|
- // Random number extensions -*- C++ -*-
-
- // Copyright (C) 2012-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
-
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
-
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file ext/random
- * This file is a GNU extension to the Standard C++ Library.
- */
-
- #ifndef _EXT_RANDOM
- #define _EXT_RANDOM 1
-
- #pragma GCC system_header
-
- #if __cplusplus < 201103L
- # include <bits/c++0x_warning.h>
- #else
-
- #include <random>
- #include <algorithm>
- #include <array>
- #include <ext/cmath>
- #ifdef __SSE2__
- # include <emmintrin.h>
- #endif
-
- #if defined(_GLIBCXX_USE_C99_STDINT_TR1) && defined(UINT32_C)
-
- namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-
- /* Mersenne twister implementation optimized for vector operations.
- *
- * Reference: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
- */
- template<typename _UIntType, size_t __m,
- size_t __pos1, size_t __sl1, size_t __sl2,
- size_t __sr1, size_t __sr2,
- uint32_t __msk1, uint32_t __msk2,
- uint32_t __msk3, uint32_t __msk4,
- uint32_t __parity1, uint32_t __parity2,
- uint32_t __parity3, uint32_t __parity4>
- class simd_fast_mersenne_twister_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(__sr1 < 32, "first right shift too large");
- static_assert(__sr2 < 16, "second right shift too large");
- static_assert(__sl1 < 32, "first left shift too large");
- static_assert(__sl2 < 16, "second left shift too large");
-
- public:
- typedef _UIntType result_type;
-
- private:
- static constexpr size_t m_w = sizeof(result_type) * 8;
- static constexpr size_t _M_nstate = __m / 128 + 1;
- static constexpr size_t _M_nstate32 = _M_nstate * 4;
-
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(__pos1 < _M_nstate, "POS1 not smaller than state size");
- static_assert(16 % sizeof(_UIntType) == 0,
- "UIntType size must divide 16");
-
- template<typename _Sseq>
- using _If_seed_seq
- = typename std::enable_if<std::__detail::__is_seed_seq<
- _Sseq, simd_fast_mersenne_twister_engine, result_type>::value
- >::type;
-
- public:
- static constexpr size_t state_size = _M_nstate * (16
- / sizeof(result_type));
- static constexpr result_type default_seed = 5489u;
-
- // constructors and member functions
-
- simd_fast_mersenne_twister_engine()
- : simd_fast_mersenne_twister_engine(default_seed)
- { }
-
- explicit
- simd_fast_mersenne_twister_engine(result_type __sd)
- { seed(__sd); }
-
- template<typename _Sseq, typename = _If_seed_seq<_Sseq>>
- explicit
- simd_fast_mersenne_twister_engine(_Sseq& __q)
- { seed(__q); }
-
- void
- seed(result_type __sd = default_seed);
-
- template<typename _Sseq>
- _If_seed_seq<_Sseq>
- seed(_Sseq& __q);
-
- static constexpr result_type
- min()
- { return 0; }
-
- static constexpr result_type
- max()
- { return std::numeric_limits<result_type>::max(); }
-
- void
- discard(unsigned long long __z);
-
- result_type
- operator()()
- {
- if (__builtin_expect(_M_pos >= state_size, 0))
- _M_gen_rand();
-
- return _M_stateT[_M_pos++];
- }
-
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2>
- friend bool
- operator==(const simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __lhs,
- const simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __rhs);
-
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::simd_fast_mersenne_twister_engine
- <_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
-
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
-
- private:
- union
- {
- #ifdef __SSE2__
- __m128i _M_state[_M_nstate];
- #endif
- #ifdef __ARM_NEON
- #ifdef __aarch64__
- __Uint32x4_t _M_state[_M_nstate];
- #endif
- #endif
- uint32_t _M_state32[_M_nstate32];
- result_type _M_stateT[state_size];
- } __attribute__ ((__aligned__ (16)));
- size_t _M_pos;
-
- void _M_gen_rand(void);
- void _M_period_certification();
- };
-
-
- template<typename _UIntType, size_t __m,
- size_t __pos1, size_t __sl1, size_t __sl2,
- size_t __sr1, size_t __sr2,
- uint32_t __msk1, uint32_t __msk2,
- uint32_t __msk3, uint32_t __msk4,
- uint32_t __parity1, uint32_t __parity2,
- uint32_t __parity3, uint32_t __parity4>
- inline bool
- operator!=(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
- __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
- __msk4, __parity1, __parity2, __parity3, __parity4>& __lhs,
- const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
- __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
- __msk4, __parity1, __parity2, __parity3, __parity4>& __rhs)
- { return !(__lhs == __rhs); }
-
-
- /* Definitions for the SIMD-oriented Fast Mersenne Twister as defined
- * in the C implementation by Daito and Matsumoto, as both a 32-bit
- * and 64-bit version.
