
The Red Hat newlib C Math Library

libm 2.5.0
December 2016

Steve Chamberlain
Roland Pesch
Red Hat Support
Jeff Johnston

Red Hat Support
sac@cygnus.com

pesch@cygnus.com
jjohnstn@redhat.com

Copyright c© 1992, 1993, 1994-2004 Red Hat, Inc.

libm includes software developed at SunPro, a Sun Microsystems, Inc. business. Permission
to use, copy, modify, and distribute this software is freely granted, provided that this notice
is preserved.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

1 Mathematical Functions (math.h)

This chapter groups a wide variety of mathematical functions. The corresponding definitions
and declarations are in math.h. The definition of HUGE VAL from math.h is of particular
interest.

1. The representation of infinity as a double is defined as HUGE_VAL; this number is
returned on overflow by many functions. The macro HUGE_VALF is a corresponding
value for float.

Alternative declarations of the mathematical functions, which exploit specific machine ca-
pabilities to operate faster—but generally have less error checking and may reflect addi-
tional limitations on some machines—are available when you include fastmath.h instead
of math.h.

2 The Red Hat newlib C Math Library

1.1 Error Handling

There are two different versions of the math library routines: IEEE and POSIX. The version
may be selected at runtime by setting the global variable _LIB_VERSION, defined in math.h.
It may be set to one of the following constants defined in math.h: _IEEE_ or _POSIX_. The
_LIB_VERSION variable is not specific to any thread, and changing it will affect all threads.

The versions of the library differ only in the setting of errno.

In IEEE mode, errno is never set.

In POSIX mode, errno is set correctly.

The library is set to IEEE mode by default.

The majority of the floating-point math functions are written so as to produce the floating-
point exceptions (e.g. "invalid", "divide-by-zero") as required by the C and POSIX stan-
dards, for floating-point implementations that support them. Newlib does not provide the
floating-point exception access routines defined in the standards for fenv.h, though, which is
why they are considered unsupported. It is mentioned in case you have separately-provided
access routines so that you are aware that they can be caused.

1.2 Standards Compliance And Portability

Most of the individual function descriptions describe the standards to which each function
complies. However, these descriptions are mostly out of date, having been written before
C99 was released. One of these days we’ll get around to updating the rest of them. (If
you’d like to help, please let us know.)

“C99” refers to ISO/IEC 9899:1999, “Programming languages–C”. “POSIX” refers to IEEE
Standard 1003.1. POSIX R© is a registered trademark of The IEEE.

Chapter 1: Mathematical Functions (math.h) 3

1.3 acos, acosf—arc cosine

Synopsis

#include <math.h>

double acos(double x);

float acosf(float x);

Description

acos computes the inverse cosine (arc cosine) of the input value. Arguments to acos must
be in the range −1 to 1.

acosf is identical to acos, except that it performs its calculations on floats.

Returns
acos and acosf return values in radians, in the range of 0 to π.

If x is not between −1 and 1, the returned value is NaN (not a number), and the global
variable errno is set to EDOM.

4 The Red Hat newlib C Math Library

1.4 acosh, acoshf—inverse hyperbolic cosine

Synopsis

#include <math.h>

double acosh(double x);

float acoshf(float x);

Description
acosh calculates the inverse hyperbolic cosine of x. acosh is defined as

ln
(
x+
√
x2 − 1

)
x must be a number greater than or equal to 1.

acoshf is identical, other than taking and returning floats.

Returns
acosh and acoshf return the calculated value. If x less than 1, the return value is NaN
and errno is set to EDOM.

Portability
Neither acosh nor acoshf are ANSI C. They are not recommended for portable programs.

Chapter 1: Mathematical Functions (math.h) 5

1.5 asin, asinf—arc sine

Synopsis

#include <math.h>

double asin(double x);

float asinf(float x);

Description

asin computes the inverse sine (arc sine) of the argument x. Arguments to asin must be
in the range −1 to 1.

asinf is identical to asin, other than taking and returning floats.

Returns
asin returns values in radians, in the range of −π/2 to π/2.

If x is not in the range −1 to 1, asin and asinf return NaN (not a number), and the global
variable errno is set to EDOM.

6 The Red Hat newlib C Math Library

1.6 asinh, asinhf—inverse hyperbolic sine

Synopsis

#include <math.h>

double asinh(double x);

float asinhf(float x);

Description
asinh calculates the inverse hyperbolic sine of x. asinh is defined as

sign(x)× ln
(
|x|+

√
1 + x2

)
asinhf is identical, other than taking and returning floats.

Returns
asinh and asinhf return the calculated value.

Portability
Neither asinh nor asinhf are ANSI C.

Chapter 1: Mathematical Functions (math.h) 7

1.7 atan, atanf—arc tangent

Synopsis

#include <math.h>

double atan(double x);

float atanf(float x);

Description

atan computes the inverse tangent (arc tangent) of the input value.

atanf is identical to atan, save that it operates on floats.

Returns
atan returns a value in radians, in the range of −π/2 to π/2.

Portability
atan is ANSI C. atanf is an extension.

8 The Red Hat newlib C Math Library

1.8 atan2, atan2f—arc tangent of y/x

Synopsis

#include <math.h>

double atan2(double y,double x);

float atan2f(float y,float x);

Description

atan2 computes the inverse tangent (arc tangent) of y/x. atan2 produces the correct result
even for angles near π/2 or −π/2 (that is, when x is near 0).

atan2f is identical to atan2, save that it takes and returns float.

Returns
atan2 and atan2f return a value in radians, in the range of −π to π.

Portability
atan2 is ANSI C. atan2f is an extension.

Chapter 1: Mathematical Functions (math.h) 9

1.9 atanh, atanhf—inverse hyperbolic tangent

Synopsis

#include <math.h>

double atanh(double x);

float atanhf(float x);

Description
atanh calculates the inverse hyperbolic tangent of x.

atanhf is identical, other than taking and returning float values.

Returns
atanh and atanhf return the calculated value.

If |x| is greater than 1, the global errno is set to EDOM and the result is a NaN. A DOMAIN

error is reported.

If |x| is 1, the global errno is set to EDOM; and the result is infinity with the same sign as
x. A SING error is reported.

Portability
Neither atanh nor atanhf are ANSI C.

10 The Red Hat newlib C Math Library

1.10 jN, jNf, yN, yNf—Bessel functions

Synopsis

#include <math.h>

double j0(double x);

float j0f(float x);

double j1(double x);

float j1f(float x);

double jn(int n, double x);

float jnf(int n, float x);

double y0(double x);

float y0f(float x);

double y1(double x);

float y1f(float x);

double yn(int n, double x);

float ynf(int n, float x);

Description
The Bessel functions are a family of functions that solve the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0

These functions have many applications in engineering and physics.

jn calculates the Bessel function of the first kind of order n. j0 and j1 are special cases for
order 0 and order 1 respectively.

Similarly, yn calculates the Bessel function of the second kind of order n, and y0 and y1 are
special cases for order 0 and 1.

jnf, j0f, j1f, ynf, y0f, and y1f perform the same calculations, but on float rather than
double values.

Returns
The value of each Bessel function at x is returned.

Portability
None of the Bessel functions are in ANSI C.

Chapter 1: Mathematical Functions (math.h) 11

1.11 cbrt, cbrtf—cube root

Synopsis

#include <math.h>

double cbrt(double x);

float cbrtf(float x);

Description
cbrt computes the cube root of the argument.

Returns
The cube root is returned.

Portability
cbrt is in System V release 4. cbrtf is an extension.

12 The Red Hat newlib C Math Library

1.12 copysign, copysignf—sign of y, magnitude of x

Synopsis

#include <math.h>

double copysign (double x, double y);

float copysignf (float x, float y);

Description
copysign constructs a number with the magnitude (absolute value) of its first argument,
x, and the sign of its second argument, y.

copysignf does the same thing; the two functions differ only in the type of their arguments
and result.

Returns
copysign returns a double with the magnitude of x and the sign of y. copysignf returns
a float with the magnitude of x and the sign of y.

Portability
copysign is not required by either ANSI C or the System V Interface Definition (Issue 2).

Chapter 1: Mathematical Functions (math.h) 13

1.13 cosh, coshf—hyperbolic cosine

Synopsis

#include <math.h>

double cosh(double x);

float coshf(float x);

Description

cosh computes the hyperbolic cosine of the argument x. cosh(x) is defined as

(ex + e−x)

2

Angles are specified in radians. coshf is identical, save that it takes and returns float.

