|
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/bessel_function.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- /* __cyl_bessel_jn_asymp adapted from GNU GSL version 2.4 specfunc/bessel_j.c
- * Copyright (C) 1996-2003 Gerard Jungman
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland.
- //
- // References:
- // (1) Handbook of Mathematical Functions,
- // ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 9, pp. 355-434, Section 10 pp. 435-478
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
- // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
- // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
- // 2nd ed, pp. 240-245
-
- #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
- #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
-
- #include <tr1/special_function_util.h>
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- # define _GLIBCXX_MATH_NS ::std
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- # define _GLIBCXX_MATH_NS ::std::tr1
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief Compute the gamma functions required by the Temme series
- * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
- * @f[
- * \Gamma_1 = \frac{1}{2\mu}
- * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
- * @f]
- * and
- * @f[
- * \Gamma_2 = \frac{1}{2}
- * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
- * @f]
- * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
- * is the nearest integer to @f$ \nu @f$.
- * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
- * are returned as well.
- *
- * The accuracy requirements on this are exquisite.
- *
- * @param __mu The input parameter of the gamma functions.
- * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
- * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
- * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
- * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
- */
- template <typename _Tp>
- void
- __gamma_temme(_Tp __mu,
- _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
- __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
- #else
- __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
- __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
- #endif
-
- if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
- __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
- else
- __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
-
- __gam2 = (__gammi + __gampl) / (_Tp(2));
-
- return;
- }
-
-
- /**
- * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
- * @f$ N_\nu(x) @f$ functions and their first derivatives
- * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
- * These four functions are computed together for numerical
- * stability.
- *
- * @param __nu The order of the Bessel functions.
- * @param __x The argument of the Bessel functions.
- * @param __Jnu The output Bessel function of the first kind.
- * @param __Nnu The output Neumann function (Bessel function of the second kind).
- * @param __Jpnu The output derivative of the Bessel function of the first kind.
- * @param __Npnu The output derivative of the Neumann function.
- */
- template <typename _Tp>
- void
- __bessel_jn(_Tp __nu, _Tp __x,
- _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
- {
- if (__x == _Tp(0))
- {
- if (__nu == _Tp(0))
- {
- __Jnu = _Tp(1);
- __Jpnu = _Tp(0);
- }
- else if (__nu == _Tp(1))
- {
- __Jnu = _Tp(0);
- __Jpnu = _Tp(0.5L);
- }
- else
- {
- __Jnu = _Tp(0);
- __Jpnu = _Tp(0);
- }
- __Nnu = -std::numeric_limits<_Tp>::infinity();
- __Npnu = std::numeric_limits<_Tp>::infinity();
- return;
- }
-
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- // When the multiplier is N i.e.
- // fp_min = N * min()
- // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
- //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
- const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
- const int __max_iter = 15000;
- const _Tp __x_min = _Tp(2);
-
- const int __nl = (__x < __x_min
- ? static_cast<int>(__nu + _Tp(0.5L))
- : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
-
- const _Tp __mu = __nu - __nl;
- const _Tp __mu2 = __mu * __mu;
- const _Tp __xi = _Tp(1) / __x;
- const _Tp __xi2 = _Tp(2) * __xi;
- _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
- int __isign = 1;
- _Tp __h = __nu * __xi;
- if (__h < __fp_min)
- __h = __fp_min;
- _Tp __b = __xi2 * __nu;
- _Tp __d = _Tp(0);
- _Tp __c = __h;
- int __i;
- for (__i = 1; __i <= __max_iter; ++__i)
- {
- __b += __xi2;
- __d = __b - __d;
- if (std::abs(__d) < __fp_min)
- __d = __fp_min;
