|
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/beta_function.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland based on:
- // (1) Handbook of Mathematical Functions,
- // ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 6, pp. 253-266
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
- // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
- // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
- // 2nd ed, pp. 213-216
- // (4) Gamma, Exploring Euler's Constant, Julian Havil,
- // Princeton, 2003.
-
- #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
- #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- # define _GLIBCXX_MATH_NS ::std
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- # define _GLIBCXX_MATH_NS ::std::tr1
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief Return the beta function: \f$B(x,y)\f$.
- *
- * The beta function is defined by
- * @f[
- * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
- * @f]
- *
- * @param __x The first argument of the beta function.
- * @param __y The second argument of the beta function.
- * @return The beta function.
- */
- template<typename _Tp>
- _Tp
- __beta_gamma(_Tp __x, _Tp __y)
- {
-
- _Tp __bet;
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (__x > __y)
- {
- __bet = _GLIBCXX_MATH_NS::tgamma(__x)
- / _GLIBCXX_MATH_NS::tgamma(__x + __y);
- __bet *= _GLIBCXX_MATH_NS::tgamma(__y);
- }
- else
- {
- __bet = _GLIBCXX_MATH_NS::tgamma(__y)
- / _GLIBCXX_MATH_NS::tgamma(__x + __y);
- __bet *= _GLIBCXX_MATH_NS::tgamma(__x);
- }
- #else
- if (__x > __y)
- {
- __bet = __gamma(__x) / __gamma(__x + __y);
- __bet *= __gamma(__y);
- }
- else
- {
- __bet = __gamma(__y) / __gamma(__x + __y);
- __bet *= __gamma(__x);
- }
- #endif
-
- return __bet;
- }
-
- /**
- * @brief Return the beta function \f$B(x,y)\f$ using
- * the log gamma functions.
- *
- * The beta function is defined by
- * @f[
- * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
- * @f]
- *
- * @param __x The first argument of the beta function.
- * @param __y The second argument of the beta function.
- * @return The beta function.
- */
- template<typename _Tp>
- _Tp
- __beta_lgamma(_Tp __x, _Tp __y)
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x)
- + _GLIBCXX_MATH_NS::lgamma(__y)
- - _GLIBCXX_MATH_NS::lgamma(__x + __y);
- #else
- _Tp __bet = __log_gamma(__x)
- + __log_gamma(__y)
- - __log_gamma(__x + __y);
- #endif
- __bet = std::exp(__bet);
- return __bet;
- }
-
-
- /**
- * @brief Return the beta function \f$B(x,y)\f$ using
- * the product form.
- *
- * The beta function is defined by
- * @f[
- * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
- * @f]
- *
- * @param __x The first argument of the beta function.
- * @param __y The second argument of the beta function.
- * @return The beta function.
- */
- template<typename _Tp>
- _Tp
- __beta_product(_Tp __x, _Tp __y)
- {
-
- _Tp __bet = (__x + __y) / (__x * __y);
-
- unsigned int __max_iter = 1000000;
- for (unsigned int __k = 1; __k < __max_iter; ++__k)
- {
- _Tp __term = (_Tp(1) + (__x + __y) / __k)
- / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
- __bet *= __term;
- }
-
- return __bet;
- }
-
-
- /**
- * @brief Return the beta function \f$ B(x,y) \f$.
- *
- * The beta function is defined by
- * @f[
- * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
- * @f]
- *
- * @param __x The first argument of the beta function.
- * @param __y The second argument of the beta function.
- * @return The beta function.
- */
- template<typename _Tp>
- inline _Tp
- __beta(_Tp __x, _Tp __y)
- {
- if (__isnan(__x) || __isnan(__y))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else
- return __beta_lgamma(__x, __y);
- }
- } // namespace __detail
- #undef _GLIBCXX_MATH_NS
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC
|