Returns
The computed value is returned. When the correct value would create an overflow, cosh
returns the value HUGE_VAL with the appropriate sign, and the global value errno is set to
ERANGE.

Portability
cosh is ANSI. coshf is an extension.

14 The Red Hat newlib C Math Library

1.14 erf, erff, erfc, erfcf—error function

Synopsis

#include <math.h>

double erf(double x);

float erff(float x);

double erfc(double x);

float erfcf(float x);

Description
erf calculates an approximation to the “error function”, which estimates the probability
that an observation will fall within x standard deviations of the mean (assuming a normal
distribution). The error function is defined as

2√
π
×
∫ x

0

e−t2dt

erfc calculates the complementary probability; that is, erfc(x) is 1 - erf(x). erfc is
computed directly, so that you can use it to avoid the loss of precision that would result
from subtracting large probabilities (on large x) from 1.

erff and erfcf differ from erf and erfc only in the argument and result types.

Returns
For positive arguments, erf and all its variants return a probability—a number between 0
and 1.

Portability
None of the variants of erf are ANSI C.

Chapter 1: Mathematical Functions (math.h) 15

1.15 exp, expf—exponential

Synopsis

#include <math.h>

double exp(double x);

float expf(float x);

Description
exp and expf calculate the exponential of x, that is, ex (where e is the base of the natural
system of logarithms, approximately 2.71828).

Returns
On success, exp and expf return the calculated value. If the result underflows, the returned
value is 0. If the result overflows, the returned value is HUGE_VAL. In either case, errno is
set to ERANGE.

Portability
exp is ANSI C. expf is an extension.

16 The Red Hat newlib C Math Library

1.16 exp10, exp10f—exponential, base 10

Synopsis

#include <math.h>

double exp10(double x);

float exp10f(float x);

Description
exp10 and exp10f calculate 10 ^ x, that is, 10x

Returns
On success, exp10 and exp10f return the calculated value. If the result underflows, the
returned value is 0. If the result overflows, the returned value is HUGE_VAL. In either case,
errno is set to ERANGE.

Portability
exp10 and exp10f are GNU extensions.

Chapter 1: Mathematical Functions (math.h) 17

1.17 exp2, exp2f—exponential, base 2

Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

Description
exp2 and exp2f calculate 2 ^ x, that is, 2x

Returns
On success, exp2 and exp2f return the calculated value. If the result underflows, the
returned value is 0. If the result overflows, the returned value is HUGE_VAL. In either case,
errno is set to ERANGE.

Portability
ANSI C, POSIX.

18 The Red Hat newlib C Math Library

1.18 expm1, expm1f—exponential minus 1

Synopsis

#include <math.h>

double expm1(double x);

float expm1f(float x);

Description
expm1 and expm1f calculate the exponential of x and subtract 1, that is, ex − 1 (where e is
the base of the natural system of logarithms, approximately 2.71828). The result is accurate
even for small values of x, where using exp(x)-1 would lose many significant digits.

Returns
e raised to the power x, minus 1.

Portability
Neither expm1 nor expm1f is required by ANSI C or by the System V Interface Definition
(Issue 2).

Chapter 1: Mathematical Functions (math.h) 19

1.19 fabs, fabsf—absolute value (magnitude)

Synopsis

#include <math.h>

double fabs(double x);

float fabsf(float x);

Description
fabs and fabsf calculate |x|, the absolute value (magnitude) of the argument x, by direct
manipulation of the bit representation of x.

Returns
The calculated value is returned. No errors are detected.

Portability
fabs is ANSI. fabsf is an extension.

20 The Red Hat newlib C Math Library

1.20 fdim, fdimf—positive difference

Synopsis

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

Description
The fdim functions determine the positive difference between their arguments, returning:

x - y if x > y, or

+0 if x ≤ y, or

NAN if either argument is NAN.

A range error may occur.

Returns
The fdim functions return the positive difference value.

Portability
ANSI C, POSIX.

Chapter 1: Mathematical Functions (math.h) 21

1.21 floor, floorf, ceil, ceilf—floor and ceiling

Synopsis

#include <math.h>

double floor(double x);

float floorf(float x);

double ceil(double x);

float ceilf(float x);

Description
floor and floorf find bxc, the nearest integer less than or equal to x. ceil and ceilf

find dxe, the nearest integer greater than or equal to x.

Returns
floor and ceil return the integer result as a double. floorf and ceilf return the integer
result as a float.

Portability
floor and ceil are ANSI. floorf and ceilf are extensions.

22 The Red Hat newlib C Math Library

1.22 fma, fmaf—floating multiply add

Synopsis

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

Description
The fma functions compute (x * y) + z, rounded as one ternary operation: they compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT ROUNDS. That is, they are supposed to
do this: see below.

Returns
The fma functions return (x * y) + z, rounded as one ternary operation.

Bugs
This implementation does not provide the function that it should, purely returning "(x *
y) + z;" with no attempt at all to provide the simulated infinite precision intermediates
which are required. DO NOT USE THEM.

If double has enough more precision than float, then fmaf should provide the expected
numeric results, as it does use double for the calculation. But since this is not the case for
all platforms, this manual cannot determine if it is so for your case.

Portability
ANSI C, POSIX.

Chapter 1: Mathematical Functions (math.h) 23

1.23 fmax, fmaxf—maximum

Synopsis

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

Description
The fmax functions determine the maximum numeric value of their arguments. NaN argu-
ments are treated as missing data: if one argument is a NaN and the other numeric, then
the fmax functions choose the numeric value.

Returns
The fmax functions return the maximum numeric value of their arguments.

Portability
ANSI C, POSIX.

24 The Red Hat newlib C Math Library

1.24 fmin, fminf—minimum

Synopsis

#include <math.h>

double fmin(double x, double y);

float fminf(float x, float y);

Description
The fmin functions determine the minimum numeric value of their arguments. NaN argu-
ments are treated as missing data: if one argument is a NaN and the other numeric, then
the fmin functions choose the numeric value.

Returns
The fmin functions return the minimum numeric value of their arguments.

Portability
ANSI C, POSIX.

Chapter 1: Mathematical Functions (math.h) 25

1.25 fmod, fmodf—floating-point remainder (modulo)

Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

Description
The fmod and fmodf functions compute the floating-point remainder of x/y (x modulo y).

Returns
The fmod function returns the value x − i × y, for the largest integer i such that, if y is
nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmod(x,0) returns NaN, and sets errno to EDOM.

Portability
fmod is ANSI C. fmodf is an extension.

26 The Red Hat newlib C Math Library

1.26 frexp, frexpf—split floating-point number

Synopsis

#include <math.h>

double frexp(double val, int *exp);

float frexpf(float val, int *exp);

Description
All nonzero, normal numbers can be described as m * 2**p. frexp represents the double
val as a mantissa m and a power of two p. The resulting mantissa will always be greater
than or equal to 0.5, and less than 1.0 (as long as val is nonzero). The power of two will
be stored in *exp.

m and p are calculated so that val = m× 2p.

frexpf is identical, other than taking and returning floats rather than doubles.

Returns
frexp returns the mantissa m. If val is 0, infinity, or Nan, frexp will set *exp to 0 and
return val.

Portability
frexp is ANSI. frexpf is an extension.

Chapter 1: Mathematical Functions (math.h) 27

1.27 gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r,
lgamma_r, lgammaf_r, tgamma, and tgammaf—logarithmic
and plain gamma functions

Synopsis

#include <math.h>

double gamma(double x);

float gammaf(float x);

double lgamma(double x);

float lgammaf(float x);

double gamma_r(double x, int *signgamp);

float gammaf_r(float x, int *signgamp);

double lgamma_r(double x, int *signgamp);

float lgammaf_r(float x, int *signgamp);

double tgamma(double x);

float tgammaf(float x);

Description
gamma calculates ln(Γ (x)), the natural logarithm of the gamma function of x. The gamma
function (exp(gamma(x))) is a generalization of factorial, and retains the property that
Γ (N) ≡ N × Γ (N −). Accordingly, the results of the gamma function itself grow very
quickly. gamma is defined as ln(Γ (x)) rather than simply Γ (x) to extend the useful range
of results representable.

The sign of the result is returned in the global variable signgam, which is declared in math.h.

gammaf performs the same calculation as gamma, but uses and returns float values.

lgamma and lgammaf are alternate names for gamma and gammaf. The use of lgamma instead
of gamma is a reminder that these functions compute the log of the gamma function, rather
than the gamma function itself.