- __c = __b - _Tp(1) / __c;
- if (std::abs(__c) < __fp_min)
- __c = __fp_min;
- __d = _Tp(1) / __d;
- const _Tp __del = __c * __d;
- __h *= __del;
- if (__d < _Tp(0))
- __isign = -__isign;
- if (std::abs(__del - _Tp(1)) < __eps)
- break;
- }
- if (__i > __max_iter)
- std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
- "try asymptotic expansion."));
- _Tp __Jnul = __isign * __fp_min;
- _Tp __Jpnul = __h * __Jnul;
- _Tp __Jnul1 = __Jnul;
- _Tp __Jpnu1 = __Jpnul;
- _Tp __fact = __nu * __xi;
- for ( int __l = __nl; __l >= 1; --__l )
- {
- const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
- __fact -= __xi;
- __Jpnul = __fact * __Jnutemp - __Jnul;
- __Jnul = __Jnutemp;
- }
- if (__Jnul == _Tp(0))
- __Jnul = __eps;
- _Tp __f= __Jpnul / __Jnul;
- _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
- if (__x < __x_min)
- {
- const _Tp __x2 = __x / _Tp(2);
- const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
- _Tp __fact = (std::abs(__pimu) < __eps
- ? _Tp(1) : __pimu / std::sin(__pimu));
- _Tp __d = -std::log(__x2);
- _Tp __e = __mu * __d;
- _Tp __fact2 = (std::abs(__e) < __eps
- ? _Tp(1) : std::sinh(__e) / __e);
- _Tp __gam1, __gam2, __gampl, __gammi;
- __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
- _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
- * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
- __e = std::exp(__e);
- _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
- _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
- const _Tp __pimu2 = __pimu / _Tp(2);
- _Tp __fact3 = (std::abs(__pimu2) < __eps
- ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
- _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
- _Tp __c = _Tp(1);
- __d = -__x2 * __x2;
- _Tp __sum = __ff + __r * __q;
- _Tp __sum1 = __p;
- for (__i = 1; __i <= __max_iter; ++__i)
- {
- __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
- __c *= __d / _Tp(__i);
- __p /= _Tp(__i) - __mu;
- __q /= _Tp(__i) + __mu;
- const _Tp __del = __c * (__ff + __r * __q);
- __sum += __del;
- const _Tp __del1 = __c * __p - __i * __del;
- __sum1 += __del1;
- if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
- break;
- }
- if ( __i > __max_iter )
- std::__throw_runtime_error(__N("Bessel y series failed to converge "
- "in __bessel_jn."));
- __Nmu = -__sum;
- __Nnu1 = -__sum1 * __xi2;
- __Npmu = __mu * __xi * __Nmu - __Nnu1;
- __Jmu = __w / (__Npmu - __f * __Nmu);
- }
- else
- {
- _Tp __a = _Tp(0.25L) - __mu2;
- _Tp __q = _Tp(1);
- _Tp __p = -__xi / _Tp(2);
- _Tp __br = _Tp(2) * __x;
- _Tp __bi = _Tp(2);
- _Tp __fact = __a * __xi / (__p * __p + __q * __q);
- _Tp __cr = __br + __q * __fact;
- _Tp __ci = __bi + __p * __fact;
- _Tp __den = __br * __br + __bi * __bi;
- _Tp __dr = __br / __den;
- _Tp __di = -__bi / __den;
- _Tp __dlr = __cr * __dr - __ci * __di;
- _Tp __dli = __cr * __di + __ci * __dr;
- _Tp __temp = __p * __dlr - __q * __dli;
- __q = __p * __dli + __q * __dlr;
- __p = __temp;
- int __i;
- for (__i = 2; __i <= __max_iter; ++__i)
- {
- __a += _Tp(2 * (__i - 1));
- __bi += _Tp(2);
- __dr = __a * __dr + __br;
- __di = __a * __di + __bi;
- if (std::abs(__dr) + std::abs(__di) < __fp_min)
- __dr = __fp_min;
- __fact = __a / (__cr * __cr + __ci * __ci);
- __cr = __br + __cr * __fact;
- __ci = __bi - __ci * __fact;
- if (std::abs(__cr) + std::abs(__ci) < __fp_min)
- __cr = __fp_min;
- __den = __dr * __dr + __di * __di;
- __dr /= __den;
- __di /= -__den;
- __dlr = __cr * __dr - __ci * __di;
- __dli = __cr * __di + __ci * __dr;
- __temp = __p * __dlr - __q * __dli;
- __q = __p * __dli + __q * __dlr;
- __p = __temp;
- if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
- break;
- }
- if (__i > __max_iter)
- std::__throw_runtime_error(__N("Lentz's method failed "
- "in __bessel_jn."));
- const _Tp __gam = (__p - __f) / __q;
- __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
- #if _GLIBCXX_USE_C99_MATH_TR1
- __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
- #else
- if (__Jmu * __Jnul < _Tp(0))
- __Jmu = -__Jmu;
- #endif
- __Nmu = __gam * __Jmu;
- __Npmu = (__p + __q / __gam) * __Nmu;
- __Nnu1 = __mu * __xi * __Nmu - __Npmu;
- }
- __fact = __Jmu / __Jnul;
- __Jnu = __fact * __Jnul1;
- __Jpnu = __fact * __Jpnu1;
- for (__i = 1; __i <= __nl; ++__i)
- {
- const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
- __Nmu = __Nnu1;
- __Nnu1 = __Nnutemp;
- }
- __Nnu = __Nmu;
- __Npnu = __nu * __xi * __Nmu - __Nnu1;
-
- return;
- }
-
-
- /**
- * @brief This routine computes the asymptotic cylindrical Bessel
- * and Neumann functions of order nu: \f$ J_{\nu} \f$,
- * \f$ N_{\nu} \f$.