- */
- typedef simd_fast_mersenne_twister_engine<uint32_t, 607, 2,
- 15, 3, 13, 3,
- 0xfdff37ffU, 0xef7f3f7dU,
- 0xff777b7dU, 0x7ff7fb2fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x5986f054U>
- sfmt607;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 607, 2,
- 15, 3, 13, 3,
- 0xfdff37ffU, 0xef7f3f7dU,
- 0xff777b7dU, 0x7ff7fb2fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x5986f054U>
- sfmt607_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 1279, 7,
- 14, 3, 5, 1,
- 0xf7fefffdU, 0x7fefcfffU,
- 0xaff3ef3fU, 0xb5ffff7fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x20000000U>
- sfmt1279;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 1279, 7,
- 14, 3, 5, 1,
- 0xf7fefffdU, 0x7fefcfffU,
- 0xaff3ef3fU, 0xb5ffff7fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x20000000U>
- sfmt1279_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 2281, 12,
- 19, 1, 5, 1,
- 0xbff7ffbfU, 0xfdfffffeU,
- 0xf7ffef7fU, 0xf2f7cbbfU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x41dfa600U>
- sfmt2281;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 2281, 12,
- 19, 1, 5, 1,
- 0xbff7ffbfU, 0xfdfffffeU,
- 0xf7ffef7fU, 0xf2f7cbbfU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x41dfa600U>
- sfmt2281_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 4253, 17,
- 20, 1, 7, 1,
- 0x9f7bffffU, 0x9fffff5fU,
- 0x3efffffbU, 0xfffff7bbU,
- 0xa8000001U, 0xaf5390a3U,
- 0xb740b3f8U, 0x6c11486dU>
- sfmt4253;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 4253, 17,
- 20, 1, 7, 1,
- 0x9f7bffffU, 0x9fffff5fU,
- 0x3efffffbU, 0xfffff7bbU,
- 0xa8000001U, 0xaf5390a3U,
- 0xb740b3f8U, 0x6c11486dU>
- sfmt4253_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 11213, 68,
- 14, 3, 7, 3,
- 0xeffff7fbU, 0xffffffefU,
- 0xdfdfbfffU, 0x7fffdbfdU,
- 0x00000001U, 0x00000000U,
- 0xe8148000U, 0xd0c7afa3U>
- sfmt11213;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 11213, 68,
- 14, 3, 7, 3,
- 0xeffff7fbU, 0xffffffefU,
- 0xdfdfbfffU, 0x7fffdbfdU,
- 0x00000001U, 0x00000000U,
- 0xe8148000U, 0xd0c7afa3U>
- sfmt11213_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 19937, 122,
- 18, 1, 11, 1,
- 0xdfffffefU, 0xddfecb7fU,
- 0xbffaffffU, 0xbffffff6U,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x13c9e684U>
- sfmt19937;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 19937, 122,
- 18, 1, 11, 1,
- 0xdfffffefU, 0xddfecb7fU,
- 0xbffaffffU, 0xbffffff6U,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x13c9e684U>
- sfmt19937_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 44497, 330,
- 5, 3, 9, 3,
- 0xeffffffbU, 0xdfbebfffU,
- 0xbfbf7befU, 0x9ffd7bffU,
- 0x00000001U, 0x00000000U,
- 0xa3ac4000U, 0xecc1327aU>
- sfmt44497;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 44497, 330,
- 5, 3, 9, 3,
- 0xeffffffbU, 0xdfbebfffU,
- 0xbfbf7befU, 0x9ffd7bffU,
- 0x00000001U, 0x00000000U,
- 0xa3ac4000U, 0xecc1327aU>
- sfmt44497_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 86243, 366,
- 6, 7, 19, 1,
- 0xfdbffbffU, 0xbff7ff3fU,
- 0xfd77efffU, 0xbf9ff3ffU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0xe9528d85U>
- sfmt86243;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 86243, 366,
- 6, 7, 19, 1,
- 0xfdbffbffU, 0xbff7ff3fU,
- 0xfd77efffU, 0xbf9ff3ffU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0xe9528d85U>
- sfmt86243_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 132049, 110,
- 19, 1, 21, 1,
- 0xffffbb5fU, 0xfb6ebf95U,
- 0xfffefffaU, 0xcff77fffU,
- 0x00000001U, 0x00000000U,
- 0xcb520000U, 0xc7e91c7dU>
- sfmt132049;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 132049, 110,
- 19, 1, 21, 1,
- 0xffffbb5fU, 0xfb6ebf95U,
- 0xfffefffaU, 0xcff77fffU,
- 0x00000001U, 0x00000000U,
- 0xcb520000U, 0xc7e91c7dU>
- sfmt132049_64;
-
-
- typedef simd_fast_mersenne_twister_engine<uint32_t, 216091, 627,
- 11, 3, 10, 1,
- 0xbff7bff7U, 0xbfffffffU,
- 0xbffffa7fU, 0xffddfbfbU,
- 0xf8000001U, 0x89e80709U,
- 0x3bd2b64bU, 0x0c64b1e4U>
- sfmt216091;
-
- typedef simd_fast_mersenne_twister_engine<uint64_t, 216091, 627,
- 11, 3, 10, 1,
- 0xbff7bff7U, 0xbfffffffU,
- 0xbffffa7fU, 0xffddfbfbU,
- 0xf8000001U, 0x89e80709U,
- 0x3bd2b64bU, 0x0c64b1e4U>
- sfmt216091_64;
-
- #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-
- /**
- * @brief A beta continuous distribution for random numbers.
- *
- * The formula for the beta probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)}
- * x^{\alpha - 1} (1 - x)^{\beta - 1}
- * @f]
- */
- template<typename _RealType = double>
- class beta_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef beta_distribution<_RealType> distribution_type;
- friend class beta_distribution<_RealType>;
-
- param_type() : param_type(1) { }
-
- explicit
- param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1))
- : _M_alpha(__alpha_val), _M_beta(__beta_val)
- {
- __glibcxx_assert(_M_alpha > _RealType(0));
- __glibcxx_assert(_M_beta > _RealType(0));
- }
-
- _RealType
- alpha() const
- { return _M_alpha; }
-
- _RealType
- beta() const
- { return _M_beta; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_alpha == __p2._M_alpha
- && __p1._M_beta == __p2._M_beta); }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void
- _M_initialize();
-
- _RealType _M_alpha;
- _RealType _M_beta;
- };
-
- public:
- beta_distribution() : beta_distribution(1.0) { }
-
- /**
- * @brief Constructs a beta distribution with parameters
- * @f$\alpha@f$ and @f$\beta@f$.
- */
- explicit
- beta_distribution(_RealType __alpha_val,
- _RealType __beta_val = _RealType(1))
- : _M_param(__alpha_val, __beta_val)
- { }
-
- explicit
- beta_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns the @f$\alpha@f$ of the distribution.
- */
- _RealType
- alpha() const
- { return _M_param.alpha(); }
-
- /**
- * @brief Returns the @f$\beta@f$ of the distribution.
- */
- _RealType
- beta() const
- { return _M_param.beta(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return result_type(1); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two beta distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const beta_distribution& __d1,
- const beta_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %beta_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %beta_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::beta_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %beta_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %beta_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::beta_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two beta distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::beta_distribution<_RealType>& __d1,
- const __gnu_cxx::beta_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A multi-variate normal continuous distribution for random numbers.
- *
- * The formula for the normal probability density function is
- * @f[
- * p(\overrightarrow{x}|\overrightarrow{\mu },\Sigma) =
- * \frac{1}{\sqrt{(2\pi )^k\det(\Sigma))}}
- * e^{-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^\text{T}
- * \Sigma ^{-1}(\overrightarrow{x}-\overrightarrow{\mu})}
- * @f]
- *
- * where @f$\overrightarrow{x}@f$ and @f$\overrightarrow{\mu}@f$ are
- * vectors of dimension @f$k@f$ and @f$\Sigma@f$ is the covariance
- * matrix (which must be positive-definite).