The functions gamma_r, gammaf_r, lgamma_r, and lgammaf_r are just like gamma, gammaf,
lgamma, and lgammaf, respectively, but take an additional argument. This additional ar-
gument is a pointer to an integer. This additional argument is used to return the sign of
the result, and the global variable signgam is not used. These functions may be used for
reentrant calls (but they will still set the global variable errno if an error occurs).

tgamma and tgammaf are the "true gamma" functions, returning Γ (x), the gamma function
of x–without a logarithm. (They are apparently so named because of the prior existence of
the old, poorly-named gamma functions which returned the log of gamma up through BSD
4.2.)

Returns
Normally, the computed result is returned.

When x is a nonpositive integer, gamma returns HUGE_VAL and errno is set to EDOM. If the
result overflows, gamma returns HUGE_VAL and errno is set to ERANGE.

Portability
Neither gamma nor gammaf is ANSI C. It is better not to use either of these; use lgamma or
tgamma instead.

28 The Red Hat newlib C Math Library

lgamma, lgammaf, tgamma, and tgammaf are nominally C standard in terms of the base
return values, although the signgam global for lgamma is not standard.

Chapter 1: Mathematical Functions (math.h) 29

1.28 hypot, hypotf—distance from origin

Synopsis

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

Description
hypot calculates the Euclidean distance

√
x2 + y2 between the origin (0,0) and a point

represented by the Cartesian coordinates (x,y). hypotf differs only in the type of its
arguments and result.

Returns
Normally, the distance value is returned. On overflow, hypot returns HUGE_VAL and sets
errno to ERANGE.

Portability
hypot and hypotf are not ANSI C.

30 The Red Hat newlib C Math Library

1.29 ilogb, ilogbf—get exponent of floating-point number

Synopsis

#include <math.h>

int ilogb(double val);

int ilogbf(float val);

Description

All nonzero, normal numbers can be described as m * 2**p. ilogb and ilogbf examine
the argument val, and return p. The functions frexp and frexpf are similar to ilogb and
ilogbf, but also return m.

Returns

ilogb and ilogbf return the power of two used to form the floating-point argument. If
val is 0, they return FP_ILOGB0. If val is infinite, they return INT_MAX. If val is NaN,
they return FP_ILOGBNAN. (FP_ILOGB0 and FP_ILOGBNAN are defined in math.h, but in turn
are defined as INT MIN or INT MAX from limits.h. The value of FP ILOGB0 may be
either INT MIN or -INT MAX. The value of FP ILOGBNAN may be either INT MAX or
INT MIN.)

Portability
C99, POSIX

Chapter 1: Mathematical Functions (math.h) 31

1.30 infinity, infinityf—representation of infinity

Synopsis

#include <math.h>

double infinity(void);

float infinityf(void);

Description
infinity and infinityf return the special number IEEE infinity in double- and single-
precision arithmetic respectively.

Portability
infinity and infinityf are neither standard C nor POSIX. C and POSIX require macros
HUGE VAL and HUGE VALF to be defined in math.h, which Newlib defines to be in-
finities corresponding to these archaic infinity() and infinityf() functions in floating-point
implementations which do have infinities.

32 The Red Hat newlib C Math Library

1.31 isgreater, isgreaterequal, isless, islessequal,
islessgreater, and isunordered—comparison macros

Synopsis

#include <math.h>

int isgreater(real-floating x, real-floating y);

int isgreaterequal(real-floating x, real-floating y);

int isless(real-floating x, real-floating y);

int islessequal(real-floating x, real-floating y);

int islessgreater(real-floating x, real-floating y);

int isunordered(real-floating x, real-floating y);

Description
isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered

are macros defined for use in comparing floating-point numbers without raising any floating-
point exceptions.

The relational operators (i.e. <, >, <=, and >=) support the usual mathematical relation-
ships between numeric values. For any ordered pair of numeric values exactly one of the
relationships–less, greater, and equal–is true. Relational operators may raise the "invalid"
floating-point exception when argument values are NaNs. For a NaN and a numeric value,
or for two NaNs, just the unordered relationship is true (i.e., if one or both of the argu-
ments a NaN, the relationship is called unordered). The specified macros are quiet (non
floating-point exception raising) versions of the relational operators, and other comparison
macros that facilitate writing efficient code that accounts for NaNs without suffering the
"invalid" floating-point exception. In the synopses shown, "real-floating" indicates that the
argument is an expression of real floating type.

Please note that saying that the macros do not raise floating-point exceptions, it is referring
to the function that they are performing. It is certainly possible to give them an expression
which causes an exception. For example:

NaN < 1.0 causes an "invalid" exception,

isless(NaN, 1.0)

does not, and

isless(NaN*0., 1.0)

causes an exception due to the "NaN*0.", but not from the resultant reduced
comparison of isless(NaN, 1.0).

Returns
No floating-point exceptions are raised for any of the macros.
The isgreater macro returns the value of (x) > (y).
The isgreaterequal macro returns the value of (x) >= (y).
The isless macro returns the value of (x) < (y).
The islessequal macro returns the value of (x) <= (y).
The islessgreater macro returns the value of (x) < (y) || (x) > (y).
The isunordered macro returns 1 if either of its arguments is NaN and 0 otherwise.

Chapter 1: Mathematical Functions (math.h) 33

Portability
C99, POSIX.

34 The Red Hat newlib C Math Library

1.32 fpclassify, isfinite, isinf, isnan, and isnormal—
floating-point classification macros; finite, finitef,
isinf, isinff, isnan, isnanf—test for exceptional
numbers

Synopsis

[C99 standard macros:]

#include <math.h>

int fpclassify(real-floating x);

int isfinite(real-floating x);

int isinf(real-floating x);

int isnan(real-floating x);

int isnormal(real-floating x);

[Archaic SUSv2 functions:]

#include <math.h>

int isnan(double arg);

int isinf(double arg);

int finite(double arg);

int isnanf(float arg);

int isinff(float arg);

int finitef(float arg);

Description
fpclassify, isfinite, isinf, isnan, and isnormal are macros defined for use in clas-
sifying floating-point numbers. This is a help because of special "values" like NaN and
infinities. In the synopses shown, "real-floating" indicates that the argument is an expres-
sion of real floating type. These function-like macros are C99 and POSIX-compliant, and
should be used instead of the now-archaic SUSv2 functions.

The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal,
zero, or into another implementation-defined category. First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then classification is
based on the type of the argument. The fpclassify macro returns the value of the number
classification macro appropriate to the value of its argument:

FP_INFINITE

x is either plus or minus infinity;

FP_NAN x is "Not A Number" (plus or minus);

FP_NORMAL

x is a "normal" number (i.e. is none of the other special forms);

FP_SUBNORMAL

x is too small be stored as a regular normalized number (i.e. loss of precision
is likely); or

FP_ZERO x is 0 (either plus or minus).

The "is" set of macros provide a useful set of shorthand ways for classifying floating-point
numbers, providing the following equivalent relations:

Chapter 1: Mathematical Functions (math.h) 35

isfinite(x)

returns non-zero if x is finite. (It is equivalent to (fpclassify(x) !=
FP INFINITE && fpclassify(x) != FP NAN).)

isinf(x) returns non-zero if x is infinite. (It is equivalent to (fpclassify(x) ==
FP INFINITE).)

isnan(x) returns non-zero if x is NaN. (It is equivalent to (fpclassify(x) ==
FP NAN).)

isnormal(x)

returns non-zero if x is normal. (It is equivalent to (fpclassify(x) ==
FP NORMAL).)

The archaic SUSv2 functions provide information on the floating-point argument supplied.

There are five major number formats ("exponent" referring to the biased exponent in the
binary-encoded number):

zero A number which contains all zero bits, excluding the sign bit.

subnormal

A number with a zero exponent but a nonzero fraction.

normal A number with an exponent and a fraction.

infinity A number with an all 1’s exponent and a zero fraction.

NAN A number with an all 1’s exponent and a nonzero fraction.

isnan returns 1 if the argument is a nan. isinf returns 1 if the argument is infinity. finite
returns 1 if the argument is zero, subnormal or normal. The isnanf, isinff and finitef

functions perform the same operations as their isnan, isinf and finite counterparts, but
on single-precision floating-point numbers.

