|
- // random number generation -*- C++ -*-
-
- // Copyright (C) 2009-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
-
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
-
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /**
- * @file bits/random.h
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{random}
- */
-
- #ifndef _RANDOM_H
- #define _RANDOM_H 1
-
- #include <vector>
- #include <bits/uniform_int_dist.h>
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- // [26.4] Random number generation
-
- /**
- * @defgroup random Random Number Generation
- * @ingroup numerics
- *
- * A facility for generating random numbers on selected distributions.
- * @{
- */
-
- // std::uniform_random_bit_generator is defined in <bits/uniform_int_dist.h>
-
- /**
- * @brief A function template for converting the output of a (integral)
- * uniform random number generator to a floatng point result in the range
- * [0-1).
- */
- template<typename _RealType, size_t __bits,
- typename _UniformRandomNumberGenerator>
- _RealType
- generate_canonical(_UniformRandomNumberGenerator& __g);
-
- /*
- * Implementation-space details.
- */
- namespace __detail
- {
- template<typename _UIntType, size_t __w,
- bool = __w < static_cast<size_t>
- (std::numeric_limits<_UIntType>::digits)>
- struct _Shift
- { static const _UIntType __value = 0; };
-
- template<typename _UIntType, size_t __w>
- struct _Shift<_UIntType, __w, true>
- { static const _UIntType __value = _UIntType(1) << __w; };
-
- template<int __s,
- int __which = ((__s <= __CHAR_BIT__ * sizeof (int))
- + (__s <= __CHAR_BIT__ * sizeof (long))
- + (__s <= __CHAR_BIT__ * sizeof (long long))
- /* assume long long no bigger than __int128 */
- + (__s <= 128))>
- struct _Select_uint_least_t
- {
- static_assert(__which < 0, /* needs to be dependent */
- "sorry, would be too much trouble for a slow result");
- };
-
- template<int __s>
- struct _Select_uint_least_t<__s, 4>
- { typedef unsigned int type; };
-
- template<int __s>
- struct _Select_uint_least_t<__s, 3>
- { typedef unsigned long type; };
-
- template<int __s>
- struct _Select_uint_least_t<__s, 2>
- { typedef unsigned long long type; };
-
- #ifdef _GLIBCXX_USE_INT128
- template<int __s>
- struct _Select_uint_least_t<__s, 1>
- { typedef unsigned __int128 type; };
- #endif
-
- // Assume a != 0, a < m, c < m, x < m.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c,
- bool __big_enough = (!(__m & (__m - 1))
- || (_Tp(-1) - __c) / __a >= __m - 1),
- bool __schrage_ok = __m % __a < __m / __a>
- struct _Mod
- {
- typedef typename _Select_uint_least_t<std::__lg(__a)
- + std::__lg(__m) + 2>::type _Tp2;
- static _Tp
- __calc(_Tp __x)
- { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); }
- };
-
- // Schrage.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
- struct _Mod<_Tp, __m, __a, __c, false, true>
- {
- static _Tp
- __calc(_Tp __x);
- };
-
- // Special cases:
- // - for m == 2^n or m == 0, unsigned integer overflow is safe.
- // - a * (m - 1) + c fits in _Tp, there is no overflow.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s>
- struct _Mod<_Tp, __m, __a, __c, true, __s>
- {
- static _Tp
- __calc(_Tp __x)
- {
- _Tp __res = __a * __x + __c;
- if (__m)
- __res %= __m;
- return __res;
- }
- };
-
- template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0>
- inline _Tp
- __mod(_Tp __x)
- { return _Mod<_Tp, __m, __a, __c>::__calc(__x); }
-
- /*
- * An adaptor class for converting the output of any Generator into
- * the input for a specific Distribution.
- */
- template<typename _Engine, typename _DInputType>
- struct _Adaptor
- {
- static_assert(std::is_floating_point<_DInputType>::value,
- "template argument must be a floating point type");
-
- public:
- _Adaptor(_Engine& __g)
- : _M_g(__g) { }
-
- _DInputType
- min() const
- { return _DInputType(0); }
-
- _DInputType
- max() const
- { return _DInputType(1); }
-
- /*
- * Converts a value generated by the adapted random number generator
- * into a value in the input domain for the dependent random number
- * distribution.
- */
- _DInputType
- operator()()
- {
- return std::generate_canonical<_DInputType,
- std::numeric_limits<_DInputType>::digits,
- _Engine>(_M_g);
- }
-
- private:
- _Engine& _M_g;
- };
-
- template<typename _Sseq>
- using __seed_seq_generate_t = decltype(
- std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(),
- std::declval<uint_least32_t*>()));
-
- // Detect whether _Sseq is a valid seed sequence for
- // a random number engine _Engine with result type _Res.
- template<typename _Sseq, typename _Engine, typename _Res,
- typename _GenerateCheck = __seed_seq_generate_t<_Sseq>>
- using __is_seed_seq = __and_<
- __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>,
- is_unsigned<typename _Sseq::result_type>,
- __not_<is_convertible<_Sseq, _Res>>
- >;
-
- } // namespace __detail
-
- /**
- * @addtogroup random_generators Random Number Generators
- * @ingroup random
- *
- * These classes define objects which provide random or pseudorandom
- * numbers, either from a discrete or a continuous interval. The
- * random number generator supplied as a part of this library are
- * all uniform random number generators which provide a sequence of
- * random number uniformly distributed over their range.
- *
- * A number generator is a function object with an operator() that
- * takes zero arguments and returns a number.
- *
- * A compliant random number generator must satisfy the following
- * requirements. <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Random Number Generator Requirements</caption>
- * <tr><td>To be documented.</td></tr> </table>
- *
- * @{
- */
-
- /**
- * @brief A model of a linear congruential random number generator.
- *
- * A random number generator that produces pseudorandom numbers via
- * linear function:
- * @f[
- * x_{i+1}\leftarrow(ax_{i} + c) \bmod m
- * @f]
- *
- * The template parameter @p _UIntType must be an unsigned integral type
- * large enough to store values up to (__m-1). If the template parameter
- * @p __m is 0, the modulus @p __m used is
- * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
- * parameters @p __a and @p __c must be less than @p __m.
- *
- * The size of the state is @f$1@f$.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- class linear_congruential_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value,
- "result_type must be an unsigned integral type");
- static_assert(__m == 0u || (__a < __m && __c < __m),
- "template argument substituting __m out of bounds");
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, linear_congruential_engine, _UIntType>::value>::type;
-
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
-
- /** The multiplier. */
- static constexpr result_type multiplier = __a;
- /** An increment. */
- static constexpr result_type increment = __c;
- /** The modulus. */
- static constexpr result_type modulus = __m;
- static constexpr result_type default_seed = 1u;
-
- /**
- * @brief Constructs a %linear_congruential_engine random number
- * generator engine with seed 1.
- */
- linear_congruential_engine() : linear_congruential_engine(default_seed)
- { }
-
- /**
- * @brief Constructs a %linear_congruential_engine random number
- * generator engine with seed @p __s. The default seed value
- * is 1.
- *
- * @param __s The initial seed value.
- */
- explicit
- linear_congruential_engine(result_type __s)
- { seed(__s); }
-
- /**
- * @brief Constructs a %linear_congruential_engine random number
- * generator engine seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- linear_congruential_engine(_Sseq& __q)
- { seed(__q); }
-
- /**
- * @brief Reseeds the %linear_congruential_engine random number generator
- * engine sequence to the seed @p __s.
- *
- * @param __s The new seed.
- */
- void
- seed(result_type __s = default_seed);
-
- /**
- * @brief Reseeds the %linear_congruential_engine random number generator
- * engine
- * sequence using values from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q);
-
- /**
- * @brief Gets the smallest possible value in the output range.
- *
- * The minimum depends on the @p __c parameter: if it is zero, the
- * minimum generated must be > 0, otherwise 0 is allowed.
- */
- static constexpr result_type
- min()
- { return __c == 0u ? 1u : 0u; }
-
- /**
- * @brief Gets the largest possible value in the output range.
- */
- static constexpr result_type
- max()
- { return __m - 1u; }
-
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
-
- /**
- * @brief Gets the next random number in the sequence.
- */
- result_type
- operator()()
- {
- _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x);
- return _M_x;
- }
-
- /**
- * @brief Compares two linear congruential random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A linear congruential random number generator object.
- * @param __rhs Another linear congruential random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const linear_congruential_engine& __lhs,
- const linear_congruential_engine& __rhs)
- { return __lhs._M_x == __rhs._M_x; }
-
- /**
- * @brief Writes the textual representation of the state x(i) of x to
- * @p __os.
