd>
- <p>Prefix for floating-point bytecodes. Not implemented yet.
- </p>
- </dd>
- <dt><code>add</code> (0x02): <var>a</var> <var>b</var> ⇒ <var>a+b</var></dt>
- <dd><p>Pop two integers from the stack, and push their sum, as an integer.
- </p>
- </dd>
- <dt><code>sub</code> (0x03): <var>a</var> <var>b</var> ⇒ <var>a-b</var></dt>
- <dd><p>Pop two integers from the stack, subtract the top value from the
- next-to-top value, and push the difference.
- </p>
- </dd>
- <dt><code>mul</code> (0x04): <var>a</var> <var>b</var> ⇒ <var>a*b</var></dt>
- <dd><p>Pop two integers from the stack, multiply them, and push the product on
- the stack. Note that, when one multiplies two <var>n</var>-bit numbers
- yielding another <var>n</var>-bit number, it is irrelevant whether the
- numbers are signed or not; the results are the same.
- </p>
- </dd>
- <dt><code>div_signed</code> (0x05): <var>a</var> <var>b</var> ⇒ <var>a/b</var></dt>
- <dd><p>Pop two signed integers from the stack; divide the next-to-top value by
- the top value, and push the quotient. If the divisor is zero, terminate
- with an error.
- </p>
- </dd>
- <dt><code>div_unsigned</code> (0x06): <var>a</var> <var>b</var> ⇒ <var>a/b</var></dt>
- <dd><p>Pop two unsigned integers from the stack; divide the next-to-top value
- by the top value, and push the quotient. If the divisor is zero,
- terminate with an error.
- </p>
- </dd>
- <dt><code>rem_signed</code> (0x07): <var>a</var> <var>b</var> ⇒ <var>a modulo b</var></dt>
- <dd><p>Pop two signed integers from the stack; divide the next-to-top value by
- the top value, and push the remainder. If the divisor is zero,
- terminate with an error.
- </p>
- </dd>
- <dt><code>rem_unsigned</code> (0x08): <var>a</var> <var>b</var> ⇒ <var>a modulo b</var></dt>
- <dd><p>Pop two unsigned integers from the stack; divide the next-to-top value
- by the top value, and push the remainder. If the divisor is zero,
- terminate with an error.
- </p>
- </dd>
- <dt><code>lsh</code> (0x09): <var>a</var> <var>b</var> ⇒ <var>a<<b</var></dt>
- <dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value,
- and <var>b</var> be the top value. Shift <var>a</var> left by <var>b</var> bits, and
- push the result.
- </p>
- </dd>
- <dt><code>rsh_signed</code> (0x0a): <var>a</var> <var>b</var> ⇒ <code>(signed)</code><var>a>>b</var></dt>
- <dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value,
- and <var>b</var> be the top value. Shift <var>a</var> right by <var>b</var> bits,
- inserting copies of the top bit at the high end, and push the result.
- </p>
- </dd>
- <dt><code>rsh_unsigned</code> (0x0b): <var>a</var> <var>b</var> ⇒ <var>a>>b</var></dt>
- <dd><p>Pop two integers from the stack; let <var>a</var> be the next-to-top value,
- and <var>b</var> be the top value. Shift <var>a</var> right by <var>b</var> bits,
- inserting zero bits at the high end, and push the result.
- </p>
- </dd>
- <dt><code>log_not</code> (0x0e): <var>a</var> ⇒ <var>!a</var></dt>
- <dd><p>Pop an integer from the stack; if it is zero, push the value one;
- otherwise, push the value zero.
- </p>
- </dd>
- <dt><code>bit_and</code> (0x0f): <var>a</var> <var>b</var> ⇒ <var>a&b</var></dt>
- <dd><p>Pop two integers from the stack, and push their bitwise <code>and</code>.
- </p>
- </dd>
- <dt><code>bit_or</code> (0x10): <var>a</var> <var>b</var> ⇒ <var>a|b</var></dt>
- <dd><p>Pop two integers from the stack, and push their bitwise <code>or</code>.
- </p>
- </dd>
- <dt><code>bit_xor</code> (0x11): <var>a</var> <var>b</var> ⇒ <var>a^b</var></dt>
- <dd><p>Pop two integers from the stack, and push their bitwise
- exclusive-<code>or</code>.