It should be noted that the C99 standard dictates that isnan and isinf are macros that
operate on multiple types of floating-point. The SUSv2 standard declares isnan as a func-
tion taking double. Newlib has decided to declare them both as functions and as macros in
math.h to maintain backward compatibility.

Returns
The fpclassify macro returns the value corresponding to the appropriate FP macro.
The isfinite macro returns nonzero if x is finite, else 0.
The isinf macro returns nonzero if x is infinite, else 0.
The isnan macro returns nonzero if x is an NaN, else 0.
The isnormal macro returns nonzero if x has a normal value, else 0.

Portability
math.h macros are C99, POSIX.1-2001.

The functions originate from BSD; isnan was listed in the X/Open Portability Guide and
Single Unix Specification, but was dropped when the macro was standardized in POSIX.1-
2001.

36 The Red Hat newlib C Math Library

1.33 ldexp, ldexpf—load exponent

Synopsis

#include <math.h>

double ldexp(double val, int exp);

float ldexpf(float val, int exp);

Description
ldexp calculates the value val × 2exp. ldexpf is identical, save that it takes and returns
float rather than double values.

Returns
ldexp returns the calculated value.

Underflow and overflow both set errno to ERANGE. On underflow, ldexp and ldexpf return
0.0. On overflow, ldexp returns plus or minus HUGE_VAL.

Portability
ldexp is ANSI. ldexpf is an extension.

Chapter 1: Mathematical Functions (math.h) 37

1.34 log, logf—natural logarithms

Synopsis

#include <math.h>

double log(double x);

float logf(float x);

Description
Return the natural logarithm of x, that is, its logarithm base e (where e is the base of the
natural system of logarithms, 2.71828. . .). log and logf are identical save for the return
and argument types.

Returns
Normally, returns the calculated value. When x is zero, the returned value is -HUGE_VAL
and errno is set to ERANGE. When x is negative, the returned value is NaN (not a number)
and errno is set to EDOM.

Portability
log is ANSI. logf is an extension.

38 The Red Hat newlib C Math Library

1.35 log10, log10f—base 10 logarithms

Synopsis

#include <math.h>

double log10(double x);

float log10f(float x);

Description
log10 returns the base 10 logarithm of x. It is implemented as log(x) / log(10).

log10f is identical, save that it takes and returns float values.

Returns
log10 and log10f return the calculated value.

See the description of log for information on errors.

Portability
log10 is ANSI C. log10f is an extension.

Chapter 1: Mathematical Functions (math.h) 39

1.36 log1p, log1pf—log of 1 + x

Synopsis

#include <math.h>

double log1p(double x);

float log1pf(float x);

Description
log1p calculates ln(1 + x), the natural logarithm of 1+x. You can use log1p rather than
‘log(1+x)’ for greater precision when x is very small.

log1pf calculates the same thing, but accepts and returns float values rather than double.

Returns
log1p returns a double, the natural log of 1+x. log1pf returns a float, the natural log of
1+x.

Portability
Neither log1p nor log1pf is required by ANSI C or by the System V Interface Definition
(Issue 2).

40 The Red Hat newlib C Math Library

1.37 log2, log2f—base 2 logarithm

Synopsis

#include <math.h>

double log2(double x);

float log2f(float x);

Description
The log2 functions compute the base-2 logarithm of x. A domain error occurs if the
argument is less than zero. A range error occurs if the argument is zero.

The Newlib implementations are not full, intrinisic calculations, but rather are derivatives
based on log. (Accuracy might be slightly off from a direct calculation.) In addition to
functions, they are also implemented as macros defined in math.h:

#define log2(x) (log (x) / _M_LN2)

#define log2f(x) (logf (x) / (float) _M_LN2)

To use the functions instead, just undefine the macros first.

Returns
The log2 functions return log2(x) on success. When x is zero, the returned value is -HUGE_
VAL and errno is set to ERANGE. When x is negative, the returned value is NaN (not a
number) and errno is set to EDOM.

Portability
C99, POSIX, System V Interface Definition (Issue 6).

Chapter 1: Mathematical Functions (math.h) 41

1.38 logb, logbf—get exponent of floating-point number

Synopsis

#include <math.h>

double logb(double x);

float logbf(float x);

Description
The logb functions extract the exponent of x, as a signed integer value in floating-point
format. If x is subnormal it is treated as though it were normalized; thus, for positive
finite x, 1 ≤ (x · FLT RADIX−logb(x)) < FLT RADIX. A domain error may occur if
the argument is zero. In this floating-point implementation, FLT RADIX is 2. Which also
means that for finite x, logb(x) = floor(log2(fabs(x))).

All nonzero, normal numbers can be described as m · 2p, where 1.0 ≤ m < 2.0. The logb

functions examine the argument x, and return p. The frexp functions are similar to the
logb functions, but returning m adjusted to the interval [.5, 1) or 0, and p+1.

Returns
When x is:
+inf or -inf, +inf is returned;
NaN, NaN is returned;
0, -inf is returned, and the divide-by-zero exception is raised;
otherwise, the logb functions return the signed exponent of x.

Portability
ANSI C, POSIX

See Also
frexp, ilogb

42 The Red Hat newlib C Math Library

1.39 lrint, lrintf, llrint, llrintf—round to integer

Synopsis

#include <math.h>

long int lrint(double x);

long int lrintf(float x);

long long int llrint(double x);

long long int llrintf(float x);

Description
The lrint and llrint functions round their argument to the nearest integer value, using
the current rounding direction. If the rounded value is outside the range of the return type,
the numeric result is unspecified. A range error may occur if the magnitude of x is too
large. The "inexact" floating-point exception is raised in implementations that support it
when the result differs in value from the argument (i.e., when a fraction actually has been
truncated).

Returns
x rounded to an integral value, using the current rounding direction.

See Also
lround

Portability
ANSI C, POSIX

Chapter 1: Mathematical Functions (math.h) 43

1.40 lround, lroundf, llround, llroundf—round to integer, to
nearest

Synopsis

#include <math.h>

long int lround(double x);

long int lroundf(float x);

long long int llround(double x);

long long int llroundf(float x);

Description
The lround and llround functions round their argument to the nearest integer value,
rounding halfway cases away from zero, regardless of the current rounding direction. If
the rounded value is outside the range of the return type, the numeric result is unspecified
(depending upon the floating-point implementation, not the library). A range error may
occur if the magnitude of x is too large.

Returns
x rounded to an integral value as an integer.

See Also
See the round functions for the return being the same floating-point type as the argument.
lrint, llrint.

Portability
ANSI C, POSIX

44 The Red Hat newlib C Math Library

1.41 modf, modff—split fractional and integer parts

Synopsis

#include <math.h>

double modf(double val, double *ipart);

float modff(float val, float *ipart);

Description
modf splits the double val apart into an integer part and a fractional part, returning the
fractional part and storing the integer part in *ipart. No rounding whatsoever is done;
the sum of the integer and fractional parts is guaranteed to be exactly equal to val. That
is, if realpart = modf(val, &intpart); then ‘realpart+intpart’ is the same as val. modff

is identical, save that it takes and returns float rather than double values.

Returns
The fractional part is returned. Each result has the same sign as the supplied argument
val.

Portability
modf is ANSI C. modff is an extension.

Chapter 1: Mathematical Functions (math.h) 45

1.42 nan, nanf—representation of “Not a Number”

Synopsis

#include <math.h>

double nan(const char *unused);

float nanf(const char *unused);

Description
nan and nanf return an IEEE NaN (Not a Number) in double- and single-precision arith-
metic respectively. The argument is currently disregarded.

46 The Red Hat newlib C Math Library

1.43 nearbyint, nearbyintf—round to integer

Synopsis

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

Description
The nearbyint functions round their argument to an integer value in floating-point for-
mat, using the current rounding direction and (supposedly) without raising the "inexact"
floating-point exception. See the rint functions for the same function with the "inexact"
floating-point exception being raised when appropriate.

Bugs
Newlib does not support the floating-point exception model, so that the floating-point ex-
ception control is not present and thereby what may be seen will be compiler and hardware
dependent in this regard. The Newlib nearbyint functions are identical to the rint func-
tions with respect to the floating-point exception behavior, and will cause the "inexact"
exception to be raised for most targets.

Returns
x rounded to an integral value, using the current rounding direction.