- *
- * References:
- * (1) Handbook of Mathematical Functions,
- * ed. Milton Abramowitz and Irene A. Stegun,
- * Dover Publications,
- * Section 9 p. 364, Equations 9.2.5-9.2.10
- *
- * @param __nu The order of the Bessel functions.
- * @param __x The argument of the Bessel functions.
- * @param __Jnu The output Bessel function of the first kind.
- * @param __Nnu The output Neumann function (Bessel function of the second kind).
- */
- template <typename _Tp>
- void
- __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
- {
- const _Tp __mu = _Tp(4) * __nu * __nu;
- const _Tp __8x = _Tp(8) * __x;
-
- _Tp __P = _Tp(0);
- _Tp __Q = _Tp(0);
-
- _Tp __k = _Tp(0);
- _Tp __term = _Tp(1);
-
- int __epsP = 0;
- int __epsQ = 0;
-
- _Tp __eps = std::numeric_limits<_Tp>::epsilon();
-
- do
- {
- __term *= (__k == 0
- ? _Tp(1)
- : -(__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x));
-
- __epsP = std::abs(__term) < __eps * std::abs(__P);
- __P += __term;
-
- __k++;
-
- __term *= (__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x);
- __epsQ = std::abs(__term) < __eps * std::abs(__Q);
- __Q += __term;
-
- if (__epsP && __epsQ && __k > (__nu / 2.))
- break;
-
- __k++;
- }
- while (__k < 1000);
-
- const _Tp __chi = __x - (__nu + _Tp(0.5L))
- * __numeric_constants<_Tp>::__pi_2();
-
- const _Tp __c = std::cos(__chi);
- const _Tp __s = std::sin(__chi);
-
- const _Tp __coef = std::sqrt(_Tp(2)
- / (__numeric_constants<_Tp>::__pi() * __x));
-
- __Jnu = __coef * (__c * __P - __s * __Q);
- __Nnu = __coef * (__s * __P + __c * __Q);
-
- return;
- }
-
-
- /**
- * @brief This routine returns the cylindrical Bessel functions
- * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
- * by series expansion.
- *
- * The modified cylindrical Bessel function is:
- * @f[
- * Z_{\nu}(x) = \sum_{k=0}^{\infty}
- * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
- * @f]
- * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
- * \f$ Z = I \f$ or \f$ J \f$ respectively.
- *
- * See Abramowitz & Stegun, 9.1.10
- * Abramowitz & Stegun, 9.6.7
- * (1) Handbook of Mathematical Functions,
- * ed. Milton Abramowitz and Irene A. Stegun,
- * Dover Publications,
- * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
- *
- * @param __nu The order of the Bessel function.
- * @param __x The argument of the Bessel function.
- * @param __sgn The sign of the alternate terms
- * -1 for the Bessel function of the first kind.
- * +1 for the modified Bessel function of the first kind.
- * @return The output Bessel function.
- */
- template <typename _Tp>
- _Tp
- __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
- unsigned int __max_iter)
- {
- if (__x == _Tp(0))
- return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
-
- const _Tp __x2 = __x / _Tp(2);
- _Tp __fact = __nu * std::log(__x2);
- #if _GLIBCXX_USE_C99_MATH_TR1
- __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
- #else
- __fact -= __log_gamma(__nu + _Tp(1));
- #endif
- __fact = std::exp(__fact);
- const _Tp __xx4 = __sgn * __x2 * __x2;
- _Tp __Jn = _Tp(1);
- _Tp __term = _Tp(1);
-
- for (unsigned int __i = 1; __i < __max_iter; ++__i)
- {
- __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
- __Jn += __term;
- if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
- break;
- }
-
- return __fact * __Jn;
- }
-
-
- /**
- * @brief Return the Bessel function of order \f$ \nu \f$:
- * \f$ J_{\nu}(x) \f$.