- *
- * @param __os The output stream.
- * @param __lcr A % linear_congruential_engine random number generator.
- * @returns __os.
- */
- template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
- _UIntType1 __m1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::linear_congruential_engine<_UIntType1,
- __a1, __c1, __m1>& __lcr);
-
- /**
- * @brief Sets the state of the engine by reading its textual
- * representation from @p __is.
- *
- * The textual representation must have been previously written using
- * an output stream whose imbued locale and whose type's template
- * specialization arguments _CharT and _Traits were the same as those
- * of @p __is.
- *
- * @param __is The input stream.
- * @param __lcr A % linear_congruential_engine random number generator.
- * @returns __is.
- */
- template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
- _UIntType1 __m1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::linear_congruential_engine<_UIntType1, __a1,
- __c1, __m1>& __lcr);
-
- private:
- _UIntType _M_x;
- };
-
- /**
- * @brief Compares two linear congruential random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A linear congruential random number generator object.
- * @param __rhs Another linear congruential random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- inline bool
- operator!=(const std::linear_congruential_engine<_UIntType, __a,
- __c, __m>& __lhs,
- const std::linear_congruential_engine<_UIntType, __a,
- __c, __m>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /**
- * A generalized feedback shift register discrete random number generator.
- *
- * This algorithm avoids multiplication and division and is designed to be
- * friendly to a pipelined architecture. If the parameters are chosen
- * correctly, this generator will produce numbers with a very long period and
- * fairly good apparent entropy, although still not cryptographically strong.
- *
- * The best way to use this generator is with the predefined mt19937 class.
- *
- * This algorithm was originally invented by Makoto Matsumoto and
- * Takuji Nishimura.
- *
- * @tparam __w Word size, the number of bits in each element of
- * the state vector.
- * @tparam __n The degree of recursion.
- * @tparam __m The period parameter.
- * @tparam __r The separation point bit index.
- * @tparam __a The last row of the twist matrix.
- * @tparam __u The first right-shift tempering matrix parameter.
- * @tparam __d The first right-shift tempering matrix mask.
- * @tparam __s The first left-shift tempering matrix parameter.
- * @tparam __b The first left-shift tempering matrix mask.
- * @tparam __t The second left-shift tempering matrix parameter.
- * @tparam __c The second left-shift tempering matrix mask.
- * @tparam __l The second right-shift tempering matrix parameter.
- * @tparam __f Initialization multiplier.
- */
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t,
- _UIntType __c, size_t __l, _UIntType __f>
- class mersenne_twister_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value,
- "result_type must be an unsigned integral type");
- static_assert(1u <= __m && __m <= __n,
- "template argument substituting __m out of bounds");
- static_assert(__r <= __w, "template argument substituting "
- "__r out of bound");
- static_assert(__u <= __w, "template argument substituting "
- "__u out of bound");
- static_assert(__s <= __w, "template argument substituting "
- "__s out of bound");
- static_assert(__t <= __w, "template argument substituting "
- "__t out of bound");
- static_assert(__l <= __w, "template argument substituting "
- "__l out of bound");
- static_assert(__w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bound");
- static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __a out of bound");
- static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __b out of bound");
- static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __c out of bound");
- static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __d out of bound");
- static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __f out of bound");
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, mersenne_twister_engine, _UIntType>::value>::type;
-
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
-
- // parameter values
- static constexpr size_t word_size = __w;
- static constexpr size_t state_size = __n;
- static constexpr size_t shift_size = __m;
- static constexpr size_t mask_bits = __r;
- static constexpr result_type xor_mask = __a;
- static constexpr size_t tempering_u = __u;
- static constexpr result_type tempering_d = __d;
- static constexpr size_t tempering_s = __s;
- static constexpr result_type tempering_b = __b;
- static constexpr size_t tempering_t = __t;
- static constexpr result_type tempering_c = __c;
- static constexpr size_t tempering_l = __l;
- static constexpr result_type initialization_multiplier = __f;
- static constexpr result_type default_seed = 5489u;
-
- // constructors and member functions
-
- mersenne_twister_engine() : mersenne_twister_engine(default_seed) { }
-
- explicit
- mersenne_twister_engine(result_type __sd)
- { seed(__sd); }
-
- /**
- * @brief Constructs a %mersenne_twister_engine random number generator
- * engine seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- mersenne_twister_engine(_Sseq& __q)
- { seed(__q); }
-
- void
- seed(result_type __sd = default_seed);
-
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q);
-
- /**
- * @brief Gets the smallest possible value in the output range.
- */
- static constexpr result_type
- min()
- { return 0; }
-
- /**
- * @brief Gets the largest possible value in the output range.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
-
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z);
-
- result_type
- operator()();
-
- /**
- * @brief Compares two % mersenne_twister_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A % mersenne_twister_engine random number generator
- * object.
- * @param __rhs Another % mersenne_twister_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const mersenne_twister_engine& __lhs,
- const mersenne_twister_engine& __rhs)
- { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x)
- && __lhs._M_p == __rhs._M_p); }
-
- /**
- * @brief Inserts the current state of a % mersenne_twister_engine
- * random number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A % mersenne_twister_engine random number generator
- * engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1,
- size_t __w1, size_t __n1,
- size_t __m1, size_t __r1,
- _UIntType1 __a1, size_t __u1,
- _UIntType1 __d1, size_t __s1,
- _UIntType1 __b1, size_t __t1,
- _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::mersenne_twister_engine<_UIntType1, __w1, __n1,
- __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
- __l1, __f1>& __x);
-
- /**
- * @brief Extracts the current state of a % mersenne_twister_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A % mersenne_twister_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _UIntType1,
- size_t __w1, size_t __n1,
- size_t __m1, size_t __r1,
- _UIntType1 __a1, size_t __u1,
- _UIntType1 __d1, size_t __s1,
- _UIntType1 __b1, size_t __t1,
- _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1,
- __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
- __l1, __f1>& __x);
-
- private:
- void _M_gen_rand();
-
- _UIntType _M_x[state_size];
- size_t _M_p;
- };
-
- /**
- * @brief Compares two % mersenne_twister_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A % mersenne_twister_engine random number generator
- * object.
- * @param __rhs Another % mersenne_twister_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t,
- _UIntType __c, size_t __l, _UIntType __f>
- inline bool
- operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs,
- const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /**
- * @brief The Marsaglia-Zaman generator.
- *
- * This is a model of a Generalized Fibonacci discrete random number
- * generator, sometimes referred to as the SWC generator.
- *
- * A discrete random number generator that produces pseudorandom
- * numbers using:
- * @f[
- * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m
- * @f]
- *
- * The size of the state is @f$r@f$
- * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$.
- */
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- class subtract_with_carry_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value,
- "result_type must be an unsigned integral type");
- static_assert(0u < __s && __s < __r,
- "0 < s < r");
- static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bounds");
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, subtract_with_carry_engine, _UIntType>::value>::type;
-
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
-
- // parameter values
- static constexpr size_t word_size = __w;
- static constexpr size_t short_lag = __s;
- static constexpr size_t long_lag = __r;
- static constexpr result_type default_seed = 19780503u;
-
- subtract_with_carry_engine() : subtract_with_carry_engine(default_seed)
- { }
-
- /**
- * @brief Constructs an explicitly seeded %subtract_with_carry_engine
- * random number generator.
- */
- explicit
- subtract_with_carry_engine(result_type __sd)
- { seed(__sd); }
-
- /**
- * @brief Constructs a %subtract_with_carry_engine random number engine
- * seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- subtract_with_carry_engine(_Sseq& __q)
- { seed(__q); }
-
- /**
- * @brief Seeds the initial state @f$x_0@f$ of the random number
- * generator.
- *
- * N1688[4.19] modifies this as follows. If @p __value == 0,
- * sets value to 19780503. In any case, with a linear
- * congruential generator lcg(i) having parameters @f$ m_{lcg} =
- * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
- * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
- * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$
- * set carry to 1, otherwise sets carry to 0.
- */
- void
- seed(result_type __sd = default_seed);
-
- /**
- * @brief Seeds the initial state @f$x_0@f$ of the
- * % subtract_with_carry_engine random number generator.
- */
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q);
-
- /**
- * @brief Gets the inclusive minimum value of the range of random
- * integers returned by this generator.
- */
- static constexpr result_type
- min()
- { return 0; }
-
- /**
- * @brief Gets the inclusive maximum value of the range of random
- * integers returned by this generator.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
-
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
-
- /**
- * @brief Gets the next random number in the sequence.
