|
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/gamma.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland based on:
- // (1) Handbook of Mathematical Functions,
- // ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 6, pp. 253-266
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
- // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
- // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
- // 2nd ed, pp. 213-216
- // (4) Gamma, Exploring Euler's Constant, Julian Havil,
- // Princeton, 2003.
-
- #ifndef _GLIBCXX_TR1_GAMMA_TCC
- #define _GLIBCXX_TR1_GAMMA_TCC 1
-
- #include <tr1/special_function_util.h>
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- # define _GLIBCXX_MATH_NS ::std
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- # define _GLIBCXX_MATH_NS ::std::tr1
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief This returns Bernoulli numbers from a table or by summation
- * for larger values.
- *
- * Recursion is unstable.
- *
- * @param __n the order n of the Bernoulli number.
- * @return The Bernoulli number of order n.
- */
- template <typename _Tp>
- _Tp
- __bernoulli_series(unsigned int __n)
- {
-
- static const _Tp __num[28] = {
- _Tp(1UL), -_Tp(1UL) / _Tp(2UL),
- _Tp(1UL) / _Tp(6UL), _Tp(0UL),
- -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
- _Tp(1UL) / _Tp(42UL), _Tp(0UL),
- -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
- _Tp(5UL) / _Tp(66UL), _Tp(0UL),
- -_Tp(691UL) / _Tp(2730UL), _Tp(0UL),
- _Tp(7UL) / _Tp(6UL), _Tp(0UL),
- -_Tp(3617UL) / _Tp(510UL), _Tp(0UL),
- _Tp(43867UL) / _Tp(798UL), _Tp(0UL),
- -_Tp(174611) / _Tp(330UL), _Tp(0UL),
- _Tp(854513UL) / _Tp(138UL), _Tp(0UL),
- -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
- _Tp(8553103UL) / _Tp(6UL), _Tp(0UL)
- };
-
- if (__n == 0)
- return _Tp(1);
-
- if (__n == 1)
- return -_Tp(1) / _Tp(2);
-
- // Take care of the rest of the odd ones.
- if (__n % 2 == 1)
- return _Tp(0);
-
- // Take care of some small evens that are painful for the series.
- if (__n < 28)
- return __num[__n];
-
-
- _Tp __fact = _Tp(1);
- if ((__n / 2) % 2 == 0)
- __fact *= _Tp(-1);
- for (unsigned int __k = 1; __k <= __n; ++__k)
- __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
- __fact *= _Tp(2);
-
- _Tp __sum = _Tp(0);
- for (unsigned int __i = 1; __i < 1000; ++__i)
- {
- _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
- if (__term < std::numeric_limits<_Tp>::epsilon())
- break;
- __sum += __term;
- }
-
- return __fact * __sum;
- }
-
-
- /**
- * @brief This returns Bernoulli number \f$B_n\f$.
- *
- * @param __n the order n of the Bernoulli number.
- * @return The Bernoulli number of order n.
- */
- template<typename _Tp>
- inline _Tp
- __bernoulli(int __n)
- { return __bernoulli_series<_Tp>(__n); }
-
-
- /**
- * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
- * with Bernoulli number coefficients. This is like
- * Sterling's approximation.
- *
- * @param __x The argument of the log of the gamma function.
- * @return The logarithm of the gamma function.
- */
- template<typename _Tp>
- _Tp
- __log_gamma_bernoulli(_Tp __x)
- {
- _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
- + _Tp(0.5L) * std::log(_Tp(2)
- * __numeric_constants<_Tp>::__pi());
-
- const _Tp __xx = __x * __x;
- _Tp __help = _Tp(1) / __x;
- for ( unsigned int __i = 1; __i < 20; ++__i )
- {
- const _Tp __2i = _Tp(2 * __i);
- __help /= __2i * (__2i - _Tp(1)) * __xx;
- __lg += __bernoulli<_Tp>(2 * __i) * __help;
- }
-
- return __lg;
- }
-
-
- /**
- * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
- * This method dominates all others on the positive axis I think.
- *
- * @param __x The argument of the log of the gamma function.