- */
- template<std::size_t _Dimen, typename _RealType = double>
- class normal_mv_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- static_assert(_Dimen != 0, "dimension is zero");
-
- public:
- /** The type of the range of the distribution. */
- typedef std::array<_RealType, _Dimen> result_type;
- /** Parameter type. */
- class param_type
- {
- static constexpr size_t _M_t_size = _Dimen * (_Dimen + 1) / 2;
-
- public:
- typedef normal_mv_distribution<_Dimen, _RealType> distribution_type;
- friend class normal_mv_distribution<_Dimen, _RealType>;
-
- param_type()
- {
- std::fill(_M_mean.begin(), _M_mean.end(), _RealType(0));
- auto __it = _M_t.begin();
- for (size_t __i = 0; __i < _Dimen; ++__i)
- {
- std::fill_n(__it, __i, _RealType(0));
- __it += __i;
- *__it++ = _RealType(1);
- }
- }
-
- template<typename _ForwardIterator1, typename _ForwardIterator2>
- param_type(_ForwardIterator1 __meanbegin,
- _ForwardIterator1 __meanend,
- _ForwardIterator2 __varcovbegin,
- _ForwardIterator2 __varcovend)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<
- _ForwardIterator1>)
- __glibcxx_function_requires(_ForwardIteratorConcept<
- _ForwardIterator2>)
- _GLIBCXX_DEBUG_ASSERT(std::distance(__meanbegin, __meanend)
- <= _Dimen);
- const auto __dist = std::distance(__varcovbegin, __varcovend);
- _GLIBCXX_DEBUG_ASSERT(__dist == _Dimen * _Dimen
- || __dist == _Dimen * (_Dimen + 1) / 2
- || __dist == _Dimen);
-
- if (__dist == _Dimen * _Dimen)
- _M_init_full(__meanbegin, __meanend, __varcovbegin, __varcovend);
- else if (__dist == _Dimen * (_Dimen + 1) / 2)
- _M_init_lower(__meanbegin, __meanend, __varcovbegin, __varcovend);
- else
- {
- __glibcxx_assert(__dist == _Dimen);
- _M_init_diagonal(__meanbegin, __meanend,
- __varcovbegin, __varcovend);
- }
- }
-
- param_type(std::initializer_list<_RealType> __mean,
- std::initializer_list<_RealType> __varcov)
- {
- _GLIBCXX_DEBUG_ASSERT(__mean.size() <= _Dimen);
- _GLIBCXX_DEBUG_ASSERT(__varcov.size() == _Dimen * _Dimen
- || __varcov.size() == _Dimen * (_Dimen + 1) / 2
- || __varcov.size() == _Dimen);
-
- if (__varcov.size() == _Dimen * _Dimen)
- _M_init_full(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- else if (__varcov.size() == _Dimen * (_Dimen + 1) / 2)
- _M_init_lower(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- else
- {
- __glibcxx_assert(__varcov.size() == _Dimen);
- _M_init_diagonal(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- }
- }
-
- std::array<_RealType, _Dimen>
- mean() const
- { return _M_mean; }
-
- std::array<_RealType, _M_t_size>
- varcov() const
- { return _M_t; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mean == __p2._M_mean && __p1._M_t == __p2._M_t; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_full(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varcovbegin,
- _InputIterator2 __varcovend);
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_lower(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varcovbegin,
- _InputIterator2 __varcovend);
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_diagonal(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varbegin,
- _InputIterator2 __varend);
-
- // param_type constructors apply Cholesky decomposition to the
- // varcov matrix in _M_init_full and _M_init_lower, but the
- // varcov matrix output ot a stream is already decomposed, so
- // we need means to restore it as-is when reading it back in.
- template<size_t _Dimen1, typename _RealType1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __x);
- param_type(std::array<_RealType, _Dimen> const &__mean,
- std::array<_RealType, _M_t_size> const &__varcov)
- : _M_mean (__mean), _M_t (__varcov)
- {}
-
- std::array<_RealType, _Dimen> _M_mean;
- std::array<_RealType, _M_t_size> _M_t;
- };
-
- public:
- normal_mv_distribution()
- : _M_param(), _M_nd()
- { }
-
- template<typename _ForwardIterator1, typename _ForwardIterator2>
- normal_mv_distribution(_ForwardIterator1 __meanbegin,
- _ForwardIterator1 __meanend,
- _ForwardIterator2 __varcovbegin,
- _ForwardIterator2 __varcovend)
- : _M_param(__meanbegin, __meanend, __varcovbegin, __varcovend),
- _M_nd()
- { }
-
- normal_mv_distribution(std::initializer_list<_RealType> __mean,
- std::initializer_list<_RealType> __varcov)
- : _M_param(__mean, __varcov), _M_nd()
- { }
-
- explicit
- normal_mv_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- * @brief Returns the mean of the distribution.
- */
- result_type
- mean() const
- { return _M_param.mean(); }
-
- /**
- * @brief Returns the compact form of the variance/covariance
- * matrix of the distribution.
- */
- std::array<_RealType, _Dimen * (_Dimen + 1) / 2>
- varcov() const
- { return _M_param.varcov(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { result_type __res;
- __res.fill(std::numeric_limits<_RealType>::lowest());
- return __res; }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { result_type __res;
- __res.fill(std::numeric_limits<_RealType>::max());
- return __res; }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { return this->__generate_impl(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { return this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two multi-variant normal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<size_t _Dimen1, typename _RealType1>
- friend bool
- operator==(const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __d1,
- const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __d2);
-
- /**
- * @brief Inserts a %normal_mv_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %normal_mv_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<size_t _Dimen1, typename _RealType1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __x);
-
- /**
- * @brief Extracts a %normal_mv_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %normal_mv_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<size_t _Dimen1, typename _RealType1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- std::normal_distribution<_RealType> _M_nd;
- };
-
- /**
- * @brief Return true if two multi-variate normal distributions are
- * different.
- */
- template<size_t _Dimen, typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
- __d1,
- const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
- __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A Rice continuous distribution for random numbers.
- *
- * The formula for the Rice probability density function is
- * @f[
- * p(x|\nu,\sigma) = \frac{x}{\sigma^2}
- * \exp\left(-\frac{x^2+\nu^2}{2\sigma^2}\right)
- * I_0\left(\frac{x \nu}{\sigma^2}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
- * of order 0 and @f$\nu >= 0@f$ and @f$\sigma > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\sqrt{\pi/2}L_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
- * <tr><td>Variance</td><td>@f$2\sigma^2 + \nu^2
- * + (\pi\sigma^2/2)L^2_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- * where @f$L_{1/2}(x)@f$ is the Laguerre polynomial of order 1/2.