- */
- result_type
- operator()();
-
- /**
- * @brief Compares two % subtract_with_carry_engine random number
- * generator objects of the same type for equality.
- *
- * @param __lhs A % subtract_with_carry_engine random number generator
- * object.
- * @param __rhs Another % subtract_with_carry_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const subtract_with_carry_engine& __lhs,
- const subtract_with_carry_engine& __rhs)
- { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x)
- && __lhs._M_carry == __rhs._M_carry
- && __lhs._M_p == __rhs._M_p); }
-
- /**
- * @brief Inserts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A % subtract_with_carry_engine random number generator
- * engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::subtract_with_carry_engine<_UIntType1, __w1,
- __s1, __r1>& __x);
-
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A % subtract_with_carry_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::subtract_with_carry_engine<_UIntType1, __w1,
- __s1, __r1>& __x);
-
- private:
- /// The state of the generator. This is a ring buffer.
- _UIntType _M_x[long_lag];
- _UIntType _M_carry; ///< The carry
- size_t _M_p; ///< Current index of x(i - r).
- };
-
- /**
- * @brief Compares two % subtract_with_carry_engine random number
- * generator objects of the same type for inequality.
- *
- * @param __lhs A % subtract_with_carry_engine random number generator
- * object.
- * @param __rhs Another % subtract_with_carry_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- inline bool
- operator!=(const std::subtract_with_carry_engine<_UIntType, __w,
- __s, __r>& __lhs,
- const std::subtract_with_carry_engine<_UIntType, __w,
- __s, __r>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /**
- * Produces random numbers from some base engine by discarding blocks of
- * data.
- *
- * 0 <= @p __r <= @p __p
- */
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- class discard_block_engine
- {
- static_assert(1 <= __r && __r <= __p,
- "template argument substituting __r out of bounds");
-
- public:
- /** The type of the generated random value. */
- typedef typename _RandomNumberEngine::result_type result_type;
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, discard_block_engine, result_type>::value>::type;
-
- // parameter values
- static constexpr size_t block_size = __p;
- static constexpr size_t used_block = __r;
-
- /**
- * @brief Constructs a default %discard_block_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- discard_block_engine()
- : _M_b(), _M_n(0) { }
-
- /**
- * @brief Copy constructs a %discard_block_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- discard_block_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng), _M_n(0) { }
-
- /**
- * @brief Move constructs a %discard_block_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- discard_block_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng)), _M_n(0) { }
-
- /**
- * @brief Seed constructs a %discard_block_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- discard_block_engine(result_type __s)
- : _M_b(__s), _M_n(0) { }
-
- /**
- * @brief Generator construct a %discard_block_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- discard_block_engine(_Sseq& __q)
- : _M_b(__q), _M_n(0)
- { }
-
- /**
- * @brief Reseeds the %discard_block_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed()
- {
- _M_b.seed();
- _M_n = 0;
- }
-
- /**
- * @brief Reseeds the %discard_block_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- {
- _M_b.seed(__s);
- _M_n = 0;
- }
-
- /**
- * @brief Reseeds the %discard_block_engine object with the given seed
- * sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q)
- {
- _M_b.seed(__q);
- _M_n = 0;
- }
-
- /**
- * @brief Gets a const reference to the underlying generator engine
- * object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
-
- /**
- * @brief Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return _RandomNumberEngine::min(); }
-
- /**
- * @brief Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return _RandomNumberEngine::max(); }
-
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
-
- /**
- * @brief Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
-
- /**
- * @brief Compares two %discard_block_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A %discard_block_engine random number generator object.
- * @param __rhs Another %discard_block_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const discard_block_engine& __lhs,
- const discard_block_engine& __rhs)
- { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; }
-
- /**
- * @brief Inserts the current state of a %discard_block_engine random
- * number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A %discard_block_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::discard_block_engine<_RandomNumberEngine1,
- __p1, __r1>& __x);
-
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %discard_block_engine random number generator engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::discard_block_engine<_RandomNumberEngine1,
- __p1, __r1>& __x);
-
- private:
- _RandomNumberEngine _M_b;
- size_t _M_n;
- };
-
- /**
- * @brief Compares two %discard_block_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A %discard_block_engine random number generator object.
- * @param __rhs Another %discard_block_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- inline bool
- operator!=(const std::discard_block_engine<_RandomNumberEngine, __p,
- __r>& __lhs,
- const std::discard_block_engine<_RandomNumberEngine, __p,
- __r>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /**
- * Produces random numbers by combining random numbers from some base
- * engine to produce random numbers with a specifies number of bits @p __w.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
- class independent_bits_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value,
- "result_type must be an unsigned integral type");
- static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bounds");
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, independent_bits_engine, _UIntType>::value>::type;
-
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
-
- /**
- * @brief Constructs a default %independent_bits_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- independent_bits_engine()
- : _M_b() { }
-
- /**
- * @brief Copy constructs a %independent_bits_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- independent_bits_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng) { }
-
- /**
- * @brief Move constructs a %independent_bits_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- independent_bits_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng)) { }
-
- /**
- * @brief Seed constructs a %independent_bits_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- independent_bits_engine(result_type __s)
- : _M_b(__s) { }
-
- /**
- * @brief Generator construct a %independent_bits_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- independent_bits_engine(_Sseq& __q)
- : _M_b(__q)
- { }
-
- /**
- * @brief Reseeds the %independent_bits_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed()
- { _M_b.seed(); }
-
- /**
- * @brief Reseeds the %independent_bits_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- { _M_b.seed(__s); }
-
- /**
- * @brief Reseeds the %independent_bits_engine object with the given
- * seed sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q)
- { _M_b.seed(__q); }
-
- /**
- * @brief Gets a const reference to the underlying generator engine
- * object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
-
- /**
- * @brief Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return 0U; }
-
- /**
- * @brief Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
-
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
-
- /**
- * @brief Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
-
- /**
- * @brief Compares two %independent_bits_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A %independent_bits_engine random number generator
- * object.
- * @param __rhs Another %independent_bits_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const independent_bits_engine& __lhs,
- const independent_bits_engine& __rhs)
- { return __lhs._M_b == __rhs._M_b; }
-
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %independent_bits_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::independent_bits_engine<_RandomNumberEngine,
- __w, _UIntType>& __x)
- {
- __is >> __x._M_b;
- return __is;
- }
-
- private:
- _RandomNumberEngine _M_b;
- };
-
- /**
- * @brief Compares two %independent_bits_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A %independent_bits_engine random number generator
- * object.
- * @param __rhs Another %independent_bits_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
- inline bool
- operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w,
- _UIntType>& __lhs,
- const std::independent_bits_engine<_RandomNumberEngine, __w,
- _UIntType>& __rhs)
- { return !(__lhs == __rhs); }
-
- /**
- * @brief Inserts the current state of a %independent_bits_engine random
- * number generator engine @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %independent_bits_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::independent_bits_engine<_RandomNumberEngine,
- __w, _UIntType>& __x)
- {
- __os << __x.base();
- return __os;
- }
-
-
- /**
- * @brief Produces random numbers by combining random numbers from some
- * base engine to produce random numbers with a specifies number of bits
- * @p __k.
- */
- template<typename _RandomNumberEngine, size_t __k>
- class shuffle_order_engine
- {
- static_assert(1u <= __k, "template argument substituting "
- "__k out of bound");
-
- public:
- /** The type of the generated random value. */
- typedef typename _RandomNumberEngine::result_type result_type;
-
- template<typename _Sseq>
- using _If_seed_seq = typename enable_if<__detail::__is_seed_seq<
- _Sseq, shuffle_order_engine, result_type>::value>::type;
-
- static constexpr size_t table_size = __k;
-
- /**
- * @brief Constructs a default %shuffle_order_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- shuffle_order_engine()
- : _M_b()
- { _M_initialize(); }
-
- /**
- * @brief Copy constructs a %shuffle_order_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- shuffle_order_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng)
- { _M_initialize(); }
-
- /**
- * @brief Move constructs a %shuffle_order_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- shuffle_order_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng))
- { _M_initialize(); }
-
- /**
- * @brief Seed constructs a %shuffle_order_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- shuffle_order_engine(result_type __s)
- : _M_b(__s)
- { _M_initialize(); }
-
- /**
- * @brief Generator construct a %shuffle_order_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- shuffle_order_engine(_Sseq& __q)
- : _M_b(__q)
- { _M_initialize(); }
-
- /**
- * @brief Reseeds the %shuffle_order_engine object with the default seed
- for the underlying base class generator engine.