Portability
ANSI C, POSIX

See Also
rint, round

Chapter 1: Mathematical Functions (math.h) 47

1.44 nextafter, nextafterf—get next number

Synopsis

#include <math.h>

double nextafter(double val, double dir);

float nextafterf(float val, float dir);

Description
nextafter returns the double-precision floating-point number closest to val in the direction
toward dir. nextafterf performs the same operation in single precision. For example,
nextafter(0.0,1.0) returns the smallest positive number which is representable in double
precision.

Returns
Returns the next closest number to val in the direction toward dir.

Portability
Neither nextafter nor nextafterf is required by ANSI C or by the System V Interface
Definition (Issue 2).

48 The Red Hat newlib C Math Library

1.45 pow, powf—x to the power y

Synopsis

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

Description
pow and powf calculate x raised to the exponent y. (That is, xy.)

Returns
On success, pow and powf return the value calculated.

When the argument values would produce overflow, pow returns HUGE_VAL and set errno
to ERANGE. If the argument x passed to pow or powf is a negative noninteger, and y is also
not an integer, then errno is set to EDOM. If x and y are both 0, then pow and powf return
1.

Portability
pow is ANSI C. powf is an extension.

Chapter 1: Mathematical Functions (math.h) 49

1.46 pow10, pow10f—base 10 power functions

Synopsis

#include <math.h>

double pow10(double x);

float pow10f(float x);

Description
pow10 and pow10f calculate 10 ^ x, that is, 10x

Returns
On success, pow10 and pow10f return the calculated value. If the result underflows, the
returned value is 0. If the result overflows, the returned value is HUGE_VAL. In either case,
errno is set to ERANGE.

Portability
pow10 and pow10f are GNU extensions.

50 The Red Hat newlib C Math Library

1.47 remainder, remainderf—round and remainder

Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

Description
remainder and remainderf find the remainder of x/y ; this value is in the range -y/2 ..
+y/2.

Returns
remainder returns the integer result as a double.

Portability
remainder is a System V release 4. remainderf is an extension.

Chapter 1: Mathematical Functions (math.h) 51

1.48 remquo, remquof—remainder and part of quotient

Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

Description
The remquo functions compute the same remainder as the remainder functions; this value
is in the range -y/2 ... +y/2. In the object pointed to by quo they store a value whose sign
is the sign of x/y and whose magnitude is congruent modulo 2**n to the magnitude of the
integral quotient of x/y. (That is, quo is given the n lsbs of the quotient, not counting the
sign.) This implementation uses n=31 if int is 32 bits or more, otherwise, n is 1 less than
the width of int.

For example:
remquo(-29.0, 3.0, &quo)

returns -1.0 and sets quo=10, and
remquo(-98307.0, 3.0, &quo)

returns -0.0 and sets quo=-32769, although for 16-bit int, quo=-1. In the latter case, the
actual quotient of -(32769=0x8001) is reduced to -1 because of the 15-bit limitation for the
quotient.

Returns
When either argument is NaN, NaN is returned. If y is 0 or x is infinite (and neither is
NaN), a domain error occurs (i.e. the "invalid" floating point exception is raised or errno
is set to EDOM), and NaN is returned. Otherwise, the remquo functions return x REM y.

Bugs
IEEE754-2008 calls for remquo(subnormal, inf) to cause the "underflow" floating-point
exception. This implementation does not.

Portability
C99, POSIX.

52 The Red Hat newlib C Math Library

1.49 rint, rintf—round to integer

Synopsis

#include <math.h>

double rint(double x);

float rintf(float x);

Description
The rint functions round their argument to an integer value in floating-point format, using
the current rounding direction. They raise the "inexact" floating-point exception if the
result differs in value from the argument. See the nearbyint functions for the same function
with the "inexact" floating-point exception never being raised. Newlib does not directly
support floating-point exceptions. The rint functions are written so that the "inexact"
exception is raised in hardware implementations that support it, even though Newlib does
not provide access.

Returns
x rounded to an integral value, using the current rounding direction.

Portability
ANSI C, POSIX

See Also
nearbyint, round

Chapter 1: Mathematical Functions (math.h) 53

1.50 round, roundf—round to integer, to nearest

Synopsis

#include <math.h>

double round(double x);

float roundf(float x);

Description
The round functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding direction.
(While the "inexact" floating-point exception behavior is unspecified by the C standard,
the round functions are written so that "inexact" is not raised if the result does not equal
the argument, which behavior is as recommended by IEEE 754 for its related functions.)

Returns
x rounded to an integral value.

Portability
ANSI C, POSIX

See Also
nearbyint, rint

54 The Red Hat newlib C Math Library

1.51 scalbn, scalbnf, scalbln, scalblnf—scale by power of
FLT RADIX (=2)

Synopsis

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

double scalbln(double x, long int n);

float scalblnf(float x, long int n);

Description
The scalbn and scalbln functions compute x · FLT RADIXn. efficiently. The result
is computed by manipulating the exponent, rather than by actually performing an expo-
nentiation or multiplication. In this floating-point implementation FLT RADIX=2, which
makes the scalbn functions equivalent to the ldexp functions.

Returns
x times 2 to the power n. A range error may occur.

Portability
ANSI C, POSIX

See Also
ldexp

Chapter 1: Mathematical Functions (math.h) 55

1.52 signbit—Does floating-point number have negative
sign?

Synopsis

#include <math.h>

int signbit(real-floating x);

Description
The signbit macro determines whether the sign of its argument value is negative. The
macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is unsigned,
it is treated as positive. As shown in the synopsis, the argument is "real-floating," meaning
that any of the real floating-point types (float, double, etc.) may be given to it.

Note that because of the possibilities of signed 0 and NaNs, the expression "x < 0.0" does
not give the same result as signbit in all cases.

Returns
The signbit macro returns a nonzero value if and only if the sign of its argument value is
negative.

Portability
C99, POSIX.

56 The Red Hat newlib C Math Library

1.53 sin, sinf, cos, cosf—sine or cosine

Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

double cos(double x);

float cosf(float x);

Description
sin and cos compute (respectively) the sine and cosine of the argument x. Angles are
specified in radians.

sinf and cosf are identical, save that they take and return float values.

Returns
The sine or cosine of x is returned.

Portability
sin and cos are ANSI C. sinf and cosf are extensions.

Chapter 1: Mathematical Functions (math.h) 57

1.54 sinh, sinhf—hyperbolic sine

Synopsis

#include <math.h>

double sinh(double x);

float sinhf(float x);

Description
sinh computes the hyperbolic sine of the argument x. Angles are specified in radians.
sinh(x) is defined as

ex − e−x

2

sinhf is identical, save that it takes and returns float values.

Returns
The hyperbolic sine of x is returned.

When the correct result is too large to be representable (an overflow), sinh returns HUGE_
VAL with the appropriate sign, and sets the global value errno to ERANGE.

Portability
sinh is ANSI C. sinhf is an extension.

58 The Red Hat newlib C Math Library

1.55 sqrt, sqrtf—positive square root

Synopsis

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

Description
sqrt computes the positive square root of the argument.

Returns
On success, the square root is returned. If x is real and positive, then the result is positive.
If x is real and negative, the global value errno is set to EDOM (domain error).

Portability
sqrt is ANSI C. sqrtf is an extension.

Chapter 1: Mathematical Functions (math.h) 59

1.56 tan, tanf—tangent

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

Description
tan computes the tangent of the argument x. Angles are specified in radians.

tanf is identical, save that it takes and returns float values.

Returns
The tangent of x is returned.

Portability
tan is ANSI. tanf is an extension.

60 The Red Hat newlib C Math Library

1.57 tanh, tanhf—hyperbolic tangent

Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

Description

tanh computes the hyperbolic tangent of the argument x. Angles are specified in radians.

tanh(x) is defined as
sinh(x)/cosh(x)

tanhf is identical, save that it takes and returns float values.

Returns
The hyperbolic tangent of x is returned.

Portability
tanh is ANSI C. tanhf is an extension.

Chapter 1: Mathematical Functions (math.h) 61

1.58 trunc, truncf—round to integer, towards zero

Synopsis

#include <math.h>

double trunc(double x);

float truncf(float x);

Description
The trunc functions round their argument to the integer value, in floating format, nearest to
but no larger in magnitude than the argument, regardless of the current rounding direction.
(While the "inexact" floating-point exception behavior is unspecified by the C standard,
the trunc functions are written so that "inexact" is not raised if the result does not equal
the argument, which behavior is as recommended by IEEE 754 for its related functions.)

Returns
x truncated to an integral value.