- * @return The logarithm of the gamma function.
- */
- template<typename _Tp>
- _Tp
- __log_gamma_lanczos(_Tp __x)
- {
- const _Tp __xm1 = __x - _Tp(1);
-
- static const _Tp __lanczos_cheb_7[9] = {
- _Tp( 0.99999999999980993227684700473478L),
- _Tp( 676.520368121885098567009190444019L),
- _Tp(-1259.13921672240287047156078755283L),
- _Tp( 771.3234287776530788486528258894L),
- _Tp(-176.61502916214059906584551354L),
- _Tp( 12.507343278686904814458936853L),
- _Tp(-0.13857109526572011689554707L),
- _Tp( 9.984369578019570859563e-6L),
- _Tp( 1.50563273514931155834e-7L)
- };
-
- static const _Tp __LOGROOT2PI
- = _Tp(0.9189385332046727417803297364056176L);
-
- _Tp __sum = __lanczos_cheb_7[0];
- for(unsigned int __k = 1; __k < 9; ++__k)
- __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
-
- const _Tp __term1 = (__xm1 + _Tp(0.5L))
- * std::log((__xm1 + _Tp(7.5L))
- / __numeric_constants<_Tp>::__euler());
- const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
- const _Tp __result = __term1 + (__term2 - _Tp(7));
-
- return __result;
- }
-
-
- /**
- * @brief Return \f$ log(|\Gamma(x)|) \f$.
- * This will return values even for \f$ x < 0 \f$.
- * To recover the sign of \f$ \Gamma(x) \f$ for
- * any argument use @a __log_gamma_sign.
- *
- * @param __x The argument of the log of the gamma function.
- * @return The logarithm of the gamma function.
- */
- template<typename _Tp>
- _Tp
- __log_gamma(_Tp __x)
- {
- if (__x > _Tp(0.5L))
- return __log_gamma_lanczos(__x);
- else
- {
- const _Tp __sin_fact
- = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
- if (__sin_fact == _Tp(0))
- std::__throw_domain_error(__N("Argument is nonpositive integer "
- "in __log_gamma"));
- return __numeric_constants<_Tp>::__lnpi()
- - std::log(__sin_fact)
- - __log_gamma_lanczos(_Tp(1) - __x);
- }
- }
-
-
- /**
- * @brief Return the sign of \f$ \Gamma(x) \f$.
- * At nonpositive integers zero is returned.
- *
- * @param __x The argument of the gamma function.
- * @return The sign of the gamma function.
- */
- template<typename _Tp>
- _Tp
- __log_gamma_sign(_Tp __x)
- {
- if (__x > _Tp(0))
- return _Tp(1);
- else
- {
- const _Tp __sin_fact
- = std::sin(__numeric_constants<_Tp>::__pi() * __x);
- if (__sin_fact > _Tp(0))
- return (1);
- else if (__sin_fact < _Tp(0))
- return -_Tp(1);
- else
- return _Tp(0);
- }
- }
-
-
- /**
- * @brief Return the logarithm of the binomial coefficient.
- * The binomial coefficient is given by:
- * @f[
- * \left( \right) = \frac{n!}{(n-k)! k!}
- * @f]
- *
- * @param __n The first argument of the binomial coefficient.
- * @param __k The second argument of the binomial coefficient.
- * @return The binomial coefficient.
- */
- template<typename _Tp>
- _Tp
- __log_bincoef(unsigned int __n, unsigned int __k)
- {
- // Max e exponent before overflow.
- static const _Tp __max_bincoeff
- = std::numeric_limits<_Tp>::max_exponent10
- * std::log(_Tp(10)) - _Tp(1);
- #if _GLIBCXX_USE_C99_MATH_TR1
- _Tp __coeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n))
- - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k))
- - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k));
- #else
- _Tp __coeff = __log_gamma(_Tp(1 + __n))
- - __log_gamma(_Tp(1 + __k))
- - __log_gamma(_Tp(1 + __n - __k));
- #endif
- }
-
-
- /**
- * @brief Return the binomial coefficient.