- */
- void
- seed()
- {
- _M_b.seed();
- _M_initialize();
- }
-
- /**
- * @brief Reseeds the %shuffle_order_engine object with the default seed
- * for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- {
- _M_b.seed(__s);
- _M_initialize();
- }
-
- /**
- * @brief Reseeds the %shuffle_order_engine object with the given seed
- * sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q)
- {
- _M_b.seed(__q);
- _M_initialize();
- }
-
- /**
- * Gets a const reference to the underlying generator engine object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
-
- /**
- * Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return _RandomNumberEngine::min(); }
-
- /**
- * Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return _RandomNumberEngine::max(); }
-
- /**
- * Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
-
- /**
- * Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
-
- /**
- * Compares two %shuffle_order_engine random number generator objects
- * of the same type for equality.
- *
- * @param __lhs A %shuffle_order_engine random number generator object.
- * @param __rhs Another %shuffle_order_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const shuffle_order_engine& __lhs,
- const shuffle_order_engine& __rhs)
- { return (__lhs._M_b == __rhs._M_b
- && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v)
- && __lhs._M_y == __rhs._M_y); }
-
- /**
- * @brief Inserts the current state of a %shuffle_order_engine random
- * number generator engine @p __x into the output stream
- @p __os.
- *
- * @param __os An output stream.
- * @param __x A %shuffle_order_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __k1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::shuffle_order_engine<_RandomNumberEngine1,
- __k1>& __x);
-
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %shuffle_order_engine random number generator engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __k1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x);
-
- private:
- void _M_initialize()
- {
- for (size_t __i = 0; __i < __k; ++__i)
- _M_v[__i] = _M_b();
- _M_y = _M_b();
- }
-
- _RandomNumberEngine _M_b;
- result_type _M_v[__k];
- result_type _M_y;
- };
-
- /**
- * Compares two %shuffle_order_engine random number generator objects
- * of the same type for inequality.
- *
- * @param __lhs A %shuffle_order_engine random number generator object.
- * @param __rhs Another %shuffle_order_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __k>
- inline bool
- operator!=(const std::shuffle_order_engine<_RandomNumberEngine,
- __k>& __lhs,
- const std::shuffle_order_engine<_RandomNumberEngine,
- __k>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /**
- * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
- */
- typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL>
- minstd_rand0;
-
- /**
- * An alternative LCR (Lehmer Generator function).
- */
- typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL>
- minstd_rand;
-
- /**
- * The classic Mersenne Twister.
- *
- * Reference:
- * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
- * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
- * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
- */
- typedef mersenne_twister_engine<
- uint_fast32_t,
- 32, 624, 397, 31,
- 0x9908b0dfUL, 11,
- 0xffffffffUL, 7,
- 0x9d2c5680UL, 15,
- 0xefc60000UL, 18, 1812433253UL> mt19937;
-
- /**
- * An alternative Mersenne Twister.
- */
- typedef mersenne_twister_engine<
- uint_fast64_t,
- 64, 312, 156, 31,
- 0xb5026f5aa96619e9ULL, 29,
- 0x5555555555555555ULL, 17,
- 0x71d67fffeda60000ULL, 37,
- 0xfff7eee000000000ULL, 43,
- 6364136223846793005ULL> mt19937_64;
-
- typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
- ranlux24_base;
-
- typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
- ranlux48_base;
-
- typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
-
- typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
-
- typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
-
- typedef minstd_rand0 default_random_engine;
-
- /**
- * A standard interface to a platform-specific non-deterministic
- * random number generator (if any are available).
- */
- class random_device
- {
- public:
- /** The type of the generated random value. */
- typedef unsigned int result_type;
-
- // constructors, destructors and member functions
-
- random_device() { _M_init("default"); }
-
- explicit
- random_device(const std::string& __token) { _M_init(__token); }
-
- #if defined _GLIBCXX_USE_DEV_RANDOM
- ~random_device()
- { _M_fini(); }
- #endif
-
- static constexpr result_type
- min()
- { return std::numeric_limits<result_type>::min(); }
-
- static constexpr result_type
- max()
- { return std::numeric_limits<result_type>::max(); }
-
- double
- entropy() const noexcept
- {
- #ifdef _GLIBCXX_USE_DEV_RANDOM
- return this->_M_getentropy();
- #else
- return 0.0;
- #endif
- }
-
- result_type
- operator()()
- { return this->_M_getval(); }
-
- // No copy functions.
- random_device(const random_device&) = delete;
- void operator=(const random_device&) = delete;
-
- private:
-
- void _M_init(const std::string& __token);
- void _M_init_pretr1(const std::string& __token);
- void _M_fini();
-
- result_type _M_getval();
- result_type _M_getval_pretr1();
- double _M_getentropy() const noexcept;
-
- void _M_init(const char*, size_t); // not exported from the shared library
-
- union
- {
- struct
- {
- void* _M_file;
- result_type (*_M_func)(void*);
- int _M_fd;
- };
- mt19937 _M_mt;
- };
- };
-
- /* @} */ // group random_generators
-
- /**
- * @addtogroup random_distributions Random Number Distributions
- * @ingroup random
- * @{
- */
-
- /**
- * @addtogroup random_distributions_uniform Uniform Distributions
- * @ingroup random_distributions
- * @{
- */
-
- // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h>
-
- /**
- * @brief Return true if two uniform integer distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::uniform_int_distribution<_IntType>& __d1,
- const std::uniform_int_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %uniform_int_distribution random number
- * distribution @p __x into the output stream @p os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_int_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const std::uniform_int_distribution<_IntType>&);
-
- /**
- * @brief Extracts a %uniform_int_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_int_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- std::uniform_int_distribution<_IntType>&);
-
-
- /**
- * @brief Uniform continuous distribution for random numbers.
- *
- * A continuous random distribution on the range [min, max) with equal
- * probability throughout the range. The URNG should be real-valued and
- * deliver number in the range [0, 1).
- */
- template<typename _RealType = double>
- class uniform_real_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef uniform_real_distribution<_RealType> distribution_type;
-
- param_type() : param_type(0) { }
-
- explicit
- param_type(_RealType __a, _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- {
- __glibcxx_assert(_M_a <= _M_b);
- }
-
- result_type
- a() const
- { return _M_a; }
-
- result_type
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
-
- public:
- /**
- * @brief Constructs a uniform_real_distribution object.
- *
- * The lower bound is set to 0.0 and the upper bound to 1.0
- */
- uniform_real_distribution() : uniform_real_distribution(0.0) { }
-
- /**
- * @brief Constructs a uniform_real_distribution object.
- *
- * @param __a [IN] The lower bound of the distribution.
- * @param __b [IN] The upper bound of the distribution.
- */
- explicit
- uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
-
- explicit
- uniform_real_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for the uniform real distribution.
- */
- void
- reset() { }
-
- result_type
- a() const
- { return _M_param.a(); }
-
- result_type
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the inclusive lower bound of the distribution range.
- */
- result_type
- min() const
- { return this->a(); }
-
- /**
- * @brief Returns the inclusive upper bound of the distribution range.
- */
- result_type
- max() const
- { return this->b(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return (__aurng() * (__p.b() - __p.a())) + __p.a();
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two uniform real distributions have
- * the same parameters.
- */
- friend bool
- operator==(const uniform_real_distribution& __d1,
- const uniform_real_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two uniform real distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::uniform_real_distribution<_IntType>& __d1,
- const std::uniform_real_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %uniform_real_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_real_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const std::uniform_real_distribution<_RealType>&);
-
- /**
- * @brief Extracts a %uniform_real_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_real_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- std::uniform_real_distribution<_RealType>&);
-
- /* @} */ // group random_distributions_uniform
-
- /**
- * @addtogroup random_distributions_normal Normal Distributions
- * @ingroup random_distributions
- * @{
- */
-
- /**
- * @brief A normal continuous distribution for random numbers.
- *
- * The formula for the normal probability density function is
- * @f[
- * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
- * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} }
- * @f]
- */
- template<typename _RealType = double>
- class normal_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef normal_distribution<_RealType> distribution_type;
-
- param_type() : param_type(0.0) { }
-
- explicit
- param_type(_RealType __mean, _RealType __stddev = _RealType(1))
- : _M_mean(__mean), _M_stddev(__stddev)
- {
- __glibcxx_assert(_M_stddev > _RealType(0));
- }
-
- _RealType
- mean() const
- { return _M_mean; }
-
- _RealType
- stddev() const
- { return _M_stddev; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_mean == __p2._M_mean
- && __p1._M_stddev == __p2._M_stddev); }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_mean;
- _RealType _M_stddev;
- };
-
- public:
- normal_distribution() : normal_distribution(0.0) { }
-
- /**
- * Constructs a normal distribution with parameters @f$mean@f$ and
- * standard deviation.