Portability
ANSI C, POSIX

63

2 Mathematical Complex Functions (complex.h)

This chapter groups the complex mathematical functions. The corresponding definitions
and declarations are in complex.h. Functions and documentations are taken from NetBSD.

64 The Red Hat newlib C Math Library

2.1 cabs, cabsf, cabsl—complex absolute-value

Synopsis

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

Description
These functions compute compute the complex absolute value (also called norm, modulus,
or magnitude) of z.

cabsf is identical to cabs, except that it performs its calculations on float complex.

cabsl is identical to cabs, except that it performs its calculations on long double complex.

Returns
The cabs* functions return the complex absolute value.

Portability
cabs, cabsf and cabsl are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 65

2.2 cacos, cacosf—complex arc cosine

Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

Description
These functions compute the complex arc cosine of z, with branch cuts outside the interval
[-1, +1] along the real axis.

cacosf is identical to cacos, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, π] along the real axis.

Portability
cacos and cacosf are ISO C99

66 The Red Hat newlib C Math Library

2.3 cacosh, cacoshf—complex arc hyperbolic cosine

Synopsis

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

Description
These functions compute the complex arc hyperbolic cosine of z, with a branch cut at values
less than 1 along the real axis.

cacoshf is identical to cacosh, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc hyperbolic cosine value, in the range of a half-strip
of non-negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary
axis.

Portability
cacosh and cacoshf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 67

2.4 carg, cargf—argument (phase angle)

Synopsis

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

Description
These functions compute the argument (also called phase angle) of z, with a branch cut
along the negative real axis.

cargf is identical to carg, except that it performs its calculations on floats complex.

Returns
The carg functions return the value of the argument in the interval [−π, +π]

Portability
carg and cargf are ISO C99

68 The Red Hat newlib C Math Library

2.5 casin, casinf—complex arc sine

Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

Description
These functions compute the complex arc sine of z, with branch cuts outside the interval
[-1, +1] along the real axis.

casinf is identical to casin, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

Portability
casin and casinf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 69

2.6 casinh, casinhf—complex arc hyperbolic sine

Synopsis

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

Description
These functions compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

casinhf is identical to casinh, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc hyperbolic sine value, in the range of a strip math-
ematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

Portability
casinh and casinhf are ISO C99

70 The Red Hat newlib C Math Library

2.7 catan, catanf—complex arc tangent

Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

Description
These functions compute the complex arc tangent of z, with branch cuts outside the interval
[−i, +i] along the imaginary axis.

catanf is identical to catan, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc tangent, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

Portability
catan and catanf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 71

2.8 catanh, catanhf—complex arc hyperbolic tangent

Synopsis

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

Description
These functions compute the complex arc hyperbolic tan of z, with branch cuts outside the
interval [-1, +1] along the real axis.

catanhf is identical to catanh, except that it performs its calculations on floats complex.

Returns
These functions return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

Portability
catanh and catanhf are ISO C99

72 The Red Hat newlib C Math Library

2.9 ccos, ccosf—complex cosine

Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

Description
These functions compute the complex cosine of z.

ccosf is identical to ccos, except that it performs its calculations on floats complex.

Returns
These functions return the complex cosine value.

Portability
ccos and ccosf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 73

2.10 ccosh, ccoshf—complex hyperbolic cosine

Synopsis

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

Description
These functions compute the complex hyperbolic cosine of z.

ccoshf is identical to ccosh, except that it performs its calculations on floats complex.

Returns
These functions return the complex hyperbolic cosine value.

Portability
ccosh and ccoshf are ISO C99

74 The Red Hat newlib C Math Library

2.11 cexp, cexpf—complex base-e exponential

Synopsis

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

Description
These functions compute the complex base-e exponential of z.

cexpf is identical to cexp, except that it performs its calculations on floats complex.

Returns
The cexp functions return the complex base-e exponential value.

Portability
cexp and cexpf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 75

2.12 cimag, cimagf, cimagl—imaginary part

Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Description
These functions compute the imaginary part of z.

cimagf is identical to cimag, except that it performs its calculations on float complex.

cimagl is identical to cimag, except that it performs its calculations on long double

complex.

Returns
The cimag* functions return the imaginary part value (as a real).

Portability
cimag, cimagf and cimagl are ISO C99

76 The Red Hat newlib C Math Library

2.13 clog, clogf—complex base-e logarithm

Synopsis

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

Description
These functions compute the complex natural (base-e) logarithm of z, with a branch cut
along the negative real axis.

clogf is identical to clog, except that it performs its calculations on floats complex.

Returns
The clog functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ, +iπ] along the
imaginary axis.

Portability
clog and clogf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 77

2.14 clog10, clog10f—complex base-10 logarithm

Synopsis

#define _GNU_SOURCE

#include <complex.h>

double complex clog10(double complex z);

float complex clog10f(float complex z);

Description
These functions compute the complex base-10 logarithm of z. clog10 is equivalent to
clog(z)/log(10).

clog10f is identical to clog10, except that it performs its calculations on floats complex.

Returns
The clog10 functions return the complex base-10 logarithm value.

Portability
clog10 and clog10f are GNU extensions.

78 The Red Hat newlib C Math Library

2.15 conj, conjf—complex conjugate

Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

Description
These functions compute the complex conjugate of z, by reversing the sign of its imaginary
part.

conjf is identical to conj, except that it performs its calculations on floats complex.

Returns
The conj functions return the complex conjugate value.

Portability
conj and conjf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 79

2.16 cpow, cpowf—complex power

Synopsis

#include <complex.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

Description
The cpow functions compute the complex power function xy power, with a branch cut for
the first parameter along the negative real axis.

cpowf is identical to cpow, except that it performs its calculations on floats complex.

Returns
The cpow functions return the complex power function value.

Portability
cpow and cpowf are ISO C99

80 The Red Hat newlib C Math Library

2.17 cproj, cprojf— Riemann sphere projection

Synopsis

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

Description
These functions compute a projection of z onto the Riemann sphere: z projects to z except
that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, then cproj(z) is equivalent to

INFINITY + I * copysign(0.0, cimag(z))

cprojf is identical to cproj, except that it performs its calculations on floats complex.

Returns
The cproj functions return the value of the projection onto the Riemann sphere.

Portability
cproj and cprojf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 81

2.18 creal, crealf, creall—real part

Synopsis

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

double long creall(long double complex z);

Description
These functions compute the real part of z.

crealf is identical to creal, except that it performs its calculations on float complex.

creall is identical to creal, except that it performs its calculations on long double

complex.

Returns
The creal* functions return the real part value.

Portability
creal, crealf and creall are ISO C99

82 The Red Hat newlib C Math Library

2.19 csin, csinf—complex sine

Synopsis

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

Description
These functions compute the complex sine of z.

csinf is identical to csin, except that it performs its calculations on floats complex.

Returns
These functions return the complex sine value.

Portability
csin and csinf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 83

2.20 csinh, csinhf—complex hyperbolic sine

Synopsis

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

Description
These functions compute the complex hyperbolic sine of z.

ccoshf is identical to ccosh, except that it performs its calculations on floats complex.

Returns
These functions return the complex hyperbolic sine value.

Portability
csinh and csinhf are ISO C99

84 The Red Hat newlib C Math Library

2.21 csqrt, csqrtf—complex square root

Synopsis

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

Description
These functions compute the complex square root of z, with a branch cut along the negative
real axis.

csqrtf is identical to csqrt, except that it performs its calculations on floats complex.

Returns
The csqrt functions return the complex square root value, in the range of the right halfplane
(including the imaginary axis).

Portability
csqrt and csqrtf are ISO C99

Chapter 2: Mathematical Complex Functions (complex.h) 85

2.22 ctan, ctanf—complex tangent

Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

Description
These functions compute the complex tangent of z.

ctanf is identical to ctan, except that it performs its calculations on floats complex.

Returns
These functions return the complex tangent value.

Portability
ctan and ctanf are ISO C99

86 The Red Hat newlib C Math Library

2.23 ctanh, ctanf—complex hyperbolic tangent

Synopsis

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

Description
These functions compute the complex hyperbolic tangent of z.

ctanhf is identical to ctanh, except that it performs its calculations on floats complex.

Returns
These functions return the complex hyperbolic tangent value.

Portability
ctanh and ctanhf are ISO C99

87

3 Floating-Point Environment (fenv.h)

This chapter groups the methods used to manipulate the floating-point status flags.
Floating-point operations modify the floating-point status flags to indicate abnormal result
information.