- </p>
- </dd>
- <dt><code>bit_not</code> (0x12): <var>a</var> ⇒ <var>~a</var></dt>
- <dd><p>Pop an integer from the stack, and push its bitwise complement.
- </p>
- </dd>
- <dt><code>equal</code> (0x13): <var>a</var> <var>b</var> ⇒ <var>a=b</var></dt>
- <dd><p>Pop two integers from the stack; if they are equal, push the value one;
- otherwise, push the value zero.
- </p>
- </dd>
- <dt><code>less_signed</code> (0x14): <var>a</var> <var>b</var> ⇒ <var>a<b</var></dt>
- <dd><p>Pop two signed integers from the stack; if the next-to-top value is less
- than the top value, push the value one; otherwise, push the value zero.
- </p>
- </dd>
- <dt><code>less_unsigned</code> (0x15): <var>a</var> <var>b</var> ⇒ <var>a<b</var></dt>
- <dd><p>Pop two unsigned integers from the stack; if the next-to-top value is less
- than the top value, push the value one; otherwise, push the value zero.
- </p>
- </dd>
- <dt><code>ext</code> (0x16) <var>n</var>: <var>a</var> ⇒ <var>a</var>, sign-extended from <var>n</var> bits</dt>
- <dd><p>Pop an unsigned value from the stack; treating it as an <var>n</var>-bit
- twos-complement value, extend it to full length. This means that all
- bits to the left of bit <var>n-1</var> (where the least significant bit is bit
- 0) are set to the value of bit <var>n-1</var>. Note that <var>n</var> may be
- larger than or equal to the width of the stack elements of the bytecode
- engine; in this case, the bytecode should have no effect.
- </p>
- <p>The number of source bits to preserve, <var>n</var>, is encoded as a single
- byte unsigned integer following the <code>ext</code> bytecode.
- </p>
- </dd>
- <dt><code>zero_ext</code> (0x2a) <var>n</var>: <var>a</var> ⇒ <var>a</var>, zero-extended from <var>n</var> bits</dt>
- <dd><p>Pop an unsigned value from the stack; zero all but the bottom <var>n</var>
- bits.
- </p>
- <p>The number of source bits to preserve, <var>n</var>, is encoded as a single
- byte unsigned integer following the <code>zero_ext</code> bytecode.
- </p>
- </dd>
- <dt><code>ref8</code> (0x17): <var>addr</var> ⇒ <var>a</var></dt>
- <dt><code>ref16</code> (0x18): <var>addr</var> ⇒ <var>a</var></dt>
- <dt><code>ref32</code> (0x19): <var>addr</var> ⇒ <var>a</var></dt>
- <dt><code>ref64</code> (0x1a): <var>addr</var> ⇒ <var>a</var></dt>
- <dd><p>Pop an address <var>addr</var> from the stack. For bytecode
- <code>ref</code><var>n</var>, fetch an <var>n</var>-bit value from <var>addr</var>, using the
- natural target endianness. Push the fetched value as an unsigned
- integer.
- </p>
- <p>Note that <var>addr</var> may not be aligned in any particular way; the
- <code>ref<var>n</var></code> bytecodes should operate correctly for any address.
- </p>
- <p>If attempting to access memory at <var>addr</var> would cause a processor
- exception of some sort, terminate with an error.
- </p>
- </dd>
- <dt><code>ref_float</code> (0x1b): <var>addr</var> ⇒ <var>d</var></dt>
- <dt><code>ref_double</code> (0x1c): <var>addr</var> ⇒ <var>d</var></dt>
- <dt><code>ref_long_double</code> (0x1d): <var>addr</var> ⇒ <var>d</var></dt>
- <dt><code>l_to_d</code> (0x1e): <var>a</var> ⇒ <var>d</var></dt>
- <dt><code>d_to_l</code> (0x1f): <var>d</var> ⇒ <var>a</var></dt>
- <dd><p>Not implemented yet.
- </p>
- </dd>
- <dt><code>dup</code> (0x28): <var>a</var> => <var>a</var> <var>a</var></dt>
- <dd><p>Push another copy of the stack’s top element.
- </p>
- </dd>
- <dt><code>swap</code> (0x2b): <var>a</var> <var>b</var> => <var>b</var> <var>a</var></dt>
- <dd><p>Exchange the top two items on the stack.
- </p>
- </dd>
- <dt><code>pop</code> (0x29): <var>a</var> =></dt>
- <dd><p>Discard the top value on the stack.