- */
- explicit
- normal_distribution(result_type __mean,
- result_type __stddev = result_type(1))
- : _M_param(__mean, __stddev), _M_saved_available(false)
- { }
-
- explicit
- normal_distribution(const param_type& __p)
- : _M_param(__p), _M_saved_available(false)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_saved_available = false; }
-
- /**
- * @brief Returns the mean of the distribution.
- */
- _RealType
- mean() const
- { return _M_param.mean(); }
-
- /**
- * @brief Returns the standard deviation of the distribution.
- */
- _RealType
- stddev() const
- { return _M_param.stddev(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two normal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<typename _RealType1>
- friend bool
- operator==(const std::normal_distribution<_RealType1>& __d1,
- const std::normal_distribution<_RealType1>& __d2);
-
- /**
- * @brief Inserts a %normal_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %normal_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::normal_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %normal_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %normal_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::normal_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- result_type _M_saved;
- bool _M_saved_available;
- };
-
- /**
- * @brief Return true if two normal distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::normal_distribution<_RealType>& __d1,
- const std::normal_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A lognormal_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}}
- * \exp{-\frac{(\ln{x} - m)^2}{2s^2}}
- * @f]
- */
- template<typename _RealType = double>
- class lognormal_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef lognormal_distribution<_RealType> distribution_type;
-
- param_type() : param_type(0.0) { }
-
- explicit
- param_type(_RealType __m, _RealType __s = _RealType(1))
- : _M_m(__m), _M_s(__s)
- { }
-
- _RealType
- m() const
- { return _M_m; }
-
- _RealType
- s() const
- { return _M_s; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_m;
- _RealType _M_s;
- };
-
- lognormal_distribution() : lognormal_distribution(0.0) { }
-
- explicit
- lognormal_distribution(_RealType __m, _RealType __s = _RealType(1))
- : _M_param(__m, __s), _M_nd()
- { }
-
- explicit
- lognormal_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- *
- */
- _RealType
- m() const
- { return _M_param.m(); }
-
- _RealType
- s() const
- { return _M_param.s(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two lognormal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const lognormal_distribution& __d1,
- const lognormal_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd); }
-
- /**
- * @brief Inserts a %lognormal_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %lognormal_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::lognormal_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %lognormal_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %lognormal_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::lognormal_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::normal_distribution<result_type> _M_nd;
- };
-
- /**
- * @brief Return true if two lognormal distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::lognormal_distribution<_RealType>& __d1,
- const std::lognormal_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A gamma continuous distribution for random numbers.
- *
- * The formula for the gamma probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}
- * (x/\beta)^{\alpha - 1} e^{-x/\beta}
- * @f]
- */
- template<typename _RealType = double>
- class gamma_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef gamma_distribution<_RealType> distribution_type;
- friend class gamma_distribution<_RealType>;
-
- param_type() : param_type(1.0) { }
-
- explicit
- param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1))
- : _M_alpha(__alpha_val), _M_beta(__beta_val)
- {
- __glibcxx_assert(_M_alpha > _RealType(0));
- _M_initialize();
- }
-
- _RealType
- alpha() const
- { return _M_alpha; }
-
- _RealType
- beta() const
- { return _M_beta; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_alpha == __p2._M_alpha
- && __p1._M_beta == __p2._M_beta); }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- _RealType _M_alpha;
- _RealType _M_beta;
-
- _RealType _M_malpha, _M_a2;
- };
-
- public:
- /**
- * @brief Constructs a gamma distribution with parameters 1 and 1.
- */
- gamma_distribution() : gamma_distribution(1.0) { }
-
- /**
- * @brief Constructs a gamma distribution with parameters
- * @f$\alpha@f$ and @f$\beta@f$.
- */
- explicit
- gamma_distribution(_RealType __alpha_val,
- _RealType __beta_val = _RealType(1))
- : _M_param(__alpha_val, __beta_val), _M_nd()
- { }
-
- explicit
- gamma_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- * @brief Returns the @f$\alpha@f$ of the distribution.
- */
- _RealType
- alpha() const
- { return _M_param.alpha(); }
-
- /**
- * @brief Returns the @f$\beta@f$ of the distribution.
- */
- _RealType
- beta() const
- { return _M_param.beta(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two gamma distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const gamma_distribution& __d1,
- const gamma_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd); }
-
- /**
- * @brief Inserts a %gamma_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %gamma_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::gamma_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %gamma_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %gamma_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::gamma_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::normal_distribution<result_type> _M_nd;
- };
-
- /**
- * @brief Return true if two gamma distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::gamma_distribution<_RealType>& __d1,
- const std::gamma_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A chi_squared_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$
- */
- template<typename _RealType = double>
- class chi_squared_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef chi_squared_distribution<_RealType> distribution_type;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_RealType __n)
- : _M_n(__n)
- { }
-
- _RealType
- n() const
- { return _M_n; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_n == __p2._M_n; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_n;
- };
-
- chi_squared_distribution() : chi_squared_distribution(1) { }
-
- explicit
- chi_squared_distribution(_RealType __n)
- : _M_param(__n), _M_gd(__n / 2)
- { }
-
- explicit
- chi_squared_distribution(const param_type& __p)
- : _M_param(__p), _M_gd(__p.n() / 2)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
-
- /**
- *
- */
- _RealType
- n() const
- { return _M_param.n(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- {
- _M_param = __param;
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- _M_gd.param(param_type{__param.n() / 2});
- }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return 2 * _M_gd(__urng); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- return 2 * _M_gd(__urng, param_type(__p.n() / 2));
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { typename std::gamma_distribution<result_type>::param_type
- __p2(__p.n() / 2);
- this->__generate_impl(__f, __t, __urng, __p2); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { typename std::gamma_distribution<result_type>::param_type
- __p2(__p.n() / 2);
- this->__generate_impl(__f, __t, __urng, __p2); }
-
- /**
- * @brief Return true if two Chi-squared distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const chi_squared_distribution& __d1,
- const chi_squared_distribution& __d2)
- { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
-
- /**
- * @brief Inserts a %chi_squared_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %chi_squared_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::chi_squared_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %chi_squared_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %chi_squared_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::chi_squared_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const typename
- std::gamma_distribution<result_type>::param_type& __p);
-
- param_type _M_param;
-
- std::gamma_distribution<result_type> _M_gd;
- };
-
- /**
- * @brief Return true if two Chi-squared distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::chi_squared_distribution<_RealType>& __d1,
- const std::chi_squared_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A cauchy_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$
- */
- template<typename _RealType = double>
- class cauchy_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef cauchy_distribution<_RealType> distribution_type;
-
- param_type() : param_type(0) { }
-
- explicit
- param_type(_RealType __a, _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- { }
-
- _RealType
- a() const
- { return _M_a; }
-
- _RealType
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
-
- cauchy_distribution() : cauchy_distribution(0.0) { }
-
- explicit
- cauchy_distribution(_RealType __a, _RealType __b = 1.0)
- : _M_param(__a, __b)
- { }
-
- explicit
- cauchy_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- *
- */
- _RealType
- a() const
- { return _M_param.a(); }
-
- _RealType
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Cauchy distributions have
- * the same parameters.