- */
- template<typename _RealType = double>
- class
- rice_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef rice_distribution<result_type> distribution_type;
-
- param_type() : param_type(0) { }
-
- param_type(result_type __nu_val,
- result_type __sigma_val = result_type(1))
- : _M_nu(__nu_val), _M_sigma(__sigma_val)
- {
- __glibcxx_assert(_M_nu >= result_type(0));
- __glibcxx_assert(_M_sigma > result_type(0));
- }
-
- result_type
- nu() const
- { return _M_nu; }
-
- result_type
- sigma() const
- { return _M_sigma; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_nu == __p2._M_nu && __p1._M_sigma == __p2._M_sigma; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_nu;
- result_type _M_sigma;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- rice_distribution() : rice_distribution(0) { }
-
- explicit
- rice_distribution(result_type __nu_val,
- result_type __sigma_val = result_type(1))
- : _M_param(__nu_val, __sigma_val),
- _M_ndx(__nu_val, __sigma_val),
- _M_ndy(result_type(0), __sigma_val)
- { }
-
- explicit
- rice_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ndx(__p.nu(), __p.sigma()),
- _M_ndy(result_type(0), __p.sigma())
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ndx.reset();
- _M_ndy.reset();
- }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- nu() const
- { return _M_param.nu(); }
-
- result_type
- sigma() const
- { return _M_param.sigma(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __x = this->_M_ndx(__urng);
- result_type __y = this->_M_ndy(__urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- return std::hypot(__x, __y);
- #else
- return std::sqrt(__x * __x + __y * __y);
- #endif
- }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typename std::normal_distribution<result_type>::param_type
- __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
- result_type __x = this->_M_ndx(__px, __urng);
- result_type __y = this->_M_ndy(__py, __urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- return std::hypot(__x, __y);
- #else
- return std::sqrt(__x * __x + __y * __y);
- #endif
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Rice distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const rice_distribution& __d1,
- const rice_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ndx == __d2._M_ndx
- && __d1._M_ndy == __d2._M_ndy); }
-
- /**
- * @brief Inserts a %rice_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %rice_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const rice_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %rice_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %rice_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- rice_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::normal_distribution<result_type> _M_ndx;
- std::normal_distribution<result_type> _M_ndy;
- };
-
- /**
- * @brief Return true if two Rice distributions are not equal.
- */
- template<typename _RealType1>
- inline bool
- operator!=(const rice_distribution<_RealType1>& __d1,
- const rice_distribution<_RealType1>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A Nakagami continuous distribution for random numbers.
- *
- * The formula for the Nakagami probability density function is
- * @f[
- * p(x|\mu,\omega) = \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu}
- * x^{2\mu-1}e^{-\mu x / \omega}
- * @f]
- * where @f$\Gamma(z)@f$ is the gamma function and @f$\mu >= 0.5@f$
- * and @f$\omega > 0@f$.
- */
- template<typename _RealType = double>
- class
- nakagami_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef nakagami_distribution<result_type> distribution_type;
-
- param_type() : param_type(1) { }
-
- param_type(result_type __mu_val,
- result_type __omega_val = result_type(1))
- : _M_mu(__mu_val), _M_omega(__omega_val)
- {
- __glibcxx_assert(_M_mu >= result_type(0.5L));
- __glibcxx_assert(_M_omega > result_type(0));
- }
-
- result_type
- mu() const
- { return _M_mu; }
-
- result_type
- omega() const
- { return _M_omega; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mu == __p2._M_mu && __p1._M_omega == __p2._M_omega; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_mu;
- result_type _M_omega;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- nakagami_distribution() : nakagami_distribution(1) { }
-
- explicit
- nakagami_distribution(result_type __mu_val,
- result_type __omega_val = result_type(1))
- : _M_param(__mu_val, __omega_val),
- _M_gd(__mu_val, __omega_val / __mu_val)
- { }
-
- explicit
- nakagami_distribution(const param_type& __p)
- : _M_param(__p),
- _M_gd(__p.mu(), __p.omega() / __p.mu())
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- mu() const
- { return _M_param.mu(); }
-
- result_type
- omega() const
- { return _M_param.omega(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return std::sqrt(this->_M_gd(__urng)); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typename std::gamma_distribution<result_type>::param_type
- __pg(__p.mu(), __p.omega() / __p.mu());
- return std::sqrt(this->_M_gd(__pg, __urng));
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Nakagami distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const nakagami_distribution& __d1,
- const nakagami_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd == __d2._M_gd); }
-
- /**
- * @brief Inserts a %nakagami_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %nakagami_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const nakagami_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %nakagami_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %nakagami_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- nakagami_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::gamma_distribution<result_type> _M_gd;
- };
-
- /**
- * @brief Return true if two Nakagami distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const nakagami_distribution<_RealType>& __d1,
- const nakagami_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A Pareto continuous distribution for random numbers.
- *
- * The formula for the Pareto cumulative probability function is
- * @f[
- * P(x|\alpha,\mu) = 1 - \left(\frac{\mu}{x}\right)^\alpha
- * @f]
- * The formula for the Pareto probability density function is
- * @f[
- * p(x|\alpha,\mu) = \frac{\alpha + 1}{\mu}
- * \left(\frac{\mu}{x}\right)^{\alpha + 1}
- * @f]
- * where @f$x >= \mu@f$ and @f$\mu > 0@f$, @f$\alpha > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\alpha \mu / (\alpha - 1)@f$
- * for @f$\alpha > 1@f$</td></tr>
- * <tr><td>Variance</td><td>@f$\alpha \mu^2 / [(\alpha - 1)^2(\alpha - 2)]@f$
- * for @f$\alpha > 2@f$</td></tr>
- * <tr><td>Range</td><td>@f$[\mu, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- pareto_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef pareto_distribution<result_type> distribution_type;
-
- param_type() : param_type(1) { }
-
- param_type(result_type __alpha_val,
- result_type __mu_val = result_type(1))
- : _M_alpha(__alpha_val), _M_mu(__mu_val)
- {
- __glibcxx_assert(_M_alpha > result_type(0));
- __glibcxx_assert(_M_mu > result_type(0));
- }
-
- result_type
- alpha() const
- { return _M_alpha; }
-
- result_type
- mu() const
- { return _M_mu; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_alpha == __p2._M_alpha && __p1._M_mu == __p2._M_mu; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_alpha;
- result_type _M_mu;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- pareto_distribution() : pareto_distribution(1) { }
-
- explicit
- pareto_distribution(result_type __alpha_val,
- result_type __mu_val = result_type(1))
- : _M_param(__alpha_val, __mu_val),
- _M_ud()
- { }
-
- explicit
- pareto_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ud()
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ud.reset();
- }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- alpha() const
- { return _M_param.alpha(); }
-
- result_type
- mu() const
- { return _M_param.mu(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return this->mu(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- return this->mu() * std::pow(this->_M_ud(__urng),
- -result_type(1) / this->alpha());
- }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- return __p.mu() * std::pow(this->_M_ud(__urng),
- -result_type(1) / __p.alpha());
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Pareto distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const pareto_distribution& __d1,
- const pareto_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ud == __d2._M_ud); }
-
- /**
- * @brief Inserts a %pareto_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %pareto_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const pareto_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %pareto_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %pareto_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- pareto_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::uniform_real_distribution<result_type> _M_ud;
- };
-
- /**
- * @brief Return true if two Pareto distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const pareto_distribution<_RealType>& __d1,
- const pareto_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A K continuous distribution for random numbers.