- </p>
- </dd>
- <dt><code>pick</code> (0x32) <var>n</var>: <var>a</var> … <var>b</var> => <var>a</var> … <var>b</var> <var>a</var></dt>
- <dd><p>Duplicate an item from the stack and push it on the top of the stack.
- <var>n</var>, a single byte, indicates the stack item to copy. If <var>n</var>
- is zero, this is the same as <code>dup</code>; if <var>n</var> is one, it copies
- the item under the top item, etc. If <var>n</var> exceeds the number of
- items on the stack, terminate with an error.
- </p>
- </dd>
- <dt><code>rot</code> (0x33): <var>a</var> <var>b</var> <var>c</var> => <var>c</var> <var>a</var> <var>b</var></dt>
- <dd><p>Rotate the top three items on the stack. The top item (c) becomes the third
- item, the next-to-top item (b) becomes the top item and the third item (a) from
- the top becomes the next-to-top item.
- </p>
- </dd>
- <dt><code>if_goto</code> (0x20) <var>offset</var>: <var>a</var> ⇒</dt>
- <dd><p>Pop an integer off the stack; if it is non-zero, branch to the given
- offset in the bytecode string. Otherwise, continue to the next
- instruction in the bytecode stream. In other words, if <var>a</var> is
- non-zero, set the <code>pc</code> register to <code>start</code> + <var>offset</var>.
- Thus, an offset of zero denotes the beginning of the expression.
- </p>
- <p>The <var>offset</var> is stored as a sixteen-bit unsigned value, stored
- immediately following the <code>if_goto</code> bytecode. It is always stored
- most significant byte first, regardless of the target’s normal
- endianness. The offset is not guaranteed to fall at any particular
- alignment within the bytecode stream; thus, on machines where fetching a
- 16-bit on an unaligned address raises an exception, you should fetch the
- offset one byte at a time.
- </p>
- </dd>
- <dt><code>goto</code> (0x21) <var>offset</var>: ⇒</dt>
- <dd><p>Branch unconditionally to <var>offset</var>; in other words, set the
- <code>pc</code> register to <code>start</code> + <var>offset</var>.
- </p>
- <p>The offset is stored in the same way as for the <code>if_goto</code> bytecode.
- </p>
- </dd>
- <dt><code>const8</code> (0x22) <var>n</var>: ⇒ <var>n</var></dt>
- <dt><code>const16</code> (0x23) <var>n</var>: ⇒ <var>n</var></dt>
- <dt><code>const32</code> (0x24) <var>n</var>: ⇒ <var>n</var></dt>
- <dt><code>const64</code> (0x25) <var>n</var>: ⇒ <var>n</var></dt>
- <dd><p>Push the integer constant <var>n</var> on the stack, without sign extension.
- To produce a small negative value, push a small twos-complement value,
- and then sign-extend it using the <code>ext</code> bytecode.
- </p>
- <p>The constant <var>n</var> is stored in the appropriate number of bytes
- following the <code>const</code><var>b</var> bytecode. The constant <var>n</var> is
- always stored most significant byte first, regardless of the target’s
- normal endianness. The constant is not guaranteed to fall at any
- particular alignment within the bytecode stream; thus, on machines where
- fetching a 16-bit on an unaligned address raises an exception, you
- should fetch <var>n</var> one byte at a time.
- </p>
- </dd>
- <dt><code>reg</code> (0x26) <var>n</var>: ⇒ <var>a</var></dt>
- <dd><p>Push the value of register number <var>n</var>, without sign extension. The
- registers are numbered following GDB’s conventions.
- </p>
- <p>The register number <var>n</var> is encoded as a 16-bit unsigned integer
- immediately following the <code>reg</code> bytecode. It is always stored most
- significant byte first, regardless of the target’s normal endianness.
- The register number is not guaranteed to fall at any particular
- alignment within the bytecode stream; thus, on machines where fetching a
- 16-bit on an unaligned address raises an exception, you should fetch the
- register number one byte at a time.
- </p>
- </dd>
- <dt><code>getv</code> (0x2c) <var>n</var>: ⇒ <var>v</var></dt>
- <dd><p>Push the value of trace state variable number <var>n</var>, without sign
- extension.