- */
- friend bool
- operator==(const cauchy_distribution& __d1,
- const cauchy_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two Cauchy distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::cauchy_distribution<_RealType>& __d1,
- const std::cauchy_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %cauchy_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %cauchy_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::cauchy_distribution<_RealType>& __x);
-
- /**
- * @brief Extracts a %cauchy_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %cauchy_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::cauchy_distribution<_RealType>& __x);
-
-
- /**
- * @brief A fisher_f_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)}
- * (\frac{m}{n})^{m/2} x^{(m/2)-1}
- * (1 + \frac{mx}{n})^{-(m+n)/2}
- * @f]
- */
- template<typename _RealType = double>
- class fisher_f_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef fisher_f_distribution<_RealType> distribution_type;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_RealType __m, _RealType __n = _RealType(1))
- : _M_m(__m), _M_n(__n)
- { }
-
- _RealType
- m() const
- { return _M_m; }
-
- _RealType
- n() const
- { return _M_n; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_m;
- _RealType _M_n;
- };
-
- fisher_f_distribution() : fisher_f_distribution(1.0) { }
-
- explicit
- fisher_f_distribution(_RealType __m,
- _RealType __n = _RealType(1))
- : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2)
- { }
-
- explicit
- fisher_f_distribution(const param_type& __p)
- : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_gd_x.reset();
- _M_gd_y.reset();
- }
-
- /**
- *
- */
- _RealType
- m() const
- { return _M_param.m(); }
-
- _RealType
- n() const
- { return _M_param.n(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n())
- / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m()));
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Fisher f distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const fisher_f_distribution& __d1,
- const fisher_f_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd_x == __d2._M_gd_x
- && __d1._M_gd_y == __d2._M_gd_y); }
-
- /**
- * @brief Inserts a %fisher_f_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %fisher_f_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::fisher_f_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %fisher_f_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %fisher_f_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::fisher_f_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::gamma_distribution<result_type> _M_gd_x, _M_gd_y;
- };
-
- /**
- * @brief Return true if two Fisher f distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::fisher_f_distribution<_RealType>& __d1,
- const std::fisher_f_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief A student_t_distribution random number distribution.
- *
- * The formula for the normal probability mass function is:
- * @f[
- * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}
- * (1 + \frac{x^2}{n}) ^{-(n+1)/2}
- * @f]
- */
- template<typename _RealType = double>
- class student_t_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef student_t_distribution<_RealType> distribution_type;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_RealType __n)
- : _M_n(__n)
- { }
-
- _RealType
- n() const
- { return _M_n; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_n == __p2._M_n; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_n;
- };
-
- student_t_distribution() : student_t_distribution(1.0) { }
-
- explicit
- student_t_distribution(_RealType __n)
- : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2)
- { }
-
- explicit
- student_t_distribution(const param_type& __p)
- : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_nd.reset();
- _M_gd.reset();
- }
-
- /**
- *
- */
- _RealType
- n() const
- { return _M_param.n(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
-
- const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2));
- return _M_nd(__urng) * std::sqrt(__p.n() / __g);
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Student t distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const student_t_distribution& __d1,
- const student_t_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); }
-
- /**
- * @brief Inserts a %student_t_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %student_t_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::student_t_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %student_t_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %student_t_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::student_t_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::normal_distribution<result_type> _M_nd;
- std::gamma_distribution<result_type> _M_gd;
- };
-
- /**
- * @brief Return true if two Student t distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::student_t_distribution<_RealType>& __d1,
- const std::student_t_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /* @} */ // group random_distributions_normal
-
- /**
- * @addtogroup random_distributions_bernoulli Bernoulli Distributions
- * @ingroup random_distributions
- * @{
- */
-
- /**
- * @brief A Bernoulli random number distribution.
- *
- * Generates a sequence of true and false values with likelihood @f$p@f$
- * that true will come up and @f$(1 - p)@f$ that false will appear.
- */
- class bernoulli_distribution
- {
- public:
- /** The type of the range of the distribution. */
- typedef bool result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef bernoulli_distribution distribution_type;
-
- param_type() : param_type(0.5) { }
-
- explicit
- param_type(double __p)
- : _M_p(__p)
- {
- __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0));
- }
-
- double
- p() const
- { return _M_p; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_p == __p2._M_p; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- double _M_p;
- };
-
- public:
- /**
- * @brief Constructs a Bernoulli distribution with likelihood 0.5.
- */
- bernoulli_distribution() : bernoulli_distribution(0.5) { }
-
- /**
- * @brief Constructs a Bernoulli distribution with likelihood @p p.
- *
- * @param __p [IN] The likelihood of a true result being returned.
- * Must be in the interval @f$[0, 1]@f$.
- */
- explicit
- bernoulli_distribution(double __p)
- : _M_param(__p)
- { }
-
- explicit
- bernoulli_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for a Bernoulli distribution.
- */
- void
- reset() { }
-
- /**
- * @brief Returns the @p p parameter of the distribution.
- */
- double
- p() const
- { return _M_param.p(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::min(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- if ((__aurng() - __aurng.min())
- < __p.p() * (__aurng.max() - __aurng.min()))
- return true;
- return false;
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng, const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Bernoulli distributions have
- * the same parameters.
- */
- friend bool
- operator==(const bernoulli_distribution& __d1,
- const bernoulli_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two Bernoulli distributions have
- * different parameters.
- */
- inline bool
- operator!=(const std::bernoulli_distribution& __d1,
- const std::bernoulli_distribution& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %bernoulli_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %bernoulli_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::bernoulli_distribution& __x);
-
- /**
- * @brief Extracts a %bernoulli_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %bernoulli_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _CharT, typename _Traits>
- inline std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::bernoulli_distribution& __x)
- {
- double __p;
- if (__is >> __p)
- __x.param(bernoulli_distribution::param_type(__p));
- return __is;
- }
-
-
- /**
- * @brief A discrete binomial random number distribution.
- *
- * The formula for the binomial probability density function is
- * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
- * and @f$p@f$ are the parameters of the distribution.
- */
- template<typename _IntType = int>
- class binomial_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "result_type must be an integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef binomial_distribution<_IntType> distribution_type;
- friend class binomial_distribution<_IntType>;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_IntType __t, double __p = 0.5)
- : _M_t(__t), _M_p(__p)
- {
- __glibcxx_assert((_M_t >= _IntType(0))
- && (_M_p >= 0.0)
- && (_M_p <= 1.0));
- _M_initialize();
- }
-
- _IntType
- t() const
- { return _M_t; }
-
- double
- p() const
- { return _M_p; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- _IntType _M_t;
- double _M_p;
-
- double _M_q;
- #if _GLIBCXX_USE_C99_MATH_TR1
- double _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
- _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
- #endif
- bool _M_easy;
- };
-
- // constructors and member functions
-
- binomial_distribution() : binomial_distribution(1) { }
-
- explicit
- binomial_distribution(_IntType __t, double __p = 0.5)
- : _M_param(__t, __p), _M_nd()
- { }
-
- explicit
- binomial_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- * @brief Returns the distribution @p t parameter.
- */
- _IntType
- t() const
- { return _M_param.t(); }
-
- /**
- * @brief Returns the distribution @p p parameter.
- */
- double
- p() const
- { return _M_param.p(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return _M_param.t(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two binomial distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const binomial_distribution& __d1,
- const binomial_distribution& __d2)
- #ifdef _GLIBCXX_USE_C99_MATH_TR1
- { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
- #else
- { return __d1._M_param == __d2._M_param; }
- #endif
-
- /**
- * @brief Inserts a %binomial_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %binomial_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::binomial_distribution<_IntType1>& __x);
-
- /**
- * @brief Extracts a %binomial_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %binomial_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::binomial_distribution<_IntType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- _M_waiting(_UniformRandomNumberGenerator& __urng,
- _IntType __t, double __q);
-
- param_type _M_param;
-
- // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
- std::normal_distribution<double> _M_nd;
- };
-
- /**
- * @brief Return true if two binomial distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::binomial_distribution<_IntType>& __d1,
- const std::binomial_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A discrete geometric random number distribution.
- *
- * The formula for the geometric probability density function is
- * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the
- * distribution.
- */
- template<typename _IntType = int>
- class geometric_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "result_type must be an integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef geometric_distribution<_IntType> distribution_type;
- friend class geometric_distribution<_IntType>;
-
- param_type() : param_type(0.5) { }
-
- explicit
- param_type(double __p)
- : _M_p(__p)
- {
- __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0));
- _M_initialize();
- }
-
- double
- p() const
- { return _M_p; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_p == __p2._M_p; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize()
- { _M_log_1_p = std::log(1.0 - _M_p); }
-
- double _M_p;
-
- double _M_log_1_p;
- };
-
- // constructors and member functions
-
- geometric_distribution() : geometric_distribution(0.5) { }
-
- explicit
- geometric_distribution(double __p)
- : _M_param(__p)
- { }
-
- explicit
- geometric_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for the geometric distribution.
- */
- void
- reset() { }
-
- /**
- * @brief Returns the distribution parameter @p p.
- */
- double
- p() const
- { return _M_param.p(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two geometric distributions have
- * the same parameters.
- */
- friend bool
- operator==(const geometric_distribution& __d1,
- const geometric_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two geometric distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::geometric_distribution<_IntType>& __d1,
- const std::geometric_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %geometric_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %geometric_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::geometric_distribution<_IntType>& __x);
-
- /**
- * @brief Extracts a %geometric_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %geometric_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::geometric_distribution<_IntType>& __x);
-
-
- /**
- * @brief A negative_binomial_distribution random number distribution.