- *
- * The formula for the K probability density function is
- * @f[
- * p(x|\lambda, \mu, \nu) = \frac{2}{x}
- * \left(\frac{\lambda\nu x}{\mu}\right)^{\frac{\lambda + \nu}{2}}
- * \frac{1}{\Gamma(\lambda)\Gamma(\nu)}
- * K_{\nu - \lambda}\left(2\sqrt{\frac{\lambda\nu x}{\mu}}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the second kind
- * of order @f$\nu - \lambda@f$ and @f$\lambda > 0@f$, @f$\mu > 0@f$
- * and @f$\nu > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\mu@f$</td></tr>
- * <tr><td>Variance</td><td>@f$\mu^2\frac{\lambda + \nu + 1}{\lambda\nu}@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- k_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef k_distribution<result_type> distribution_type;
-
- param_type() : param_type(1) { }
-
- param_type(result_type __lambda_val,
- result_type __mu_val = result_type(1),
- result_type __nu_val = result_type(1))
- : _M_lambda(__lambda_val), _M_mu(__mu_val), _M_nu(__nu_val)
- {
- __glibcxx_assert(_M_lambda > result_type(0));
- __glibcxx_assert(_M_mu > result_type(0));
- __glibcxx_assert(_M_nu > result_type(0));
- }
-
- result_type
- lambda() const
- { return _M_lambda; }
-
- result_type
- mu() const
- { return _M_mu; }
-
- result_type
- nu() const
- { return _M_nu; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- {
- return __p1._M_lambda == __p2._M_lambda
- && __p1._M_mu == __p2._M_mu
- && __p1._M_nu == __p2._M_nu;
- }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_lambda;
- result_type _M_mu;
- result_type _M_nu;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- k_distribution() : k_distribution(1) { }
-
- explicit
- k_distribution(result_type __lambda_val,
- result_type __mu_val = result_type(1),
- result_type __nu_val = result_type(1))
- : _M_param(__lambda_val, __mu_val, __nu_val),
- _M_gd1(__lambda_val, result_type(1) / __lambda_val),
- _M_gd2(__nu_val, __mu_val / __nu_val)
- { }
-
- explicit
- k_distribution(const param_type& __p)
- : _M_param(__p),
- _M_gd1(__p.lambda(), result_type(1) / __p.lambda()),
- _M_gd2(__p.nu(), __p.mu() / __p.nu())
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_gd1.reset();
- _M_gd2.reset();
- }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- lambda() const
- { return _M_param.lambda(); }
-
- result_type
- mu() const
- { return _M_param.mu(); }
-
- result_type
- nu() const
- { return _M_param.nu(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&);
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&, const param_type&);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two K distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const k_distribution& __d1,
- const k_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd1 == __d2._M_gd1
- && __d1._M_gd2 == __d2._M_gd2); }
-
- /**
- * @brief Inserts a %k_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %k_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const k_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %k_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %k_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- k_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::gamma_distribution<result_type> _M_gd1;
- std::gamma_distribution<result_type> _M_gd2;
- };
-
- /**
- * @brief Return true if two K distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const k_distribution<_RealType>& __d1,
- const k_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief An arcsine continuous distribution for random numbers.
- *
- * The formula for the arcsine probability density function is
- * @f[
- * p(x|a,b) = \frac{1}{\pi \sqrt{(x - a)(b - x)}}
- * @f]
- * where @f$x >= a@f$ and @f$x <= b@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ (a + b) / 2 @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ (b - a)^2 / 8 @f$</td></tr>
- * <tr><td>Range</td><td>@f$[a, b]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- arcsine_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef arcsine_distribution<result_type> distribution_type;
-
- param_type() : param_type(0) { }
-
- param_type(result_type __a, result_type __b = result_type(1))
- : _M_a(__a), _M_b(__b)
- {
- __glibcxx_assert(_M_a <= _M_b);
- }
-
- result_type
- a() const
- { return _M_a; }
-
- result_type
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_a;
- result_type _M_b;
- };
-
- /**
- * @brief Constructors.
- * :{
- */
-
- arcsine_distribution() : arcsine_distribution(0) { }
-
- explicit
- arcsine_distribution(result_type __a, result_type __b = result_type(1))
- : _M_param(__a, __b),
- _M_ud(-1.5707963267948966192313216916397514L,
- +1.5707963267948966192313216916397514L)
- { }
-
- explicit
- arcsine_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ud(-1.5707963267948966192313216916397514L,
- +1.5707963267948966192313216916397514L)
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_ud.reset(); }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
-
- result_type
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return this->a(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return this->b(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __x = std::sin(this->_M_ud(__urng));
- return (__x * (this->b() - this->a())
- + this->a() + this->b()) / result_type(2);
- }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- result_type __x = std::sin(this->_M_ud(__urng));
- return (__x * (__p.b() - __p.a())
- + __p.a() + __p.b()) / result_type(2);
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two arcsine distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const arcsine_distribution& __d1,
- const arcsine_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ud == __d2._M_ud); }
-
- /**
- * @brief Inserts a %arcsine_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %arcsine_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const arcsine_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %arcsine_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %arcsine_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- arcsine_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- std::uniform_real_distribution<result_type> _M_ud;
- };
-
- /**
- * @brief Return true if two arcsine distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const arcsine_distribution<_RealType>& __d1,
- const arcsine_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A Hoyt continuous distribution for random numbers.