- *
- * The cylindrical Bessel function is:
- * @f[
- * J_{\nu}(x) = \sum_{k=0}^{\infty}
- * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
- * @f]
- *
- * @param __nu The order of the Bessel function.
- * @param __x The argument of the Bessel function.
- * @return The output Bessel function.
- */
- template<typename _Tp>
- _Tp
- __cyl_bessel_j(_Tp __nu, _Tp __x)
- {
- if (__nu < _Tp(0) || __x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __cyl_bessel_j."));
- else if (__isnan(__nu) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
- return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
- else if (__x > _Tp(1000))
- {
- _Tp __J_nu, __N_nu;
- __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
- return __J_nu;
- }
- else
- {
- _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
- __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
- return __J_nu;
- }
- }
-
-
- /**
- * @brief Return the Neumann function of order \f$ \nu \f$:
- * \f$ N_{\nu}(x) \f$.
- *
- * The Neumann function is defined by:
- * @f[
- * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
- * {\sin \nu\pi}
- * @f]
- * where for integral \f$ \nu = n \f$ a limit is taken:
- * \f$ lim_{\nu \to n} \f$.
- *
- * @param __nu The order of the Neumann function.
- * @param __x The argument of the Neumann function.
- * @return The output Neumann function.
- */
- template<typename _Tp>
- _Tp
- __cyl_neumann_n(_Tp __nu, _Tp __x)
- {
- if (__nu < _Tp(0) || __x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __cyl_neumann_n."));
- else if (__isnan(__nu) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x > _Tp(1000))
- {
- _Tp __J_nu, __N_nu;
- __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
- return __N_nu;
- }
- else
- {
- _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
- __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
- return __N_nu;
- }
- }
-
-
- /**
- * @brief Compute the spherical Bessel @f$ j_n(x) @f$
- * and Neumann @f$ n_n(x) @f$ functions and their first
- * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
- * respectively.
- *
- * @param __n The order of the spherical Bessel function.
- * @param __x The argument of the spherical Bessel function.
- * @param __j_n The output spherical Bessel function.
- * @param __n_n The output spherical Neumann function.
- * @param __jp_n The output derivative of the spherical Bessel function.
- * @param __np_n The output derivative of the spherical Neumann function.
- */
- template <typename _Tp>
- void
- __sph_bessel_jn(unsigned int __n, _Tp __x,
- _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
- {
- const _Tp __nu = _Tp(__n) + _Tp(0.5L);
-
- _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
- __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
-
- const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
- / std::sqrt(__x);
-
- __j_n = __factor * __J_nu;
- __n_n = __factor * __N_nu;
- __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
- __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
-
- return;
- }
-
-
- /**
- * @brief Return the spherical Bessel function
- * @f$ j_n(x) @f$ of order n.
- *
- * The spherical Bessel function is defined by:
- * @f[
- * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
- * @f]
- *
- * @param __n The order of the spherical Bessel function.
- * @param __x The argument of the spherical Bessel function.
- * @return The output spherical Bessel function.
- */
- template <typename _Tp>
- _Tp
- __sph_bessel(unsigned int __n, _Tp __x)
- {
- if (__x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __sph_bessel."));
- else if (__isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x == _Tp(0))
- {
- if (__n == 0)
- return _Tp(1);
- else
- return _Tp(0);
- }
- else
- {
- _Tp __j_n, __n_n, __jp_n, __np_n;
- __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
- return __j_n;
- }
- }
-
-
- /**
- * @brief Return the spherical Neumann function
- * @f$ n_n(x) @f$.
- *
- * The spherical Neumann function is defined by:
- * @f[
- * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
- * @f]
- *
- * @param __n The order of the spherical Neumann function.
- * @param __x The argument of the spherical Neumann function.
- * @return The output spherical Neumann function.
- */
- template <typename _Tp>
- _Tp
- __sph_neumann(unsigned int __n, _Tp __x)
- {
- if (__x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __sph_neumann."));
- else if (__isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x == _Tp(0))
- return -std::numeric_limits<_Tp>::infinity();
- else
- {
- _Tp __j_n, __n_n, __jp_n, __np_n;
- __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
- return __n_n;
- }
- }
- } // namespace __detail
- #undef _GLIBCXX_MATH_NS
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
|