The implementation of these methods is architecture specific.

88 The Red Hat newlib C Math Library

3.1 feclearexcept—clear floating-point exception

Synopsis

#include <fenv.h>

int feclearexcept(int except);

Link with -lm.

Description
This method attempts to clear the floating-point exceptions specified in except.

Returns
If the except argument is zero or all requested exceptions were successfully cleared, this
method returns zero. Otherwise, a non-zero value is returned.

Portability
ANSI C requires feclearexcept.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

Chapter 3: Floating-Point Environment (fenv.h) 89

3.2 fegetenv—get current floating-point environment

Synopsis

#include <fenv.h>

int fegetenv(fenv_t *envp);

Link with -lm.

Description
This method attempts to return the floating-point environment in the area specified by
envp.

Returns
If floating-point environment was successfully returned, then this method returns zero.
Otherwise, a non-zero value is returned.

Portability
ANSI C requires fegetenv.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

90 The Red Hat newlib C Math Library

3.3 fegetexceptflag—get floating-point status flags

Synopsis

#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);

Link with -lm.

Description
This method attempts to store an implementation-defined representation of the states of
the floating-point status flags specified by excepts in the memory pointed to by flagp.

Returns
If the information was successfully returned, this method returns zero. Otherwise, a non-
zero value is returned.

Portability
ANSI C requires fegetexceptflag.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

Chapter 3: Floating-Point Environment (fenv.h) 91

3.4 fegetround—get current rounding direction

Synopsis

#include <fenv.h>

int fegetround(void);

Link with -lm.

Description
This method returns the current rounding direction.

Returns
This method returns the rounding direction, corresponding to the value of the respective
rouding macro. If the current rounding direction cannot be determined, then a negative
value is returned.

Portability
ANSI C requires fegetround.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

92 The Red Hat newlib C Math Library

3.5 feholdexcept—save current floating-point environment

Synopsis

#include <fenv.h>

int feholdexcept(fenv_t *envp);

Link with -lm.

Description
This method attempts to save the current floating-point environment in the fenv t instance
pointed to by envp, clear the floating point status flags, and then, if supported by the target
architecture, install a "non-stop" (e.g. continue on floating point exceptions) mode for all
floating-point exceptions.

Returns
This method will return zero if the non-stop floating-point exception handler was installed.
Otherwise, a non-zero value is returned.

Portability
ANSI C requires feholdexcept.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

Chapter 3: Floating-Point Environment (fenv.h) 93

3.6 feraiseexcept—raise floating-point exception

Synopsis

#include <fenv.h>

int feraiseexcept(int excepts);

Link with -lm.

Description
This method attempts to raise the floating-point exceptions specified in excepts.

Returns
If the excepts argument is zero or all requested exceptions were successfully raised, this
method returns zero. Otherwise, a non-zero value is returned.

Portability
ANSI C requires feraiseexcept.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

94 The Red Hat newlib C Math Library

3.7 fesetenv—set current floating-point environment

Synopsis

#include <fenv.h>

int fesetenv(const fenv_t *envp);

Link with -lm.

Description
This method attempts to establish the floating-point environment pointed to by envp.
The argument envp must point to a floating-point environment obtained via fegetenv

or feholdexcept or a floating-point environment macro such as FE_DFL_ENV.

It only sets the states of the flags as recorded in its argument, and does not actually raise
the associated floating-point exceptions.

Returns
If floating-point environment was successfully established, then this method returns zero.
Otherwise, a non-zero value is returned.

Portability
ANSI C requires fesetenv.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

Chapter 3: Floating-Point Environment (fenv.h) 95

3.8 fesetexceptflag—set floating-point status flags

Synopsis

#include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

Link with -lm.

Description
This method attempts to set the floating-point status flags specified by excepts to the
states indicated by flagp. The argument flagp must point to an fexcept t instance obtained
via calling fegetexceptflag with at least the floating-point exceptions specified by the
argument excepts.

This method does not raise any floating-point exceptions. It only sets the state of the flags.

Returns
If the information was successfully returned, this method returns zero. Otherwise, a non-
zero value is returned.

Portability
ANSI C requires fesetexceptflag.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

96 The Red Hat newlib C Math Library

3.9 fesetround—set current rounding direction

Synopsis

#include <fenv.h>

int fesetround(int round);

Link with -lm.

Description
This method attempts to set the current rounding direction represented by round. round
must be the value of one of the rounding-direction macros.

Returns
If the rounding mode was successfully established, this method returns zero. Otherwise, a
non-zero value is returned.

Portability
ANSI C requires fesetround.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

Chapter 3: Floating-Point Environment (fenv.h) 97

3.10 fetestexcept—test floating-point exception flags

Synopsis

#include <fenv.h>

int fetestexcept(int except);

Link with -lm.

Description
This method test the current floating-point exceptions to determine which of those specified
in except are currently set.

Returns
This method returns the bitwise-inclusive OR of the floating point exception macros which
correspond to the currently set floating point exceptions.

Portability
ANSI C requires fetestexcept.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

98 The Red Hat newlib C Math Library

3.11 feupdateenv—update current floating-point
environment

Synopsis

#include <fenv.h>

int feupdateenv(const fenv_t *envp);

Link with -lm.

Description
This method attempts to save the currently raised floating point exceptions in its automatic
storage, install the floating point environment specified by envp, and raise the saved floating
point exceptions.

The argument envp must point to a floating-point environment obtained via fegetenv or
feholdexcept.

Returns
If all actions are completed successfully, then this method returns zero. Otherwise, a non-
zero value is returned.

Portability
ANSI C requires feupdateenv.

Not all Newlib targets have a working implementation. Refer to the file sys/fenv.h to see
the status for your target.

99

4 Reentrancy Properties of libm

When a libm function detects an exceptional case, errno may be set.

errno is a macro which expands to the per-thread error value. This makes it thread safe,
and therefore reentrant.

101

5 The long double function support of libm

Currently, the full set of long double math functions is only provided on platforms where long
double equals double. For such platforms, the long double math functions are implemented
as calls to the double versions.

103

Document Index

(Index is nonexistent)

104 The Red Hat newlib C Math Library

The body of this manual is set in
cmr10,

with headings in cmbx10
and examples in cmtt10.

cmti10 and
cmsl10

are used for emphasis.

i

Table of Contents

1 Mathematical Functions (math.h) 1
1.1 Error Handling . 2
1.2 Standards Compliance And Portability . 2
1.3 acos, acosf—arc cosine . 3
1.4 acosh, acoshf—inverse hyperbolic cosine . 4
1.5 asin, asinf—arc sine . 5
1.6 asinh, asinhf—inverse hyperbolic sine . 6
1.7 atan, atanf—arc tangent . 7
1.8 atan2, atan2f—arc tangent of y/x . 8
1.9 atanh, atanhf—inverse hyperbolic tangent . 9
1.10 jN, jNf, yN, yNf—Bessel functions . 10
1.11 cbrt, cbrtf—cube root . 11
1.12 copysign, copysignf—sign of y, magnitude of x 12
1.13 cosh, coshf—hyperbolic cosine . 13
1.14 erf, erff, erfc, erfcf—error function . 14
1.15 exp, expf—exponential . 15
1.16 exp10, exp10f—exponential, base 10 . 16
1.17 exp2, exp2f—exponential, base 2 . 17
1.18 expm1, expm1f—exponential minus 1 . 18
1.19 fabs, fabsf—absolute value (magnitude) . 19
1.20 fdim, fdimf—positive difference . 20
1.21 floor, floorf, ceil, ceilf—floor and ceiling 21
1.22 fma, fmaf—floating multiply add . 22
1.23 fmax, fmaxf—maximum . 23
1.24 fmin, fminf—minimum . 24
1.25 fmod, fmodf—floating-point remainder (modulo) 25
1.26 frexp, frexpf—split floating-point number 26
1.27 gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r,
tgamma, and tgammaf—logarithmic and plain gamma functions 27

1.28 hypot, hypotf—distance from origin . 29
1.29 ilogb, ilogbf—get exponent of floating-point number 30
1.30 infinity, infinityf—representation of infinity 31
1.31 isgreater, isgreaterequal, isless, islessequal, islessgreater,
and isunordered—comparison macros . 32

1.32 fpclassify, isfinite, isinf, isnan, and isnormal—floating-point
classification macros; finite, finitef, isinf, isinff, isnan,
isnanf—test for exceptional numbers . 34