- *
- * The formula for the Hoyt probability density function is
- * @f[
- * p(x|q,\omega) = \frac{(1 + q^2)x}{q\omega}
- * \exp\left(-\frac{(1 + q^2)^2 x^2}{4 q^2 \omega}\right)
- * I_0\left(\frac{(1 - q^4) x^2}{4 q^2 \omega}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
- * of order 0 and @f$0 < q < 1@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \sqrt{\frac{2}{\pi}} \sqrt{\frac{\omega}{1 + q^2}}
- * E(1 - q^2) @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ \omega \left(1 - \frac{2E^2(1 - q^2)}
- * {\pi (1 + q^2)}\right) @f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- * where @f$E(x)@f$ is the elliptic function of the second kind.
- */
- template<typename _RealType = double>
- class
- hoyt_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef hoyt_distribution<result_type> distribution_type;
-
- param_type() : param_type(0.5) { }
-
- param_type(result_type __q, result_type __omega = result_type(1))
- : _M_q(__q), _M_omega(__omega)
- {
- __glibcxx_assert(_M_q > result_type(0));
- __glibcxx_assert(_M_q < result_type(1));
- }
-
- result_type
- q() const
- { return _M_q; }
-
- result_type
- omega() const
- { return _M_omega; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_q == __p2._M_q && __p1._M_omega == __p2._M_omega; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_q;
- result_type _M_omega;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- hoyt_distribution() : hoyt_distribution(0.5) { }
-
- explicit
- hoyt_distribution(result_type __q, result_type __omega = result_type(1))
- : _M_param(__q, __omega),
- _M_ad(result_type(0.5L) * (result_type(1) + __q * __q),
- result_type(0.5L) * (result_type(1) + __q * __q)
- / (__q * __q)),
- _M_ed(result_type(1))
- { }
-
- explicit
- hoyt_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ad(result_type(0.5L) * (result_type(1) + __p.q() * __p.q()),
- result_type(0.5L) * (result_type(1) + __p.q() * __p.q())
- / (__p.q() * __p.q())),
- _M_ed(result_type(1))
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ad.reset();
- _M_ed.reset();
- }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- q() const
- { return _M_param.q(); }
-
- result_type
- omega() const
- { return _M_param.omega(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng);
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two Hoyt distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const hoyt_distribution& __d1,
- const hoyt_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ad == __d2._M_ad
- && __d1._M_ed == __d2._M_ed); }
-
- /**
- * @brief Inserts a %hoyt_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %hoyt_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const hoyt_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %hoyt_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %hoyt_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- hoyt_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
-
- __gnu_cxx::arcsine_distribution<result_type> _M_ad;
- std::exponential_distribution<result_type> _M_ed;
- };
-
- /**
- * @brief Return true if two Hoyt distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const hoyt_distribution<_RealType>& __d1,
- const hoyt_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A triangular distribution for random numbers.
- *
- * The formula for the triangular probability density function is
- * @f[
- * / 0 for x < a
- * p(x|a,b,c) = | \frac{2(x-a)}{(c-a)(b-a)} for a <= x <= b
- * | \frac{2(c-x)}{(c-a)(c-b)} for b < x <= c
- * \ 0 for c < x
- * @f]
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \frac{a+b+c}{2} @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ \frac{a^2+b^2+c^2-ab-ac-bc}
- * {18}@f$</td></tr>
- * <tr><td>Range</td><td>@f$[a, c]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class triangular_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- friend class triangular_distribution<_RealType>;
-
- param_type() : param_type(0) { }
-
- explicit
- param_type(_RealType __a,
- _RealType __b = _RealType(0.5),
- _RealType __c = _RealType(1))
- : _M_a(__a), _M_b(__b), _M_c(__c)
- {
- __glibcxx_assert(_M_a <= _M_b);
- __glibcxx_assert(_M_b <= _M_c);
- __glibcxx_assert(_M_a < _M_c);
-
- _M_r_ab = (_M_b - _M_a) / (_M_c - _M_a);
- _M_f_ab_ac = (_M_b - _M_a) * (_M_c - _M_a);
- _M_f_bc_ac = (_M_c - _M_b) * (_M_c - _M_a);
- }
-
- _RealType
- a() const
- { return _M_a; }
-
- _RealType
- b() const
- { return _M_b; }
-
- _RealType
- c() const
- { return _M_c; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- {
- return (__p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b
- && __p1._M_c == __p2._M_c);
- }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
-
- _RealType _M_a;
- _RealType _M_b;
- _RealType _M_c;
- _RealType _M_r_ab;
- _RealType _M_f_ab_ac;
- _RealType _M_f_bc_ac;
- };
-
- triangular_distribution() : triangular_distribution(0.0) { }
-
- /**
- * @brief Constructs a triangle distribution with parameters
- * @f$ a @f$, @f$ b @f$ and @f$ c @f$.
- */
- explicit
- triangular_distribution(result_type __a,
- result_type __b = result_type(0.5),
- result_type __c = result_type(1))
- : _M_param(__a, __b, __c)
- { }
-
- explicit
- triangular_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns the @f$ a @f$ of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
-
- /**
- * @brief Returns the @f$ b @f$ of the distribution.
- */
- result_type
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the @f$ c @f$ of the distribution.
- */
- result_type
- c() const
- { return _M_param.c(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return _M_param._M_a; }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return _M_param._M_c; }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- result_type __rnd = __aurng();
- if (__rnd <= __p._M_r_ab)
- return __p.a() + std::sqrt(__rnd * __p._M_f_ab_ac);
- else
- return __p.c() - std::sqrt((result_type(1) - __rnd)
- * __p._M_f_bc_ac);
- }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two triangle distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const triangular_distribution& __d1,
- const triangular_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %triangular_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %triangular_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::triangular_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %triangular_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %triangular_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::triangular_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two triangle distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::triangular_distribution<_RealType>& __d1,
- const __gnu_cxx::triangular_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A von Mises distribution for random numbers.
- *
- * The formula for the von Mises probability density function is
- * @f[
- * p(x|\mu,\kappa) = \frac{e^{\kappa \cos(x-\mu)}}
- * {2\pi I_0(\kappa)}
- * @f]
- *
- * The generating functions use the method according to:
- *
- * D. J. Best and N. I. Fisher, 1979. "Efficient Simulation of the
- * von Mises Distribution", Journal of the Royal Statistical Society.