- *
- * The formula for the negative binomial probability mass function is
- * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
- * and @f$p@f$ are the parameters of the distribution.
- */
- template<typename _IntType = int>
- class negative_binomial_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "result_type must be an integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef negative_binomial_distribution<_IntType> distribution_type;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_IntType __k, double __p = 0.5)
- : _M_k(__k), _M_p(__p)
- {
- __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0));
- }
-
- _IntType
- k() const
- { return _M_k; }
-
- double
- p() const
- { return _M_p; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _IntType _M_k;
- double _M_p;
- };
-
- negative_binomial_distribution() : negative_binomial_distribution(1) { }
-
- explicit
- negative_binomial_distribution(_IntType __k, double __p = 0.5)
- : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p)
- { }
-
- explicit
- negative_binomial_distribution(const param_type& __p)
- : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p())
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
-
- /**
- * @brief Return the @f$k@f$ parameter of the distribution.
- */
- _IntType
- k() const
- { return _M_param.k(); }
-
- /**
- * @brief Return the @f$p@f$ parameter of the distribution.
- */
- double
- p() const
- { return _M_param.p(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng);
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two negative binomial distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const negative_binomial_distribution& __d1,
- const negative_binomial_distribution& __d2)
- { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
-
- /**
- * @brief Inserts a %negative_binomial_distribution random
- * number distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %negative_binomial_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::negative_binomial_distribution<_IntType1>& __x);
-
- /**
- * @brief Extracts a %negative_binomial_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %negative_binomial_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::negative_binomial_distribution<_IntType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::gamma_distribution<double> _M_gd;
- };
-
- /**
- * @brief Return true if two negative binomial distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::negative_binomial_distribution<_IntType>& __d1,
- const std::negative_binomial_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /* @} */ // group random_distributions_bernoulli
-
- /**
- * @addtogroup random_distributions_poisson Poisson Distributions
- * @ingroup random_distributions
- * @{
- */
-
- /**
- * @brief A discrete Poisson random number distribution.
- *
- * The formula for the Poisson probability density function is
- * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the
- * parameter of the distribution.
- */
- template<typename _IntType = int>
- class poisson_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "result_type must be an integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef poisson_distribution<_IntType> distribution_type;
- friend class poisson_distribution<_IntType>;
-
- param_type() : param_type(1.0) { }
-
- explicit
- param_type(double __mean)
- : _M_mean(__mean)
- {
- __glibcxx_assert(_M_mean > 0.0);
- _M_initialize();
- }
-
- double
- mean() const
- { return _M_mean; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mean == __p2._M_mean; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- // Hosts either log(mean) or the threshold of the simple method.
- void
- _M_initialize();
-
- double _M_mean;
-
- double _M_lm_thr;
- #if _GLIBCXX_USE_C99_MATH_TR1
- double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
- #endif
- };
-
- // constructors and member functions
-
- poisson_distribution() : poisson_distribution(1.0) { }
-
- explicit
- poisson_distribution(double __mean)
- : _M_param(__mean), _M_nd()
- { }
-
- explicit
- poisson_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- * @brief Returns the distribution parameter @p mean.
- */
- double
- mean() const
- { return _M_param.mean(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Poisson distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const poisson_distribution& __d1,
- const poisson_distribution& __d2)
- #ifdef _GLIBCXX_USE_C99_MATH_TR1
- { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
- #else
- { return __d1._M_param == __d2._M_param; }
- #endif
-
- /**
- * @brief Inserts a %poisson_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %poisson_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::poisson_distribution<_IntType1>& __x);
-
- /**
- * @brief Extracts a %poisson_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %poisson_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::poisson_distribution<_IntType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
- std::normal_distribution<double> _M_nd;
- };
-
- /**
- * @brief Return true if two Poisson distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::poisson_distribution<_IntType>& __d1,
- const std::poisson_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief An exponential continuous distribution for random numbers.
- *
- * The formula for the exponential probability density function is
- * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
- * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr>
- * <tr><td>Mode</td><td>@f$zero@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
- * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class exponential_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef exponential_distribution<_RealType> distribution_type;
-
- param_type() : param_type(1.0) { }
-
- explicit
- param_type(_RealType __lambda)
- : _M_lambda(__lambda)
- {
- __glibcxx_assert(_M_lambda > _RealType(0));
- }
-
- _RealType
- lambda() const
- { return _M_lambda; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_lambda == __p2._M_lambda; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_lambda;
- };
-
- public:
- /**
- * @brief Constructs an exponential distribution with inverse scale
- * parameter 1.0
- */
- exponential_distribution() : exponential_distribution(1.0) { }
-
- /**
- * @brief Constructs an exponential distribution with inverse scale
- * parameter @f$\lambda@f$.
- */
- explicit
- exponential_distribution(_RealType __lambda)
- : _M_param(__lambda)
- { }
-
- explicit
- exponential_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- *
- * Has no effect on exponential distributions.
- */
- void
- reset() { }
-
- /**
- * @brief Returns the inverse scale parameter of the distribution.
- */
- _RealType
- lambda() const
- { return _M_param.lambda(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return -std::log(result_type(1) - __aurng()) / __p.lambda();
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two exponential distributions have the same
- * parameters.
- */
- friend bool
- operator==(const exponential_distribution& __d1,
- const exponential_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two exponential distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::exponential_distribution<_RealType>& __d1,
- const std::exponential_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %exponential_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %exponential_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::exponential_distribution<_RealType>& __x);
-
- /**
- * @brief Extracts a %exponential_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %exponential_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::exponential_distribution<_RealType>& __x);
-
-
- /**
- * @brief A weibull_distribution random number distribution.
- *
- * The formula for the normal probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1}
- * \exp{(-(\frac{x}{\beta})^\alpha)}
- * @f]
- */
- template<typename _RealType = double>
- class weibull_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef weibull_distribution<_RealType> distribution_type;
-
- param_type() : param_type(1.0) { }
-
- explicit
- param_type(_RealType __a, _RealType __b = _RealType(1.0))
- : _M_a(__a), _M_b(__b)
- { }
-
- _RealType
- a() const
- { return _M_a; }
-
- _RealType
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
-
- weibull_distribution() : weibull_distribution(1.0) { }
-
- explicit
- weibull_distribution(_RealType __a, _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
-
- explicit
- weibull_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Return the @f$a@f$ parameter of the distribution.
- */
- _RealType
- a() const
- { return _M_param.a(); }
-
- /**
- * @brief Return the @f$b@f$ parameter of the distribution.
- */
- _RealType
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Weibull distributions have the same
- * parameters.
- */
- friend bool
- operator==(const weibull_distribution& __d1,
- const weibull_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two Weibull distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::weibull_distribution<_RealType>& __d1,
- const std::weibull_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %weibull_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %weibull_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::weibull_distribution<_RealType>& __x);
-
- /**
- * @brief Extracts a %weibull_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %weibull_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::weibull_distribution<_RealType>& __x);
-
-
- /**
- * @brief A extreme_value_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|a,b) = \frac{1}{b}
- * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b}))
- * @f]
- */
- template<typename _RealType = double>
- class extreme_value_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef extreme_value_distribution<_RealType> distribution_type;
-
- param_type() : param_type(0.0) { }
-
- explicit
- param_type(_RealType __a, _RealType __b = _RealType(1.0))
- : _M_a(__a), _M_b(__b)
- { }
-
- _RealType
- a() const
- { return _M_a; }
-
- _RealType
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
-
- extreme_value_distribution() : extreme_value_distribution(0.0) { }
-
- explicit
- extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
-
- explicit
- extreme_value_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Return the @f$a@f$ parameter of the distribution.
- */
- _RealType
- a() const
- { return _M_param.a(); }
-
- /**
- * @brief Return the @f$b@f$ parameter of the distribution.
- */
- _RealType
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two extreme value distributions have the same
- * parameters.
- */
- friend bool
- operator==(const extreme_value_distribution& __d1,
- const extreme_value_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two extreme value distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::extreme_value_distribution<_RealType>& __d1,
- const std::extreme_value_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief Inserts a %extreme_value_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %extreme_value_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::extreme_value_distribution<_RealType>& __x);
-
- /**
- * @brief Extracts a %extreme_value_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %extreme_value_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::extreme_value_distribution<_RealType>& __x);
-
-
- /**
- * @brief A discrete_distribution random number distribution.