1.33 ldexp, ldexpf—load exponent . 36
1.34 log, logf—natural logarithms . 37
1.35 log10, log10f—base 10 logarithms . 38
1.36 log1p, log1pf—log of 1 + x . 39
1.37 log2, log2f—base 2 logarithm . 40
1.38 logb, logbf—get exponent of floating-point number 41

ii The Red Hat newlib C Math Library

1.39 lrint, lrintf, llrint, llrintf—round to integer 42
1.40 lround, lroundf, llround,
llroundf—round to integer, to nearest . 43

1.41 modf, modff—split fractional and integer parts 44
1.42 nan, nanf—representation of “Not a Number” 45
1.43 nearbyint, nearbyintf—round to integer . 46
1.44 nextafter, nextafterf—get next number . 47
1.45 pow, powf—x to the power y . 48
1.46 pow10, pow10f—base 10 power functions . 49
1.47 remainder, remainderf—round and remainder 50
1.48 remquo, remquof—remainder and part of quotient 51
1.49 rint, rintf—round to integer . 52
1.50 round, roundf—round to integer, to nearest 53
1.51 scalbn, scalbnf, scalbln, scalblnf—scale by
power of FLT RADIX (=2) . 54

1.52 signbit—Does floating-point number have negative sign? 55
1.53 sin, sinf, cos, cosf—sine or cosine . 56
1.54 sinh, sinhf—hyperbolic sine . 57
1.55 sqrt, sqrtf—positive square root . 58
1.56 tan, tanf—tangent . 59
1.57 tanh, tanhf—hyperbolic tangent . 60
1.58 trunc, truncf—round to integer, towards zero 61

2 Mathematical Complex Functions (complex.h) . . 63
2.1 cabs, cabsf, cabsl—complex absolute-value 64
2.2 cacos, cacosf—complex arc cosine . 65
2.3 cacosh, cacoshf—complex arc hyperbolic cosine 66
2.4 carg, cargf—argument (phase angle) . 67
2.5 casin, casinf—complex arc sine . 68
2.6 casinh, casinhf—complex arc hyperbolic sine 69
2.7 catan, catanf—complex arc tangent . 70
2.8 catanh, catanhf—complex arc hyperbolic tangent 71
2.9 ccos, ccosf—complex cosine . 72
2.10 ccosh, ccoshf—complex hyperbolic cosine . 73
2.11 cexp, cexpf—complex base-e exponential . 74
2.12 cimag, cimagf, cimagl—imaginary part . 75
2.13 clog, clogf—complex base-e logarithm . 76
2.14 clog10, clog10f—complex base-10 logarithm 77
2.15 conj, conjf—complex conjugate . 78
2.16 cpow, cpowf—complex power . 79
2.17 cproj, cprojf— Riemann sphere projection 80
2.18 creal, crealf, creall—real part . 81
2.19 csin, csinf—complex sine . 82
2.20 csinh, csinhf—complex hyperbolic sine . 83
2.21 csqrt, csqrtf—complex square root . 84
2.22 ctan, ctanf—complex tangent . 85
2.23 ctanh, ctanf—complex hyperbolic tangent 86

iii

3 Floating-Point Environment (fenv.h) 87
3.1 feclearexcept—clear floating-point exception 88
3.2 fegetenv—get current floating-point environment 89
3.3 fegetexceptflag—get floating-point status flags 90
3.4 fegetround—get current rounding direction 91
3.5 feholdexcept—save current floating-point environment 92
3.6 feraiseexcept—raise floating-point exception 93
3.7 fesetenv—set current floating-point environment 94
3.8 fesetexceptflag—set floating-point status flags 95
3.9 fesetround—set current rounding direction 96
3.10 fetestexcept—test floating-point exception flags 97
3.11 feupdateenv—update current floating-point environment 98

4 Reentrancy Properties of libm 99

5 The long double function support of libm . . . 101

Document Index . 103

	Mathematical Functions (math.h)
	Error Handling
	Standards Compliance And Portability
	acos, acosf---arc cosine
	acosh, acoshf---inverse hyperbolic cosine
	asin, asinf---arc sine
	asinh, asinhf---inverse hyperbolic sine
	atan, atanf---arc tangent
	atan2, atan2f---arc tangent of y/x
	atanh, atanhf---inverse hyperbolic tangent
	jN, jNf, yN, yNf---Bessel functions
	cbrt, cbrtf---cube root
	copysign, copysignf---sign of y, magnitude of x
	cosh, coshf---hyperbolic cosine
	erf, erff, erfc, erfcf---error function
	exp, expf---exponential
	exp10, exp10f---exponential, base 10
	exp2, exp2f---exponential, base 2
	expm1, expm1f---exponential minus 1
	fabs, fabsf---absolute value (magnitude)
	fdim, fdimf---positive difference
	floor, floorf, ceil, ceilf---floor and ceiling
	fma, fmaf---floating multiply add
	fmax, fmaxf---maximum
	fmin, fminf---minimum
	fmod, fmodf---floating-point remainder (modulo)
	frexp, frexpf---split floating-point number
	gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r, tgamma, and tgammaf---logarithmic and plain gamma functions
	hypot, hypotf---distance from origin
	ilogb, ilogbf---get exponent of floating-point number
	infinity, infinityf---representation of infinity
	isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered---comparison macros
	fpclassify, isfinite, isinf, isnan, and isnormal---floating-point classification macros; finite, finitef, isinf, isinff, isnan, isnanf---test for exceptional numbers
	ldexp, ldexpf---load exponent
	log, logf---natural logarithms
	log10, log10f---base 10 logarithms
	log1p, log1pf---log of 1 + x
	log2, log2f---base 2 logarithm
	logb, logbf---get exponent of floating-point number
	lrint, lrintf, llrint, llrintf---round to integer
	lround, lroundf, llround, llroundf---round to integer, to nearest
	modf, modff---split fractional and integer parts
	nan, nanf---representation of ``Not a Number''
	nearbyint, nearbyintf---round to integer
	nextafter, nextafterf---get next number
	pow, powf---x to the power y
	pow10, pow10f---base 10 power functions
	remainder, remainderf---round and remainder
	remquo, remquof---remainder and part of quotient
	rint, rintf---round to integer
	round, roundf---round to integer, to nearest
	scalbn, scalbnf, scalbln, scalblnf---scale by power of FLT_RADIX (=2)
	signbit---Does floating-point number have negative sign?
	sin, sinf, cos, cosf---sine or cosine
	sinh, sinhf---hyperbolic sine
	sqrt, sqrtf---positive square root
	tan, tanf---tangent
	tanh, tanhf---hyperbolic tangent
	trunc, truncf---round to integer, towards zero

	Mathematical Complex Functions (complex.h)
	cabs, cabsf, cabsl---complex absolute-value
	cacos, cacosf---complex arc cosine
	cacosh, cacoshf---complex arc hyperbolic cosine
	carg, cargf---argument (phase angle)
	casin, casinf---complex arc sine
	casinh, casinhf---complex arc hyperbolic sine
	catan, catanf---complex arc tangent
	catanh, catanhf---complex arc hyperbolic tangent
	ccos, ccosf---complex cosine
	ccosh, ccoshf---complex hyperbolic cosine
	cexp, cexpf---complex base-e exponential
	cimag, cimagf, cimagl---imaginary part
	clog, clogf---complex base-e logarithm
	clog10, clog10f---complex base-10 logarithm
	conj, conjf---complex conjugate
	cpow, cpowf---complex power
	cproj, cprojf--- Riemann sphere projection
	creal, crealf, creall---real part
	csin, csinf---complex sine
	csinh, csinhf---complex hyperbolic sine
	csqrt, csqrtf---complex square root
	ctan, ctanf---complex tangent
	ctanh, ctanf---complex hyperbolic tangent

	Floating-Point Environment (fenv.h)
	feclearexcept---clear floating-point exception
	fegetenv---get current floating-point environment
	fegetexceptflag---get floating-point status flags
	fegetround---get current rounding direction
	feholdexcept---save current floating-point environment
	feraiseexcept---raise floating-point exception
	fesetenv---set current floating-point environment
	fesetexceptflag---set floating-point status flags
	fesetround---set current rounding direction
	fetestexcept---test floating-point exception flags
	feupdateenv---update current floating-point environment

	Reentrancy Properties of libm
	The long double function support of libm
	Document Index