- </p>
- <p>The variable number <var>n</var> is encoded as a 16-bit unsigned integer
- immediately following the <code>getv</code> bytecode. It is always stored most
- significant byte first, regardless of the target’s normal endianness.
- The variable number is not guaranteed to fall at any particular
- alignment within the bytecode stream; thus, on machines where fetching a
- 16-bit on an unaligned address raises an exception, you should fetch the
- register number one byte at a time.
- </p>
- </dd>
- <dt><code>setv</code> (0x2d) <var>n</var>: <var>v</var> ⇒ <var>v</var></dt>
- <dd><p>Set trace state variable number <var>n</var> to the value found on the top
- of the stack. The stack is unchanged, so that the value is readily
- available if the assignment is part of a larger expression. The
- handling of <var>n</var> is as described for <code>getv</code>.
- </p>
- </dd>
- <dt><code>trace</code> (0x0c): <var>addr</var> <var>size</var> ⇒</dt>
- <dd><p>Record the contents of the <var>size</var> bytes at <var>addr</var> in a trace
- buffer, for later retrieval by GDB.
- </p>
- </dd>
- <dt><code>trace_quick</code> (0x0d) <var>size</var>: <var>addr</var> ⇒ <var>addr</var></dt>
- <dd><p>Record the contents of the <var>size</var> bytes at <var>addr</var> in a trace
- buffer, for later retrieval by GDB. <var>size</var> is a single byte
- unsigned integer following the <code>trace</code> opcode.
- </p>
- <p>This bytecode is equivalent to the sequence <code>dup const8 <var>size</var>
- trace</code>, but we provide it anyway to save space in bytecode strings.
- </p>
- </dd>
- <dt><code>trace16</code> (0x30) <var>size</var>: <var>addr</var> ⇒ <var>addr</var></dt>
- <dd><p>Identical to trace_quick, except that <var>size</var> is a 16-bit big-endian
- unsigned integer, not a single byte. This should probably have been
- named <code>trace_quick16</code>, for consistency.
- </p>
- </dd>
- <dt><code>tracev</code> (0x2e) <var>n</var>: ⇒ <var>a</var></dt>
- <dd><p>Record the value of trace state variable number <var>n</var> in the trace
- buffer. The handling of <var>n</var> is as described for <code>getv</code>.
- </p>
- </dd>
- <dt><code>tracenz</code> (0x2f) <var>addr</var> <var>size</var> ⇒</dt>
- <dd><p>Record the bytes at <var>addr</var> in a trace buffer, for later retrieval
- by GDB. Stop at either the first zero byte, or when <var>size</var> bytes
- have been recorded, whichever occurs first.
- </p>
- </dd>
- <dt><code>printf</code> (0x34) <var>numargs</var> <var>string</var> ⇒</dt>
- <dd><p>Do a formatted print, in the style of the C function <code>printf</code>).
- The value of <var>numargs</var> is the number of arguments to expect on the
- stack, while <var>string</var> is the format string, prefixed with a
- two-byte length. The last byte of the string must be zero, and is
- included in the length. The format string includes escaped sequences
- just as it appears in C source, so for instance the format string
- <code>"\t%d\n"</code> is six characters long, and the output will consist of
- a tab character, a decimal number, and a newline. At the top of the
- stack, above the values to be printed, this bytecode will pop a
- “function” and “channel”. If the function is nonzero, then the
- target may treat it as a function and call it, passing the channel as
- a first argument, as with the C function <code>fprintf</code>. If the
- function is zero, then the target may simply call a standard formatted
- print function of its choice. In all, this bytecode pops 2 +
- <var>numargs</var> stack elements, and pushes nothing.
- </p>
- </dd>
- <dt><code>end</code> (0x27): ⇒</dt>
- <dd><p>Stop executing bytecode; the result should be the top element of the
- stack. If the purpose of the expression was to compute an lvalue or a
- range of memory, then the next-to-top of the stack is the lvalue’s
- address, and the top of the stack is the lvalue’s size, in bytes.
- </p>
- </dd>
- </dl>
-
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="Using-Agent-Expressions.html#Using-Agent-Expressions" accesskey="n" rel="next">Using Agent Expressions</a>, Previous: <a href="General-Bytecode-Design.html#General-Bytecode-Design" accesskey="p" rel="prev">General Bytecode Design</a>, Up: <a href="Agent-Expressions.html#Agent-Expressions" accesskey="u" rel="up">Agent Expressions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|