- *
- * The formula for the discrete probability mass function is
- *
- */
- template<typename _IntType = int>
- class discrete_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "result_type must be an integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef discrete_distribution<_IntType> distribution_type;
- friend class discrete_distribution<_IntType>;
-
- param_type()
- : _M_prob(), _M_cp()
- { }
-
- template<typename _InputIterator>
- param_type(_InputIterator __wbegin,
- _InputIterator __wend)
- : _M_prob(__wbegin, __wend), _M_cp()
- { _M_initialize(); }
-
- param_type(initializer_list<double> __wil)
- : _M_prob(__wil.begin(), __wil.end()), _M_cp()
- { _M_initialize(); }
-
- template<typename _Func>
- param_type(size_t __nw, double __xmin, double __xmax,
- _Func __fw);
-
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
-
- std::vector<double>
- probabilities() const
- { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_prob == __p2._M_prob; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- std::vector<double> _M_prob;
- std::vector<double> _M_cp;
- };
-
- discrete_distribution()
- : _M_param()
- { }
-
- template<typename _InputIterator>
- discrete_distribution(_InputIterator __wbegin,
- _InputIterator __wend)
- : _M_param(__wbegin, __wend)
- { }
-
- discrete_distribution(initializer_list<double> __wl)
- : _M_param(__wl)
- { }
-
- template<typename _Func>
- discrete_distribution(size_t __nw, double __xmin, double __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
-
- explicit
- discrete_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns the probabilities of the distribution.
- */
- std::vector<double>
- probabilities() const
- {
- return _M_param._M_prob.empty()
- ? std::vector<double>(1, 1.0) : _M_param._M_prob;
- }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_prob.empty()
- ? result_type(0) : result_type(_M_param._M_prob.size() - 1);
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two discrete distributions have the same
- * parameters.
- */
- friend bool
- operator==(const discrete_distribution& __d1,
- const discrete_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %discrete_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %discrete_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::discrete_distribution<_IntType1>& __x);
-
- /**
- * @brief Extracts a %discrete_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %discrete_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::discrete_distribution<_IntType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two discrete distributions have different
- * parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::discrete_distribution<_IntType>& __d1,
- const std::discrete_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A piecewise_constant_distribution random number distribution.
- *
- * The formula for the piecewise constant probability mass function is
- *
- */
- template<typename _RealType = double>
- class piecewise_constant_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef piecewise_constant_distribution<_RealType> distribution_type;
- friend class piecewise_constant_distribution<_RealType>;
-
- param_type()
- : _M_int(), _M_den(), _M_cp()
- { }
-
- template<typename _InputIteratorB, typename _InputIteratorW>
- param_type(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin);
-
- template<typename _Func>
- param_type(initializer_list<_RealType> __bi, _Func __fw);
-
- template<typename _Func>
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
- _Func __fw);
-
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
-
- std::vector<_RealType>
- intervals() const
- {
- if (_M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_int;
- }
-
- std::vector<double>
- densities() const
- { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- std::vector<_RealType> _M_int;
- std::vector<double> _M_den;
- std::vector<double> _M_cp;
- };
-
- piecewise_constant_distribution()
- : _M_param()
- { }
-
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_constant_distribution(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_param(__bfirst, __bend, __wbegin)
- { }
-
- template<typename _Func>
- piecewise_constant_distribution(initializer_list<_RealType> __bl,
- _Func __fw)
- : _M_param(__bl, __fw)
- { }
-
- template<typename _Func>
- piecewise_constant_distribution(size_t __nw,
- _RealType __xmin, _RealType __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
-
- explicit
- piecewise_constant_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns a vector of the intervals.
- */
- std::vector<_RealType>
- intervals() const
- {
- if (_M_param._M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_param._M_int;
- }
-
- /**
- * @brief Returns a vector of the probability densities.
- */
- std::vector<double>
- densities() const
- {
- return _M_param._M_den.empty()
- ? std::vector<double>(1, 1.0) : _M_param._M_den;
- }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return _M_param._M_int.empty()
- ? result_type(0) : _M_param._M_int.front();
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_int.empty()
- ? result_type(1) : _M_param._M_int.back();
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two piecewise constant distributions have the
- * same parameters.
- */
- friend bool
- operator==(const piecewise_constant_distribution& __d1,
- const piecewise_constant_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %piecewise_constant_distribution random
- * number distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %piecewise_constant_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::piecewise_constant_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %piecewise_constant_distribution random
- * number distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %piecewise_constant_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::piecewise_constant_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two piecewise constant distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::piecewise_constant_distribution<_RealType>& __d1,
- const std::piecewise_constant_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A piecewise_linear_distribution random number distribution.
- *
- * The formula for the piecewise linear probability mass function is
- *
- */
- template<typename _RealType = double>
- class piecewise_linear_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "result_type must be a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef piecewise_linear_distribution<_RealType> distribution_type;
- friend class piecewise_linear_distribution<_RealType>;
-
- param_type()
- : _M_int(), _M_den(), _M_cp(), _M_m()
- { }
-
- template<typename _InputIteratorB, typename _InputIteratorW>
- param_type(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin);
-
- template<typename _Func>
- param_type(initializer_list<_RealType> __bl, _Func __fw);
-
- template<typename _Func>
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
- _Func __fw);
-
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
-
- std::vector<_RealType>
- intervals() const
- {
- if (_M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_int;
- }
-
- std::vector<double>
- densities() const
- { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- std::vector<_RealType> _M_int;
- std::vector<double> _M_den;
- std::vector<double> _M_cp;
- std::vector<double> _M_m;
- };
-
- piecewise_linear_distribution()
- : _M_param()
- { }
-
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_linear_distribution(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_param(__bfirst, __bend, __wbegin)
- { }
-
- template<typename _Func>
- piecewise_linear_distribution(initializer_list<_RealType> __bl,
- _Func __fw)
- : _M_param(__bl, __fw)
- { }
-
- template<typename _Func>
- piecewise_linear_distribution(size_t __nw,
- _RealType __xmin, _RealType __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
-
- explicit
- piecewise_linear_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Return the intervals of the distribution.
- */
- std::vector<_RealType>
- intervals() const
- {
- if (_M_param._M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_param._M_int;
- }
-
- /**
- * @brief Return a vector of the probability densities of the
- * distribution.
- */
- std::vector<double>
- densities() const
- {
- return _M_param._M_den.empty()
- ? std::vector<double>(2, 1.0) : _M_param._M_den;
- }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return _M_param._M_int.empty()
- ? result_type(0) : _M_param._M_int.front();
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_int.empty()
- ? result_type(1) : _M_param._M_int.back();
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two piecewise linear distributions have the
- * same parameters.
- */
- friend bool
- operator==(const piecewise_linear_distribution& __d1,
- const piecewise_linear_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %piecewise_linear_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %piecewise_linear_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::piecewise_linear_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %piecewise_linear_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %piecewise_linear_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::piecewise_linear_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two piecewise linear distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::piecewise_linear_distribution<_RealType>& __d1,
- const std::piecewise_linear_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /* @} */ // group random_distributions_poisson
-
- /* @} */ // group random_distributions
-
- /**
- * @addtogroup random_utilities Random Number Utilities
- * @ingroup random
- * @{
- */
-
- /**
- * @brief The seed_seq class generates sequences of seeds for random
- * number generators.
- */
- class seed_seq
- {
- public:
- /** The type of the seed vales. */
- typedef uint_least32_t result_type;
-
- /** Default constructor. */
- seed_seq() noexcept
- : _M_v()
- { }
-
- template<typename _IntType>
- seed_seq(std::initializer_list<_IntType> __il);
-
- template<typename _InputIterator>
- seed_seq(_InputIterator __begin, _InputIterator __end);
-
- // generating functions
- template<typename _RandomAccessIterator>
- void
- generate(_RandomAccessIterator __begin, _RandomAccessIterator __end);
-
- // property functions
- size_t size() const noexcept
- { return _M_v.size(); }
-
- template<typename _OutputIterator>
- void
- param(_OutputIterator __dest) const
- { std::copy(_M_v.begin(), _M_v.end(), __dest); }
-
- // no copy functions
- seed_seq(const seed_seq&) = delete;
- seed_seq& operator=(const seed_seq&) = delete;
-
- private:
- std::vector<result_type> _M_v;
- };
-
- /* @} */ // group random_utilities
-
- /* @} */ // group random
-
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace std
-
- #endif
|