- * Series C (Applied Statistics), Vol. 28, No. 2, pp. 152-157.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \mu @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ 1-I_1(\kappa)/I_0(\kappa) @f$</td></tr>
- * <tr><td>Range</td><td>@f$[-\pi, \pi]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class von_mises_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- friend class von_mises_distribution<_RealType>;
-
- param_type() : param_type(0) { }
-
- explicit
- param_type(_RealType __mu, _RealType __kappa = _RealType(1))
- : _M_mu(__mu), _M_kappa(__kappa)
- {
- const _RealType __pi = __gnu_cxx::__math_constants<_RealType>::__pi;
- __glibcxx_assert(_M_mu >= -__pi && _M_mu <= __pi);
- __glibcxx_assert(_M_kappa >= _RealType(0));
-
- auto __tau = std::sqrt(_RealType(4) * _M_kappa * _M_kappa
- + _RealType(1)) + _RealType(1);
- auto __rho = ((__tau - std::sqrt(_RealType(2) * __tau))
- / (_RealType(2) * _M_kappa));
- _M_r = (_RealType(1) + __rho * __rho) / (_RealType(2) * __rho);
- }
-
- _RealType
- mu() const
- { return _M_mu; }
-
- _RealType
- kappa() const
- { return _M_kappa; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mu == __p2._M_mu && __p1._M_kappa == __p2._M_kappa; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_mu;
- _RealType _M_kappa;
- _RealType _M_r;
- };
-
- von_mises_distribution() : von_mises_distribution(0.0) { }
-
- /**
- * @brief Constructs a von Mises distribution with parameters
- * @f$\mu@f$ and @f$\kappa@f$.
- */
- explicit
- von_mises_distribution(result_type __mu,
- result_type __kappa = result_type(1))
- : _M_param(__mu, __kappa)
- { }
-
- explicit
- von_mises_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns the @f$ \mu @f$ of the distribution.
- */
- result_type
- mu() const
- { return _M_param.mu(); }
-
- /**
- * @brief Returns the @f$ \kappa @f$ of the distribution.
- */
- result_type
- kappa() const
- { return _M_param.kappa(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return -__gnu_cxx::__math_constants<result_type>::__pi;
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return __gnu_cxx::__math_constants<result_type>::__pi;
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two von Mises distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const von_mises_distribution& __d1,
- const von_mises_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %von_mises_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %von_mises_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::von_mises_distribution<_RealType1>& __x);
-
- /**
- * @brief Extracts a %von_mises_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %von_mises_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::von_mises_distribution<_RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two von Mises distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::von_mises_distribution<_RealType>& __d1,
- const __gnu_cxx::von_mises_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A discrete hypergeometric random number distribution.
- *
- * The hypergeometric distribution is a discrete probability distribution
- * that describes the probability of @p k successes in @p n draws @a without
- * replacement from a finite population of size @p N containing exactly @p K
- * successes.
- *
- * The formula for the hypergeometric probability density function is
- * @f[
- * p(k|N,K,n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}
- * @f]
- * where @f$N@f$ is the total population of the distribution,
- * @f$K@f$ is the total population of the distribution.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ n\frac{K}{N} @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}
- * @f$</td></tr>
- * <tr><td>Range</td><td>@f$[max(0, n+K-N), min(K, n)]@f$</td></tr>
- * </table>
- */
- template<typename _UIntType = unsigned int>
- class hypergeometric_distribution
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _UIntType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef hypergeometric_distribution<_UIntType> distribution_type;
- friend class hypergeometric_distribution<_UIntType>;
-
- param_type() : param_type(10) { }
-
- explicit
- param_type(result_type __N, result_type __K = 5,
- result_type __n = 1)
- : _M_N{__N}, _M_K{__K}, _M_n{__n}
- {
- __glibcxx_assert(_M_N >= _M_K);
- __glibcxx_assert(_M_N >= _M_n);
- }
-
- result_type
- total_size() const
- { return _M_N; }
-
- result_type
- successful_size() const
- { return _M_K; }
-
- result_type
- unsuccessful_size() const
- { return _M_N - _M_K; }
-
- result_type
- total_draws() const
- { return _M_n; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_N == __p2._M_N)
- && (__p1._M_K == __p2._M_K)
- && (__p1._M_n == __p2._M_n); }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
-
- result_type _M_N;
- result_type _M_K;
- result_type _M_n;
- };
-
- // constructors and member functions
-
- hypergeometric_distribution() : hypergeometric_distribution(10) { }
-
- explicit
- hypergeometric_distribution(result_type __N, result_type __K = 5,
- result_type __n = 1)
- : _M_param{__N, __K, __n}
- { }
-
- explicit
- hypergeometric_distribution(const param_type& __p)
- : _M_param{__p}
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Returns the distribution parameter @p N,
- * the total number of items.
- */
- result_type
- total_size() const
- { return this->_M_param.total_size(); }
-
- /**
- * @brief Returns the distribution parameter @p K,
- * the total number of successful items.
- */
- result_type
- successful_size() const
- { return this->_M_param.successful_size(); }
-
- /**
- * @brief Returns the total number of unsuccessful items @f$ N - K @f$.
- */
- result_type
- unsuccessful_size() const
- { return this->_M_param.unsuccessful_size(); }
-
- /**
- * @brief Returns the distribution parameter @p n,
- * the total number of draws.
- */
- result_type
- total_draws() const
- { return this->_M_param.total_draws(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return this->_M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { this->_M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- using _IntType = typename std::make_signed<result_type>::type;
- return static_cast<result_type>(std::max(static_cast<_IntType>(0),
- static_cast<_IntType>(this->total_draws()
- - this->unsuccessful_size())));
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::min(this->successful_size(), this->total_draws()); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, this->_M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->_M_param); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two hypergeometric distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const hypergeometric_distribution& __d1,
- const hypergeometric_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
-
- /**
- * @brief Inserts a %hypergeometric_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %hypergeometric_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::hypergeometric_distribution<_UIntType1>&
- __x);
-
- /**
- * @brief Extracts a %hypergeometric_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %hypergeometric_distribution random number generator
- * distribution.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _UIntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::hypergeometric_distribution<_UIntType1>& __x);
-
- private:
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two hypergeometric distributions are different.
- */
- template<typename _UIntType>
- inline bool
- operator!=(const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d1,
- const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d2)
- { return !(__d1 == __d2); }
-
- /**
- * @brief A logistic continuous distribution for random numbers.
- *
- * The formula for the logistic probability density function is
- * @f[
- * p(x|\a,\b) = \frac{e^{(x - a)/b}}{b[1 + e^{(x - a)/b}]^2}
- * @f]
- * where @f$b > 0@f$.