- * The binomial coefficient is given by:
- * @f[
- * \left( \right) = \frac{n!}{(n-k)! k!}
- * @f]
- *
- * @param __n The first argument of the binomial coefficient.
- * @param __k The second argument of the binomial coefficient.
- * @return The binomial coefficient.
- */
- template<typename _Tp>
- _Tp
- __bincoef(unsigned int __n, unsigned int __k)
- {
- // Max e exponent before overflow.
- static const _Tp __max_bincoeff
- = std::numeric_limits<_Tp>::max_exponent10
- * std::log(_Tp(10)) - _Tp(1);
-
- const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
- if (__log_coeff > __max_bincoeff)
- return std::numeric_limits<_Tp>::quiet_NaN();
- else
- return std::exp(__log_coeff);
- }
-
-
- /**
- * @brief Return \f$ \Gamma(x) \f$.
- *
- * @param __x The argument of the gamma function.
- * @return The gamma function.
- */
- template<typename _Tp>
- inline _Tp
- __gamma(_Tp __x)
- { return std::exp(__log_gamma(__x)); }
-
-
- /**
- * @brief Return the digamma function by series expansion.
- * The digamma or @f$ \psi(x) @f$ function is defined by
- * @f[
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
- * @f]
- *
- * The series is given by:
- * @f[
- * \psi(x) = -\gamma_E - \frac{1}{x}
- * \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
- * @f]
- */
- template<typename _Tp>
- _Tp
- __psi_series(_Tp __x)
- {
- _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
- const unsigned int __max_iter = 100000;
- for (unsigned int __k = 1; __k < __max_iter; ++__k)
- {
- const _Tp __term = __x / (__k * (__k + __x));
- __sum += __term;
- if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
- break;
- }
- return __sum;
- }
-
-
- /**
- * @brief Return the digamma function for large argument.
- * The digamma or @f$ \psi(x) @f$ function is defined by
- * @f[
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
- * @f]
- *
- * The asymptotic series is given by:
- * @f[
- * \psi(x) = \ln(x) - \frac{1}{2x}
- * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
- * @f]
- */
- template<typename _Tp>
- _Tp
- __psi_asymp(_Tp __x)
- {
- _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
- const _Tp __xx = __x * __x;
- _Tp __xp = __xx;
- const unsigned int __max_iter = 100;
- for (unsigned int __k = 1; __k < __max_iter; ++__k)
- {
- const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
- __sum -= __term;
- if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
- break;
- __xp *= __xx;
- }
- return __sum;
- }
-
-
- /**
- * @brief Return the digamma function.
- * The digamma or @f$ \psi(x) @f$ function is defined by
- * @f[
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
- * @f]
- * For negative argument the reflection formula is used:
- * @f[
- * \psi(x) = \psi(1-x) - \pi \cot(\pi x)
- * @f]
- */
- template<typename _Tp>
- _Tp
- __psi(_Tp __x)
- {
- const int __n = static_cast<int>(__x + 0.5L);
- const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
- if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x < _Tp(0))
- {
- const _Tp __pi = __numeric_constants<_Tp>::__pi();
- return __psi(_Tp(1) - __x)
- - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
- }
- else if (__x > _Tp(100))
- return __psi_asymp(__x);
- else
- return __psi_series(__x);
- }
-
-
- /**
- * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$.
- *
- * The polygamma function is related to the Hurwitz zeta function:
- * @f[
- * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
- * @f]
- */
- template<typename _Tp>
- _Tp
- __psi(unsigned int __n, _Tp __x)
- {
- if (__x <= _Tp(0))
- std::__throw_domain_error(__N("Argument out of range "
- "in __psi"));
- else if (__n == 0)
- return __psi(__x);
- else
- {
- const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
- #if _GLIBCXX_USE_C99_MATH_TR1
- const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
- #else
- const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
- #endif
- _Tp __result = std::exp(__ln_nfact) * __hzeta;
- if (__n % 2 == 1)
- __result = -__result;
- return __result;
- }
- }
- } // namespace __detail
- #undef _GLIBCXX_MATH_NS
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace std
-
- #endif // _GLIBCXX_TR1_GAMMA_TCC
|