- *
- * The formula for the logistic probability function is
- * @f[
- * cdf(x|\a,\b) = \frac{e^{(x - a)/b}}{1 + e^{(x - a)/b}}
- * @f]
- * where @f$b > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$a@f$</td></tr>
- * <tr><td>Variance</td><td>@f$b^2\pi^2/3@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- logistic_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
-
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
-
- /** Parameter type. */
- struct param_type
- {
- typedef logistic_distribution<result_type> distribution_type;
-
- param_type() : param_type(0) { }
-
- explicit
- param_type(result_type __a, result_type __b = result_type(1))
- : _M_a(__a), _M_b(__b)
- {
- __glibcxx_assert(_M_b > result_type(0));
- }
-
- result_type
- a() const
- { return _M_a; }
-
- result_type
- b() const
- { return _M_b; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- void _M_initialize();
-
- result_type _M_a;
- result_type _M_b;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
- logistic_distribution() : logistic_distribution(0.0) { }
-
- explicit
- logistic_distribution(result_type __a, result_type __b = result_type(1))
- : _M_param(__a, __b)
- { }
-
- explicit
- logistic_distribution(const param_type& __p)
- : _M_param(__p)
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
-
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
-
- result_type
- b() const
- { return _M_param.b(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return -std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, this->_M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&,
- const param_type&);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->param()); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two logistic distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<typename _RealType1>
- friend bool
- operator==(const logistic_distribution<_RealType1>& __d1,
- const logistic_distribution<_RealType1>& __d2)
- { return __d1.param() == __d2.param(); }
-
- /**
- * @brief Inserts a %logistic_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %logistic_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const logistic_distribution<_RealType1>&);
-
- /**
- * @brief Extracts a %logistic_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %logistic_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- logistic_distribution<_RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- };
-
- /**
- * @brief Return true if two logistic distributions are not equal.
- */
- template<typename _RealType1>
- inline bool
- operator!=(const logistic_distribution<_RealType1>& __d1,
- const logistic_distribution<_RealType1>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A distribution for random coordinates on a unit sphere.
- *
- * The method used in the generation function is attributed by Donald Knuth
- * to G. W. Brown, Modern Mathematics for the Engineer (1956).
- */
- template<std::size_t _Dimen, typename _RealType = double>
- class uniform_on_sphere_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- static_assert(_Dimen != 0, "dimension is zero");
-
- public:
- /** The type of the range of the distribution. */
- typedef std::array<_RealType, _Dimen> result_type;
-
- /** Parameter type. */
- struct param_type
- {
- param_type() { }
-
- friend bool
- operator==(const param_type&, const param_type&)
- { return true; }
-
- friend bool
- operator!=(const param_type&, const param_type&)
- { return false; }
- };
-
- /**
- * @brief Constructs a uniform on sphere distribution.
- */
- uniform_on_sphere_distribution()
- : _M_param(), _M_nd()
- { }
-
- explicit
- uniform_on_sphere_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- min() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- max() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->param()); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two uniform on sphere distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const uniform_on_sphere_distribution& __d1,
- const uniform_on_sphere_distribution& __d2)
- { return __d1._M_nd == __d2._M_nd; }
-
- /**
- * @brief Inserts a %uniform_on_sphere_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_on_sphere_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
- _RealType1>&
- __x);
-
- /**
- * @brief Extracts a %uniform_on_sphere_distribution random number
- * distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_on_sphere_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<std::size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
- _RealType1>& __x);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- std::normal_distribution<_RealType> _M_nd;
- };
-
- /**
- * @brief Return true if two uniform on sphere distributions are different.
- */
- template<std::size_t _Dimen, typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
- _RealType>& __d1,
- const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
- _RealType>& __d2)
- { return !(__d1 == __d2); }
-
-
- /**
- * @brief A distribution for random coordinates inside a unit sphere.
- */
- template<std::size_t _Dimen, typename _RealType = double>
- class uniform_inside_sphere_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- static_assert(_Dimen != 0, "dimension is zero");
-
- public:
- /** The type of the range of the distribution. */
- using result_type = std::array<_RealType, _Dimen>;
-
- /** Parameter type. */
- struct param_type
- {
- using distribution_type
- = uniform_inside_sphere_distribution<_Dimen, _RealType>;
- friend class uniform_inside_sphere_distribution<_Dimen, _RealType>;
-
- param_type() : param_type(1.0) { }
-
- explicit
- param_type(_RealType __radius)
- : _M_radius(__radius)
- {
- __glibcxx_assert(_M_radius > _RealType(0));
- }
-
- _RealType
- radius() const
- { return _M_radius; }
-
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_radius == __p2._M_radius; }
-
- friend bool
- operator!=(const param_type& __p1, const param_type& __p2)
- { return !(__p1 == __p2); }
-
- private:
- _RealType _M_radius;
- };
-
- /**
- * @brief Constructors.
- * @{
- */
-
- uniform_inside_sphere_distribution()
- : uniform_inside_sphere_distribution(1.0)
- { }
-
- explicit
- uniform_inside_sphere_distribution(_RealType __radius)
- : _M_param(__radius), _M_uosd()
- { }
-
- explicit
- uniform_inside_sphere_distribution(const param_type& __p)
- : _M_param(__p), _M_uosd()
- { }
-
- // @}
-
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_uosd.reset(); }
-
- /**
- * @brief Returns the @f$radius@f$ of the distribution.
- */
- _RealType
- radius() const
- { return _M_param.radius(); }
-
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
-
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
-
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- min() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
-
- /**
- * @brief Returns the least upper bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- max() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
-
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
-
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->param()); }
-
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
-
- /**
- * @brief Return true if two uniform on sphere distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const uniform_inside_sphere_distribution& __d1,
- const uniform_inside_sphere_distribution& __d2)
- { return __d1._M_param == __d2._M_param && __d1._M_uosd == __d2._M_uosd; }
-
- /**
- * @brief Inserts a %uniform_inside_sphere_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_inside_sphere_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1,
- _RealType1>&
- );
-
- /**
- * @brief Extracts a %uniform_inside_sphere_distribution random number
- * distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_inside_sphere_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<std::size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1,
- _RealType1>&);
-
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
-
- param_type _M_param;
- uniform_on_sphere_distribution<_Dimen, _RealType> _M_uosd;
- };
-
- /**
- * @brief Return true if two uniform on sphere distributions are different.
- */
- template<std::size_t _Dimen, typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
- _RealType>& __d1,
- const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
- _RealType>& __d2)
- { return !(__d1 == __d2); }
-
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace __gnu_cxx
-
- #include <ext/opt_random.h>
- #include <ext/random.tcc>
-
- #endif // _GLIBCXX_USE_C99_STDINT_TR1 && UINT32_C
-
- #endif // C++11
-
- #endif // _EXT_RANDOM
|